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Transforming growth factor-𝛽 (TGF-𝛽) signaling regulates diverse cellular processes, including cell proliferation, differentiation,
apoptosis, cell plasticity, and migration. TGF-𝛽 signaling can be mediated by Smad proteins or other signaling proteins such as
MAP kinases and Akt. TGF-𝛽 signaling is tightly regulated at different levels along the pathways to ensure its proper physiological
functions in different cells and tissues. Deregulation of TGF-𝛽 signaling has been associated with various kinds of diseases, such as
cancer and tissue fibrosis. This paper focuses on our recent work on regulation of TGF-𝛽 signaling.

1. Introduction

Transforming growth factor-𝛽 (TGF-𝛽) family is a group of
structurally related growth factors, which includes TGF-𝛽,
activin, nodal, bone morphogenetic proteins (BMPs), and
others. These growth factors play critical roles in regulating
a wide range of biological processes during embryonic
development and adult tissue homeostasis, and deregulation
of the signal transduction has been associated with many
human diseases, including cancer and tissue fibrosis [1–3].
TGF-𝛽 signaling is initiated by the binding of TGF-𝛽 to its
serine and threonine kinase receptors, the type II and type
I receptors on the cell membrane. Ligand binding triggers
the formation of the receptor heterocomplex, in which type
II receptor phosphorylates type I receptor at the threonine
and serine residues in its TTSGSGSG motif, leading to the
activation of type I receptor [1, 4, 5]. The activated type I
receptor recruits and phosphorylates the R-Smad proteins,
which then form a heterocomplex with the co-Smad Smad4.
The Smad complexes are then accumulated in the nucleus and
regulate transcription of the target genes by cooperating with
other cofactors [6, 7].

For each member of the TGF-𝛽 family, they have their
own combination of type I and type II receptors andR-Smads.
For TGF-𝛽 signaling, the type I receptor T𝛽RI/ALK5 and
the type II receptor T𝛽RII are employed to activate Smad2/3.
For BMP signaling, ALK1/2/3/6 can activate Smad1/5/8 with

type II receptor BMPRII, ActRII, and ActRIIB [8, 9]. ALK4/7
can activate Smad2/3 with ActRII and ActRIIB to mediate
activin/nodal signaling [10, 11]. In addition, TGF-𝛽 can
also activate mitogen-activating protein kinases (MAPKs)
including ERK, p38 and JNK, phosphatidylinositol 3 kinase
(PI3K)/Akt, and small GTPases [12–14]. In this review, we
mainly summarize our work on the regulation of the activity
and stability of TGF-𝛽 receptors and Smads, highlighting the
current understanding and perspectives of TGF-𝛽 signaling
modulation.

2. Membrane Trafficking Regulates the
Activity and Stability of TGF-𝛽 Receptors

Cell surface receptors are internalized through two major
endocytic pathways: clathrin-mediated endocytosis and
lipid raft/caveolae-mediated endocytosis [15–17]. Clathrin-
mediated endocytosis is the best characterized pathway,
which is employed by many cell surface receptors such as
G protein-coupled receptors, tyrosine kinase receptors, low-
density lipoprotein receptor, and transferring receptor [18].
The receptors are first concentrated on the clathrin-coated
pits, which are assembled on the cytoplasmic face of the
plasmamembrane by the recruitment of the adaptor complex
AP2, clathrin, and other accessory proteins such as Eps15,
epsin, disabled-2, synaptotagmin, and amphiphysin [19–21].
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These pits undergo invagination and then pinch off from
the plasma membrane in a dynamin GTPase-dependent
manner [22]. After uncoating with dissociation of adaptors
and clathrin, the vesicle is fused with early endosomes.

Besides clathrin-coated pits, cholesterol-enriched, and
specialized detergent-insoluble lipid rafts can also be found in
the plasma membrane, which can serve as signaling centers
for nitric oxide, calcium, G protein-coupled receptors, and
protein tyrosine kinases, or as virus entrance [23, 24]. Some of
these membranemicrodomains are specialized as caveolae in
the presence of caveolin. Caveolae mediates the internaliza-
tion of various proteins such as choleratoxin, glycosylphos-
phatidylinositol (GPI)-anchored proteins, endothelin recep-
tor, and growth hormone receptor [25, 26]. The internalized
cargos are transported to not well-characterized caveosomes
and eventually to later endosomes or lysosomes.

TGF-𝛽 receptors are partitioned between the lipid rafts
and nonraft areas on the plasma membrane [27–32]. Ligand
binding to its receptor at the cell surface not only initiates
signaling events but also triggers internalization of both
ligand and receptors. We and others have demonstrated that
TGF-𝛽 receptors can be endocytosed via clathrin-coated
vesicles as TGF-𝛽 endocytosis can be blocked by potassium
depletion and the GTPase deficient dynamin K44A mutant
[33–35]. Internalization of TGF-𝛽 receptors through clathrin-
dependent endocytosis to EEA1-positive endosomes is more
likely to promote signaling as the FYVE domain-containing
protein SARA are enriched in EEA1-positive endosomes and
can facilitate R-Smads activation [36–38]. To support this
idea, we found that endofin, which share a homology with
SARA, can interact with TGF-𝛽 receptors and Smad4 and
promote TGF-𝛽-induced Smad complex formation [39]. The
internalized receptors can be recycled to the membrane in a
Rab11-dependent manner [40]. TGF-𝛽 receptors located in
lipid raft regions enter cells via lipid raft/caveolae and are
found in caveolin-positive vesicles [36]. Lipid raft/caveolae is
indicated to facilitate the degradation of TGF-𝛽 receptors and
therefore turnoff of TGF-𝛽 signaling (Figure 1).

The partitioning and internalization of TGF-𝛽 receptors
are regulated processes [41]. One of the major regulators
we identified is Casitas B-lineage lymphoma (c-Cbl), a pro-
tooncogene with widespread mutations in hematopoietic
malignancies [42]. Unlike its classic role as a ubiquitin E3
ligase mediating receptor tyrosine kinases (RTKs) ubiqui-
tination and degradation, c-Cbl interacts with T𝛽RII and
conjugates neural precursor cell-expressed, developmentally
downregulated 8 (NEDD8), a ubiquitin-like protein, to T𝛽RII
at Lys556 and Lys567 [43]. Neddylation has been reported to
regulate substrate protein activity, stability, and subcellular
localization [44]. In the case of T𝛽RII, we demonstrated
that c-Cbl-mediated neddylation could target T𝛽RII into
EEA1-positive early endosomes and prevent its endocytosis to
caveolin-positive compartments. Consequently, c-Cbl stabi-
lizes T𝛽RII by attenuating its ubiquitination and degradation
and thereby enhances cellular TGF-𝛽 responsiveness.

It has been well established that c-Cbl mutations con-
tribute to leukemia by negatively regulating the activ-
ity and stability of receptor tyrosine kinases [45–47].
Besides, disruption of TGF-𝛽 signaling, which is a major

antiproliferation and prodifferentiation signal for hematopoi-
etic stem/progenitor cells [48], greatly promotes lymphoblas-
tic and myeloid leukemia in mouse models [49, 50]. We
demonstrated that c-Cbl overexpression stabilizes T𝛽RII and
sensitizes leukemia cells to TGF-𝛽-induced growth inhibi-
tion. We also identified a neddylation-activity-defective c-
Cbl mutation from leukemia patients, implying that c-Cbl
inactivation contributes to leukemia development not only
by amplifying the mitogenic signals from RTKs, but also by
releasing the antiproliferative effects of TGF-𝛽.

We demonstrated that PICK1 (protein that interacts with
C kinase 1), opposite to c-Cbl, promotes lipid raft/caveolae
localization and caveolin-mediated endocytosis of TGF-
𝛽 receptors [51]. As an adaptor protein, PICK1 has been
shown to interact with a number of membrane proteins and
regulate their subcellular trafficking, such as AMPAR [52–
55], acid-sensing ion channel [56], and ErbB2/Her-2 [57].
Our biochemical analyses reveal that PICK1 directly interacts
with the C-terminus of T𝛽RI via its PDZ domain and acts as
a scaffold protein to enhance the interaction between T𝛽RI
and caveolin-1, leading to increased lipid raft/caveolae local-
ization [51]. Therefore, PICK1 increases caveolin-mediated
endocytosis, ubiquitination, and degradation of T𝛽RI and
suppresses TGF-𝛽 signaling.

Previous studies associated the deviant expression of
PICK1 in brain with mental disorders such as schizophrenia
[58–60]. However, PICK1 is ubiquitously expressed in many
organs outside the nervous system, and its physiological
functions have not been fully investigated. By modulating
the signaling, PICK1 may participate in TGF-𝛽-related pro-
cesses. Indeed, we observed a significant negative correlation
between PICK1 expression and T𝛽RI or phospho-Smad2
levels in human breast tumors, indicating that PICK1 may be
involved in breast cancer development through inhibition of
TGF-𝛽 signaling [51]. This idea is also supported by other
reports suggesting that PICK1 is associated with human
cancer development [57, 61–63].

In fact, distribution of TGF-𝛽 receptors in lipid rafts
does not simply promote receptor degradation. We showed
that localization of TGF-𝛽 receptors in the lipid raft regions
is required for TGF-𝛽-mediated MAPK activation. Distur-
bance of distribution of TGF-𝛽 receptors in lipid rafts by
cholesterol depletion blocks TGF-𝛽-induced MAPK acti-
vation and epithelial-mesenchymal transition (EMT) [64].
Consistent with this, specific targeting of the intracellular
domain of T𝛽RI to lipid rafts directly activates ERK and
triggers EMT. This suggests a distinct role of lipid rafts in
controlling the canonical TGF-𝛽/Smad signaling and the
TGF-𝛽/noncanonical MAPK signaling.

We have also identified another regulator of TGF-𝛽
receptors trafficking and turnover, Dapper2. Interacting
with Dishevelled with its C-terminal PDZ-binding
motif, Dapper1 was first identified as a Wnt signaling
antagonist in Xenopus [65]. Then, the inhibitory effect of
Dapper2 on TGF-𝛽/nodal signaling was demonstrated
in zebrafish mesoderm induction [66], and its function
is later found to be conserved in mammalian cells [67].
Dapper2 preferentially interacts with T𝛽RI/ALK5 and
activin receptor ActRIB/ALK4 in the Rab7-positive late
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Figure 1: Membrane trafficking regulates the activity and stability of TGF-𝛽 receptors. Internalization of TGF-𝛽 receptors through
clathrin-dependent endocytosis enhances TGF-𝛽-Smad signaling, whereas caveolin-mediated endocytosis promotes the ubiquitination and
degradation of the receptors and thus the turnoff of signaling. c-Cbl neddylates T𝛽RII and facilitates its clathrin-dependent endocytosis,
while PICK1 promotes lipid raft/caveolae localization and caveolin-mediated endocytosis of T𝛽RI. Dapper2 locates in late endosomes and
accelerates the lysosomal degradation of T𝛽RI.The lipid raft localization of TGF-𝛽 receptors is critical for TGF-𝛽-mediatedMAPK activation.

endosomes and accelerates their lysosomal degradation,
suggesting that Dapper2 facilitates the transport of
endocytosed receptors from late endosomes to lysosomes.
However, its detailed mechanism is unclear.

3. Regulation of TGF-𝛽 Receptor
Ubiquitination and Stability

TGF-𝛽 receptors localized in lipid raft/caveolae and caveolin-
1-positive vesicles undergo ubiquitination-mediated degra-
dation [36, 68, 69]. Recruitment of the WW-HECT-type E3
ubiquitin ligases Smurf1, Smurf2, NEDD4-2 and WWP1 to
T𝛽RI is essential for its ubiquitination, in which process
Smad7 acts as a critical adaptor [70]. Smad7 can bind to T𝛽RI
and HECT domain-containing E3 ligases and thus facilitate
the assembly of the T𝛽RI-Smad7-E3 complex, in which both

T𝛽RI and Smad7 are ubiquitinated and degradated [71–75]
(Figure 2(a)).

T𝛽RI ubiquitination is finely controlled by multiple
proteins, one of which we found is TGF-𝛽-stimulated clone
22 (TSC-22). TSC-22, which was first reported as a TGF-
𝛽-upregulated gene in MC3T3E1 mouse osteoblastic cells,
contains a leucine zipper-like structure and a nuclear export
signal [76]. Accumulated evidence indicates that TSC-22
has an antiproliferative activity and is downregulated in
several types of tumor cells [77–82]. We identified TSC-22
as a T𝛽RI-binding partner using a yeast two-hybrid screen
[83]. As a TGF-𝛽 target, TSC-22 can disrupt the binding
of Smad7/Smurfs with T𝛽RI and therefore decrease the
ubiquitination and degradation of the receptor, leading to
enhanced TGF-𝛽 signaling [83] (Figure 2(b)). This positive-
feedback loop may be involved in myocardial fibrosis as an
elevated TSC-22 level was correlated with TGF-𝛽 signaling
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Figure 2: Regulation of TGF-𝛽 receptor degradation and expression. (a) TGF-𝛽 receptors localized in lipid raft/caveolae and caveolin-1-
positive vesicles undergo ubiquitination. Smad7 recruits HECT domain-containing E3 ligases to mediate ubiquitination and degradation of
T𝛽RI. (b) TSC-22 competes with Smad7/Smurfs for T𝛽RI binding and therefore decreases the ubiquitination and degradation of the receptor,
leading to enhanced TGF-𝛽 signaling. PM: plasma membrane.

activation and enhanced expression of fibrotic genes in the
isoproterenol-induced heart fibrosis model. However, it is
unclear whether TSC-22 prevents Smad7-induced receptor
ubiquitination/degradation in lipid rafts or in nonraft regions.

4. Regulation of TGF-𝛽 Receptor Expression

Althoughmodulation of receptor activities is a critical step for
TGF-𝛽 signaling regulation, the regulation of TGF-𝛽 receptor
expression is also important. Histone acetylation has been
indicated to regulate TGF-𝛽 receptor expression [84–87].
Other mechanisms may be also employed to control their
transcription. In search for miRNAs interfering type I recep-
tor expression, we found that microRNAmiR-24 reduces the
mRNA and protein levels of human activin type I receptor
ALK4 (ALK4) by targeting the 3-untranslated region of
ALK4 mRNA and inhibits activin signaling [88]. Conse-
quently, miR-24 represses the activin-mediated erythroid
differentiation of K562 cells, erythroid colony formation, and
maturation of human CD34+ hematopoietic progenitor cells.
T𝛽RII expression is also repressed by mir-106b [89].

5. Modulation of Smad Activation

Upon being phosphorylated by T𝛽RII, the activated T𝛽RI
recruits and phosphorylates Smad2/3 at the C-terminal
(Figure 3(a)). Various proteins associated with the receptors
complex have been reported to regulate R-Smad recruitment
[90], such as SARA and endofin as mentioned above. BMP
and activin membrane-bound inhibitor (BAMBI) has been

reported as a general antagonist of TGF-𝛽 family members.
Acting as a pseudoreceptor, BAMBI interferes with the inter-
action between type I and type II receptors of the TGF-
𝛽 family [91]. In addition to blocking the heterocomplex
formation of TGF-𝛽 receptors, our recent work showed that
BAMBI cooperates with Smad7 to inhibit TGF-𝛽 signaling
[92]. BAMBI can form a ternary complex with Smad7 and
T𝛽RI and inhibit the interaction between T𝛽RI and Smad3,
which impairs Smad3 activation (Figure 3(b)). Besides, we
also found that p21-activated kinase 2 (PAK2) can directly
phosphorylate Smad2 at Ser417, which interferes with the
T𝛽RI-Smad2 association and thus blocks TGF-𝛽-induced
Smad2 activation and signaling [93].

Phosphorylated Smad2/3 binds Smad4 to form a Smad
heterocomplex,whichmediates downstream signal transduc-
tion. We have reported that the FYVE domain-containing
protein endofin can interact with both T𝛽RI and Smad4 [39].
As a scaffold protein, endofin recruits Smad4 to T𝛽RI in
early endosomes and facilitates the association of receptor-
activated Smad2 with Smad4 (Figure 3(a)).

6. Regulation of Smad Activity

Smad4 is the common Smad critical for both TGF-𝛽/activin
and BMP signaling. However, several studies have also
revealed Smad4-independent R-Smad signaling [94–96].
Severe acute respiratory syndrome-associated coronavirus
nucleocapsid protein (SARS-CoVNprotein) is a 46 kDa viral
RNA-binding protein that shares little homology with the N
proteins of other known coronaviruses [97]. We found that
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Figure 3: Modulation of Smad activation. (a) Activated T𝛽RI recruits and phosphorylates Smad2/3 at the C-terminal, and then the
phosphorylated Smad2/3 binds Smad4 to form a Smad heterocomplex tomediate signal transduction. Endofin recruits Smad4 to the receptor
complex in early endosomes and facilitates the association of receptor-activated Smad2/3 with Smad4. (b) BAMBI forms a ternary complex
with receptors and Smad7 and inhibits the interaction between T𝛽RI and Smad3, impairing Smad3 activation. PM: plasma membrane.

SARS-CoV N interacts with Smad3 and enhances Smad3-
p300 interaction, which specifically potentiates the Smad3-
mediated transcriptional responses of TGF-𝛽 such as the
expression of plasminogen activator inhibitor-1 (PAI-1) [98].
At the same time, the SARS-CoV N interferes with the com-
plex formation between Smad3 and Smad4 and inhibits TGF-
𝛽-induced Smad4-mediated proapoptotic genes expression
and cell apoptosis (Figure 4(a)).

In addition, we reported that in some cell lines, including
Hep3B, HeLa, L17 cells (a mutant mink lung epithelial Mv1Lu
cell line lacking T𝛽RI) and human normal lung epithelial
HPL-1 cells, Smad7 is predominantly localized in the nucleus
and can inhibit the transcriptional activity of the functional
R-Smad-Smad4 complex, independently, of inhibition of the
type I receptors [99]. Unlike R-Smads and Smad4, which
bind to DNA through their MH1 domains, biotinylated
oligonucleotide pull-down assays and single-molecule force
spectroscopy studies showed that Smad7 binds to DNA
through itsMH2 domain and thus represses TGF-𝛽 signaling
by interfering with the functional R-Smads/Smad4-DNA
complex formation on the target gene promoters [99, 100]
(Figure 4(b)). These results suggest that Smad7 can inhibit
TGF-𝛽 signaling in the nucleus by a novel mechanism.

Furthermore, we identified Yin Yang 1 (YY1), a ubiqui-
tously expressed transcription repressor, as a critical coop-
erator of Smad7 in the nucleus [101]. Although it has
been reported that YY1 can attenuate TGF-𝛽/Smad sig-
naling independently of its DNA binding ability [102], we
found that YY1 and Smad7 could interact with each other

and synergistically suppress TGF-𝛽-induced transcription in
the nucleus.Mechanistically, Smad7 enhances the interaction
of YY1 with the histone deacetylase HDAC1 (Figure 4(c)).
These studies reveal the important function of Smad7 to
attenuate TGF-𝛽 signaling in the nucleus. This notion is
supported by a recent report showing that nuclear Smad7 can
promotemyogenesis independent of TGF-𝛽/Smad3 signaling
[103].

7. Conclusions and Perspectives

Modulating the activity and stability of TGF-𝛽 receptors is
a critical step for regulation of TGF-𝛽 signaling. Although
much effort has been made to understand the regulatory
mechanisms of TGF-𝛽 receptors, many important questions
still remain unsolved. For instance, although degradation of
TGF-𝛽 receptors is sensitive to the inhibitors of lysosome and
proteasome, it is unclear how these two degradation pathways
cooperate to achieve full degradation of TGF-𝛽 receptors.
In addition to the caveosome pathway, TGF-𝛽 receptors
can be transported to lysosomes via early endosomes and
later endosomes. How is the intracellular sorting of TGF-
𝛽 receptors regulated? Ubiquitination is known to promote
TGF-𝛽 receptors degradation. However, its role in mediating
TGF-𝛽 receptors partition and internalization is unclear. In
addition, how the receptors in lipid rafts activate MAPK is
another important subject of future investigation.

For Smad regulation, many questions await to be
addressed too. It is well documented that the TGF-𝛽
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Figure 4: Regulation of Smad activity in the nucleus. (a) SARS-CoV N protein interacts with Smad3 and enhances the Smad3-p300
interaction, potentiating the Smad3-mediated transcription of fibrotic genes. SARS-CoV N protein can also interfere with the complex
formation between Smad3 and Smad4, thereby inhibiting Smad4-mediated expression of apoptotic genes. (b) Smad7 directly binds to DNA
and represses TGF-𝛽 signaling by interfering with the functional R-Smad/Smad4-DNA complex on target gene promoters. (c) YY1 can
cooperate with Smad7 to inhibit TGF-𝛽 signaling in the nucleus via recruiting HDAC1.

receptor-mediated C-terminal phosphorylation of Smad2/3
is the key event for Smad activation. TGF-𝛽 receptors can
also induce the Smad2/3 phosphorylation in the linker region
[104, 105]. The linker phosphorylation has been shown to
inhibit Smad activity or induce Smad degradation [6]. How
the inhibitory linker phosphorylation and the activating C-
terminal phosphorylation are coordinated is unknown. In
the nucleus, Smad7 can bind to DNA via its MH2 domain
and inhibit TGF-𝛽-driven transcription by interfering with
the R-Smad/Smad4-DNA association. It will be interesting to
investigate whether Smad7 has other function independent
of inhibition of TGF-𝛽 signaling.

Regulation of TGF-𝛽 signaling has been extensively
investigated. However, as TGF-𝛽 signaling controls a wide
range of biological responses and distinct regulatory mech-
anism is employed by different tissue at different time,
exploration of the molecular mechanisms of how the TGF-𝛽
signaling is modulated in specific pathological or physiologi-
cal processes will be an exciting field.
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