Skip to main content
. 2014 Jan 24;58(9):1865–1878. doi: 10.1007/s00484-014-0788-6

Table 2.

Decomposition and time series regression with external variables and interventions for Georgia, USA, divisions 1–9 and combinations 1–3, 4–6, and 7–9

Division Univariate regression Decomposition Custom time series regression
PCP (P < 0.05) TMP (R 2) R 2 Holdout Norm White noise Variables R 2 Holdout Norm White noise
Georgia Yes 0.51 0.73 0.66 Yes No, close T, PCP, TMP (lag 6) 0.64 0.66 Yes No
1 No 0.26 0.44 0.13 No, close Yes

TMP (lag 6)

IV: July 2007

0.40 0.02 Yes Yes
2 Yes 0.30 0.55 0.40 Yes No T, PCP, TMP

0.46

Robusta

0.48 Yes Yes
3 Yes 0.12 0.27 –0.37 Yes No

PCP, TMP

IV: June 2005

0.36 0.03 Yes Yes
4 No 0.17 0.37 0.19 No, close Yes

T, TMP (lag 6)

IV: Jan 2007

0.42 0.26 Yes Yes
5 No 0.19 0.41 0.09 Yes Yes TMP (lag 6)

0.33

Robust

0.31 No, close Yes
6 Yes 0.10 0.47 0.21 Yes No

PCP, TMP (lag 6)

IV: Aug 2001

IV: June 2003

0.47 0.45 Yes Yes
7 No 0.13 0.31 0.24 No, close Yes

TMP

IV: Aug 2001

IV: Aug 2003

0.35 0.20 Yes Yes
8 No 0.15 0.29 0.11 Yes Yes

TMP

IV: Aug 2002

0.27 0.00 No Yes
9 Yes 0.25 0.36 0.12 Yes No PCP (lag 6), TMP 0.31 0.09 No, close Yes
1, 2, and 3 Yes 0.33 0.49 0.43 Yes No

PCP, TMP (lag 6)

IV: June 2005

0.52 0.46 Yes Yes
4, 5, and 6 Yes 0.27 0.55 0.43 Yes No

TMP (lag 6)

IV: May 2000

IV: June 2003

0.57 0.34 No, close Yes
7, 8, and 9 Yes 0.36 0.51 0.22 Yes No TMP 0.36 0.28 Yes Yes

T trend, PCP precipitation, TMP temperature, IV intervention

aRobust method improved normality and model results