
Vascular homeostasis and the concept of mechanobiological
stability

C.J. Cyron and J.D. Humphrey
Department of Biomedical Engineering Yale University, New Haven, CT, 06520, USA

Abstract

Vascular mechanics has been studied in depth since the early 1970s mainly following classical

concepts from continuum mechanics. Yet, an important distinction of blood vessels, in contrast to

typical engineering materials, is the continuous degradation and deposition of material in these

living tissues. In this paper we examine mechanical consequences of such mass turnover.

Motivated by Lyapunov’s stability theory, we introduce the new concepts of mechanobiological

equilibrium and stability and demonstrate that blood vessels can maintain their structure and

function under physiological conditions only if new material is deposited at a certain prestress and

the vessels are both mechanically and mechanobiologically stable. Moreover, we introduce the

concept of mechanobiological adaptivity as a third corner stone to understand vascular behavior

on a continuum level. We demonstrate that adaptivity represents a key difference between the

stability of mechanobiological and typical human-made systems. Based on these ideas, we suggest

a change of paradigm that can be illustrated by considering a common arterial pathology. We

suggest that aneurysms can be interpreted as mechanobiological instabilities and that predictions

of their rupture risk should not only consider the maximal diameter or wall stress, but also the

mechanobiological stability. A mathematical analysis of the impact of the different model

parameters on the so-called mechanobiological stability margin, a single scalar used to

characterize mechanobiological stability, reveals that this stability increases with the characteristic

time constant of mass turnover, material stiffness, and capacity for stress-dependent changes in

mass production. As each of these parameters may be modified by appropriate drugs, the theory

developed in this paper may guide both prognosis and the development of new therapies for

arterial pathologies such as aneurysms.
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1 Introduction

Arteries exhibit dramatic changes in composition, structure, and function during

development as well as during disease progression and responses to injury. In a seminal

study, Wolinsky and Glagov [1] showed that the aorta in mammals, ranging from mice to

men, develops such that the tension per medial lamellar unit is nearly the same, which

implies a target value of medial stress ~102 kPa. Noting that the nonlinear material behavior

of arteries [2] renders the material stiffness proportional to wall stress [3], Shadwick [4]

reported the equally striking finding that the stiffness at mean blood pressure also tends to be

nearly the same across invertebrates and vertebrates. Indeed, Wolinsky [5] showed further

that the target value of stress tends to be preserved in hypertension, primarily via a

thickening of the arterial wall in response to the increased blood pressure. Continued

findings support these general observations while suggesting that arteries similarly adapt to

diverse changes in mechanical loading so as to restore a target biomechanical state [6].

Given the discovery that arterial smooth muscle cells and fibroblasts are highly

mechanosensitive [7, 8], it is now clear that these cells work to establish and restore a

preferred mechanical state at the tissue level that correlates well with a target stress or

material stiffness under diverse circumstances [9]. Notwithstanding this dramatic capacity

for adaptation in development and maturity, a fundamental and yet often ignored

characteristic of arteries is their ability to maintain their composition, geometry, and

function over long periods despite the continual turnover of cells and extracellular matrix.

Although such vascular homeostasis can be simulated computationally by ensuring a

balanced removal and production of stressed constituents within unchanging configurations

[10], a more fundamental question is: how can such maintenance be achieved despite the

small perturbations in material composition and loading that arise during normal life, as, for

example, due to acute changes in blood pressure, posture, physical activity, or emotional

stress?

In this paper, we introduce the new concept of mechanobiological stability that melds

classical ideas of Lyapunov stability from mechanics and control engineering with recent

ideas of soft tissue growth and remodeling (G&R) from biomechanics and mechanobiology.

We then show that blood vessels must be both mechanically and mechanobiologically stable

to maintain their geometry and properties over time under physiological conditions. If they

are not, small perturbations common in the vasculature could initiate unstable G&R leading

to losses of geometric or structural integrity that could manifest over weeks, months, or

years. As an extreme example, aneurysms may be understood within this theoretical

framework as mechanobiological instabilities, which motivates consideration of their

mechanobiological stability in future predictions of rupture risk.

To introduce this change of paradigm, we generalize the mechanical concepts of equilibrium

and stability to mechanobiological equilibrium (section 3) and mechanobiological stability

(section 4). We demonstrate that mechanobiological systems are based on a different

concept of stability than most human-made systems, namely neutral rather than asymptotic

stability. We then introduce in section 5 the notion of mechanobiological adaptivity as a

third corner stone complementing equilibrium and stability, which is motivated by the desire
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to see how this different concept of stability helps living organisms adapt to a changing

environment. Finally, in section 6 we illustrate these ideas by two idealized examples. First,

however, we collect in section 3 basic ideas from continuum biomechanics that will serve as

the foundation of this discussion. Toward that end, we use boldface for vectors and higher

order tensors. No difference in notation is made between a tensor field and its value at a

specific point. For example T denotes both the membrane stress T(x) at a point x and the

field assigning to each point x such a membrane stress T(x). Single contraction products

such as scalar products between two vectors or matrix-vector products are denoted without

an operator, whereas double contraction products are denoted by colons and tensor products

by ⊗. Variations and functional derivatives are denoted by the δ-symbol, second order

identity tensors by  and the Kronecker symbol by δij. Time derivatives are written by over-

dots, as, for example, ẋ = dx/dt.

2 Continuum Biomechanics of Growth and Remodeling

2.1 Mechanical Foundations

In this and the next section we briefly recall essential equations and assumptions of the

continuum biomechanics of vascular G&R as described in [11, 12]. Because of the existence

of residual stresses, which tend to homogenize the transmural distribution of stress in

adapted arteries [3], we can model the vascular wall as an elastic membrane - represented by

domain Ω - composed of n different material species. These species constitute a constrained

mixture and typically include elastic fibers, smooth muscle cells, and multiple families of

collagen fibers, each modeled individually. The areal mass densities of the different species

are denoted by Mi and the total areal mass density by . In the following, these

areal mass densities are referred to a fixed reference configuration so that current areal mass

densities are Mi/J with J the Jacobi determinant of the in-plane deformation gradient that

relates the reference and current configurations. Like any mechanical continuum, blood

vessels can be characterized at each time t by the spatial position assigned to each material

point X, namely,

(1)

In the following we assume Dirichlet boundary conditions on all boundaries of domain Ω,

which define the ends of the vessels under study. Let Hi be the contribution of the i-th

species to the total membrane thickness , and σi the average Cauchy stress

tensor of the i-th species across Hi. Thus, the total Cauchy membrane stress (having units of

N/m) is

(2)

where ϱ is the volumetric mass density, which is assumed to be the same for all species and

constant (i.e., all species are considered incompressible). Note that σi denotes herein only

the in-plane Cauchy stress tensor (without components related to the thickness direction) as
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all other components are negligible due to the plane stress assumption. Both σi and T can be

represented by 2 × 2 matrices, and strains will be treated similarly.

The essential basis of the stability theory developed herein is a linearization of the nonlinear

equations that characterize the mechanics and G&R of the blood vessel in its in vivo state.

To this end, we consider variations δx of a given spatial (homeostatic in vivo) configuration

x. As is usual in the constrained mixture theory, we assume that all species deform together,

that is, δxi = δx despite allowing both the areal mass density and the stress-free reference

configuration of certain species to change independently with G&R. All species subject to

G&R are further assumed to exhibit a uniaxial stiffness and Cauchy stress in some direction

ai. This assumption is in agreement with observations that only the smooth muscle and

collagen fibers are subject to G&R and that both can be modeled by one or several families

of fibers oriented in a direction ai. For species subject to G&R, the total deformation

(3)

where  is an elastic deformation (i.e., recoverable in the classical sense) and  an

inelastic deformation due to G&R (which enables a change of geometry without changing

the strain energy of the i-th species). For species not subject to G&R at each time, ,

that is, their deformation is solely elastic. Nevertheless, for these species we can consider

virtual displacements δxi under the constraint  (i.e., assuming constant strain energy)

to define their geometric stiffness (cf. (22)). To linearize the mechanical equations, one can

employ the theory of small on large [13] according to which the change δσi in the stress field

of the i-th species caused by a variation δx of the spatial configuration x can be written

(4)

with variations in engineering strain and rotation given by

(5)

with  defined as δεi in (5) but based on  rather than δxi. Note that, similar to the total

deformations, the total strain and rotation variations are equal for all species, that is, δεi = δε

and δωi = δω.

Remark 1: In general  in (4) is equivalent to ijkl in eq. (13) of [13], and  and

 relate to the tensor  with elements ijkl in eq. (12) of [13] for a uniaxial species in

direction ai via

(6)

that is,  is the part of  describing the (elastic) stiffness in the fiber direction and  is

its complement (describing together with  changes in the Cauchy stress field due to
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changes in the fiber orientation). Note that [13] does not distinguish between elastic and

inelastic incremental deformation. However, that  refers to the elastic deformation and

 and  refer to the total deformation follows from a simple calculation similar to [13]

for a uniaxial fibrous material subject to an inelastic incremental deformation (under which

strain energy remains constant).

2.2 Growth and Remodeling

Certain material species - smooth muscle and collagen fiber families herein - are subject to

continuous turnover, namely, existing material is removed and new material is produced at a

prestress  [12]. The net rate of change of the areal mass density Mi of the i-th species

(having units of kg/m2) is

(7)

with  the production (e.g., deposition) rate and  the removal (e.g., degradation) rate.

For simplicity, we assume an age-independent loss via a Poisson process with time constant

τi, which leads to a total removal rate

(8)

In contrast, the stress-mediated production rate is assumed to be

(9)

where, on the right-hand side, the first term is a basal mass production rate that balances

removal in cases where the current Cauchy stress equals the so-called homeostatic (scalar)

value , and the second term describes deviations from the basal rate in cases where the

Cauchy stress deviates from the homeostatic value. The gain factor  (having units of s−1)

weights the impact of deviations from the homeostatic stress state on mass production. For

the purposes herein, production and removal of the material will always affect thickness

without squeezing existing material in lateral directions and thus directly change the areal

mass density Mi. Note, too, that the assumption that all species subjected to G&R feature a

unidirectional stiffness and stress in direction ai allows us to treat the prestress  and

homeostatic stress  as scalar values in direction ai.

Remark 2: Given our focus on tissue maintenance, not development or disease progression,

we focus on G&R in the neighborhood of homeostatic stress states. Thus equations (8) and

(9) reflect only three assumptions: first, that G&R occurs independently in different species,

such as different families of collagen fibers; second, that removal occurs according to a

Poisson process; third, that there is an average homeostatic level of stress or strain for each

species at which mass production balances mass removal. Note, too, that within a linearized
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regime around such a homeostatic state, stress-dependent production and removal would

differ in all calculations only by negligible higher order terms so that we can neglect the

latter in (8) without a loss of generality. Similarly, the stress-dependent term in (9) captures,

neglecting higher order terms, any stress-dependent G&R in the neighborhood of the

homeostatic state. Finally, as a homeostatic average strain state can equivalently be

expressed by a homeostatic average stress , and the same is true for small perturbations

from this state, (8) and (9) can capture either stress- or strain-mediated G&R.

It is convenient to subdivide the n constituent species into N + 1 material groups, each of

which gathers all species with a specific turnover time constant τI, respectively. Formally,

these groups can be defined as index sets

(10)

where τI are the N + 1 different turnover time constants. Without a loss of generality, we

define 0 to be the material group of all species not subject to G&R, that is, without material

turnover. For these species we assume τi → ∞ and . For example, elastin can be

modeled in maturity as a species in 0 for its production largely ceases after early childhood

so that it is not subject to regular turnover. Its slow degradation is not modeled using (7), (8)

and (9), but, if relevant, separately by way of a perturbation of its mass density. If there are

no species without turnover in the system, then 0 = Ø.

To ensure the existence of the inverse for certain operators we assume (the under practically

reasonable conditions always applicable)

Hypothesis 1: The sum of the elastic stiffnesses of all species subject to G&R (i.e.,

) is positive definite everywhere.

While mechanical deformations induced in vivo by changing loads, as, for example, during

the cardiac cycle, typically happen on the scale of less than a second, G&R occurs on the

time scale of days to months – the normal turnover time constant for collagen is, for

example, usually around 70 days. We thus assume that on the time scale of G&R, which we

refer to by the time parameter herein, mechanical equilibrium is always satisfied. That is, we

will consider G&R as a mechanically quasi-static process.

In a system with multiple material species, different gain parameters , prestresses ,

turnover time constants τi, and elastic stiffnesses  may coexist. To discuss general

consequences of a decrease or increase of these parameters, it is useful to express these

quantities using a characteristic scalar gain parameter kσ, prestress σpre, turnover time τ, and

elastic stiffness Cel to which the parameters of the different species are related by a fixed,

perhaps different, constant. Increasing the characteristic quantities thus means increasing the

respective parameter for all species by the same factor.

3 Mechanobiological equilibrium

The state of a system is mechanically static if and only if
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(11)

where “≡” emphasizes that ẋ not only takes on the value zero at some specific time, it is

also the zero function such that all higher time derivatives are zero. Equivalently, statics can

be expressed by the requirement of a zero initial velocity and balance of linear and angular

momentum everywhere. This balance is ensured in a domain Ω subject to Dirichlet boundary

conditions if and only if the membrane stress tensor T is symmetric, and everywhere in the

interior

(12)

where the generalized total force ftot consists of an internal force fint incorporating the

response of the system to deformation according to its constitutive properties and an external

force fext representing the applied loads within the domain. In the Appendix A we briefly

point out how fint and fext are defined for membranes, in which transverse loads are

supported by in-plane membrane stresses in the presence of appropriate curvature.

Perhaps the most important difference between living tissues and classical engineering

materials is that living tissues are inherently open systems and conservation of mass need

not be satisfied locally. The system can therefore not be characterized simply by the current

position x of each material point. Rather, one also requires (for each time t) information

about the areal mass density (wall thickness) at this point given by the field

(13)

where M is a vector having n elements Mi, hence living tissue can be characterized by the

generalized state vector

(14)

The notion of statics from engineering mechanics can now be generalized by the

requirement that both the geometric configuration and mass density have to remain constant

in time, which leads to

Definition 1: A state is said to be mechanobiologically static, or equivalently to be in

mechanobiological equilibrium, if and only if

(15)

and additionally, for any species with finite τi, the Cauchy stress during all its mass

increments at a given point in space is the same (that is, equals the average value σi(t, X) at

this point).
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To better understand Definition 1, note that at a given point in space the mass (per unit area)

Mi of each species can be decomposed into arbitrary increments (ΔMi)I > 0 that sum to Mi =

ΣI(ΔMi)I. Without the additional condition at the end of Definition 1, the total mass of a

species may consist of two or more such mass increments with different levels of Cauchy

stress such that only the average Cauchy stress of all increments equals the homeostatic

value  and ensures in sum Ṁi = 0. In this case, relevant internal system properties such as

the stretch in mass increments could change over time by mass turnover even if (15) is

satisfied. The additional condition of uniform stress in all mass increments of a species at a

certain point is due to the natural mass turnover (i.e., degradation of existing material and

deposition of new material at a constant prestress) satisfied automatically once a system has

remained long enough in a given configuration x or has evolved asymptotically into such a

configuration so that this condition typically does not need to be taken into consideration

explicitly.

Note that if the rate of change Ṁ of areal mass density referred to a fixed reference

configuration is zero, then the additional condition ẋ ≡ 0 ensures that the rate of change of

mass density in the current configuration also equals zero. In addition, it is only because all

mass can be assumed to have been deposited in the same spatial configuration in a

mechanobiologically static state that x and M are sufficient to characterize such states. In

contrast, in general systems subjected to G&R both the areal mass density and the stress-free

reference configuration have to be defined for each mass increment.

An immediate consequence of Definition 1 is

Proposition 1: A necessary condition for a mechanobiologically static state to exist is, for

all species with finite τi,

(16)

If (16) holds, a state is mechanobiologically static if and only if it is mechanically static (i.e.,

(11) holds) and additionally, for all species with finite τi, the Cauchy stress in each mass

increment equals .

Proof: From (8) and (9) we see that Ṁ ≡ 0 implies that the average Cauchy stress (and in a

mechanobiologically static state thus also the Cauchy stress in each mass increment) equals

. If this is true at some time t and , the stress level exhibits by mass turnover

(e.g., degradation of mass at stress  and deposition of new mass with stress ) a

non-zero time derivative and so also Ṁ and thus Ṁ ≢ 0. If, however, (16) holds, (15) is

satisfied if and only if both (11) is satisfied and Ṁ ≡ 0, which requires according to (8) and

(9) a Cauchy stress .

A remarkable consequence of Proposition 1 is
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Corollary 1 (“Prestress Corollary”): A loaded material (i.e., with σi ≠ 0) subject to mass

turnover can form part of a mechanobiological equilibrium state only if it is deposited at a

non-zero prestress, namely .

In other words, prestress is an essential feature of any biomechanical system that has to

support load statically in the presence of continuous material turnover. Moreover, the higher

the prestress, the greater the load that can be supported by the material. In

mechanobiological systems, prestress thus plays a role similar to tensile strength in classical

systems within engineering mechanics in that it defines the limit for the statically sustainable

load. It has long been known [1], and now is understood increasingly better [14], that blood

vessels typically grow and remodel such that wall stress is maintained at nearly the same

value even in cases of sustained changes in internal pressure. With Proposition 1, we

understand that this is a natural consequence of the presence of mass turnover and a (at least

roughly) constant prestress upon material deposition.

4 Mechanobiological Stability

4.1 Lyapunov Stability

To classify equilibrium states, the mathematical theory of dynamical systems provides the

general

Definition 2: An equilibrium state y̅ of a system is called Lyapunov stable if and only if for

each ε > 0 there is an η > 0 such that for all t ≥ 0 we have

(17)

and

Definition 3: A Lyapunov stable system is called asymptotically stable if and only if

(18)

otherwise it is called neutrally stable.

In other words, an equilibrium state is Lyapunov stable if any small perturbation remains

forever small (or even decays to zero). If it always decays to zero, the state is called

asymptotically stable.

4.2 Stability of mechanobiological systems

4.2.1 Definition—Neutral stability is usually sufficient for biomechanical systems for it

prevents ongoing major changes following a small initial perturbation, which leads to

Definition 4: A mechanobiologically static state y ̅ is called mechanobiologically stable if it

is Lyapunov stable against arbitrary perturbations δy. More restrictively, it is called

mechanically stable, if it is asymptotically Lyapunov stable against pure displacement

perturbations δx.
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Note: as the elements of the state vector y are actually functions, not scalars, the norm ‖…‖2

is an L2-rather than an l2-norm. To check for mechanobiological stability of static states, we

will essentially analyze the eigenvalues for a linearization around these states, which is

commonly called Lyapunov’s first method.

4.2.2 Conditions

4.2.2.1 General: Let the system be in a mechanobiologically static state for t < 0 and let

infinitesimal deviations of areal mass density, stress, or deformation from this

mechanobiologically static state be marked by a preceding δ, as usual for variations. Hence,

with (2), and neglecting higher order terms, the deviation of the membrane stress from that

in the mechanobiologically static state is

(19)

Deformations about the mechanobiologically static state are thus described by the variations

, δx,  and δω as in section 2. In (19) and in the following, we assume that the

areal mass density refers to the initial mechanobiologically static configuration with J̅ = 1 at

t < 0. In the perturbed state we have

(20)

with the trace tr(δε) of the engineering strain δε, due to the linearization. In the following we

will check for mechanobiological stability of an equilibrium state y̅ via its Lyapunov

stability against perturbations of the displacement and density fields. We assume that

changes in reference configuration can occur only via G&R processes, not instantaneously,

hence for perturbations at time t = 0 we yet have .

Recalling that mechanical responses to transient loads and G&R occur on vastly different

time scales, we posit that mechanical equilibrium (12) is preserved at any time on the G&R

time scale, which means with (4) and (19) that

(21)

where
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(22)

Here, the geometric stiffness Kgeo describes how the total force ftot is affected by (elastic or

inelastic) changes in geometry. Note that the internal forces depend on geometry directly via

the shape operator in (A2) (cf. Appendix A) and indirectly via the membrane stress T.

Membrane stress depends on geometry via the strain increment δε and rigid body rotation

δω (cf. (19) and (4)) and the Jacobi determinant J (cf. (19) and (20)).  is the elastic

stiffness due to the internal force  of the i-th species, Kel the sum of these contributions,

and Ktot the sum of all stiffnesses, which in a discrete setting is equivalent to the tangent

stiffness matrix, as is δx to the nodal displacement vector.  describes changes in the

internal forces under a mass variation of the i-th species. Although this definition suggests a

stiffness operator, the domain and image of this operator do not, in general, have the same

dimension (i.e., in a discrete setting  and KM are in general not square matrices). Note

that we employed (2) for the derivation of (22), thus δTi/δσi = M̅i/J̅ϱ, as well as (4). In (21),

as well as in the following, functional derivatives are used, for which we write δ(․) instead

of ∂(․).

At t = 0− the system is by definition mechanobiologically static so that the net mass

production rate by growth processes is zero and the time dependent change of the areal mass

density is the time derivative of the Heaviside mass perturbation δM(t = 0+), namely, Ṁ = 

(t)δM(t = 0+), where (t) is the Dirac-Delta function so that (21) gives by time integration

near t = 0
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(23)

because, as discussed above,  and thus . Solving (23) for δx
gives

(24)

After the initial damage-like mass perturbation δM(t = 0+), the mass production rate is

assumed to be determined by G&R processes alone and is according to (4), (8), (9) and (16)

for i ∉ 0 (i.e., all species subject to G&R)

(25)

because the stress (ai⊗ai): δσi in direction ai changes only with the elastic strain. The rate of

change of the membrane stress due to stress-mediated mass production in (25) is, neglecting

higher order terms due to changes of the spatial configuration of ai,

(26)

where we used δT / δMi = σi / Jϱ (cf. (2)) with J = J̅ = 1 in the mechanobiological

equilibrium state and stress  of the deposited mass. By the continuous

degradation of existing mass and deposition of new mass in the current configuration (with a

stress-free configuration shifted by the deposition prestretch relative to the current

configuration), the average stress-free configuration of each species changes over time. Its

rate of change can be calculated in a linearized model simply by a mass-based average.

Among the total mass M̅i + δMi at time t, in the subsequent time interval of duration dt, the

mass (M̅i + δMi)dt / τi is according to (8) and (9) removed and produced in the current

configuration. The stress-free reference configuration of the produced material differs from

that of the removed material by the current elastic deformation . Note that the second

term on the right-hand side in (9) is small compared to the first for small deviations δσi from

the homeostatic state so that stress-dependent mass production can be neglected when

compared with basal turnover. The change in the stress-free reference configuration is 

for mass (M̅i + δMi)dt / τi and zero for the rest of the mass (during dt), which leads to a

mass-averaged change of the stress-free reference configuration

(27)

or simply,
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(28)

Note that in the derivation of (28) we assumed implicitly that the stress-free configuration of

the removed material equaled the average stress-free configuration of the species at that

time; this holds only for the Poisson process assumed herein. Indeed only for (27) – and

associated equations – this assumption is essential. Analogously to the elastic stiffness, a so-

called G&R stiffness

(29)

describes the (linearized) change of the internal force contribution  of the i-th species due

to a given elastic deformation and consequent mass deposition during a time interval of

duration τi. With (26), (22) and (29), we can rewrite (21) as

(30)

where for , and from (3) and (28), we infer

(31)

(30) and (31) form a system of n + 1 differential equations with n + 1 unknown variables δx

and . To eliminate δx from this system of equations, we first use (31) in (30) to replace

 by δẋ and , which gives

(32)

Solving this equation for δẋ and using it in (31), we obtain with (22) for all i, j ∉ 0

(33)

with the 2nd order identity tensor and the Kronecker symbol δij. Note that for j ∈ 0 the

summands in (33) would be zero due to τi → ∞ and  and thus cancel out. As can be

seen in (33), the different  are distinguished only by the term ij/τi. Recalling that

, this means that all  with the same τi will be identical all the time.

This result is consistent with physical intuition for a constrained mixture: the displacement

δx must be the same for all species all the time. The reason why the elastic displacements

 are in general different for different species despite the same initial value

 is obviously the G&R. Yet, according to (28), G&R is governed (for
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a given elastic deformation) by τi, which means that it is the same for all species with the

same τi, and, as a consequence,  are identical for all of these species at any time. Thus,

each of the material groups in (10) is characterized by one  which allows (33) to be

expressed by the N equations

(34)

for 1 < I, J ≤ N. Concatenating the N variations  and  of the different material groups

subject to turnover into vectors

(35)

we rewrite (34) as

(36)

where diag  is a block diagonal matrix consisting of the blocks , the IJ are

defined in (34), and . Note that G&R dynamics of the material groups

subjected to turnover is affected by the material properties of those species not subject to

turnover (i.e., those in the material group 0) only by way of their stiffness contribution in

Ktot.

For the given boundary conditions, arbitrary perturbations δx(t = 0+) are possible in

mechanically stable systems for the following reasons. As arbitrary mass perturbations δMi(t

= 0+) are allowed, by Hypothesis 1 arbitrary perturbations of the stress field and thus fint are

also possible. In mechanically stable systems Ktot has full rank such that this allows arbitrary

δx(t = 0+) for the given boundary conditions. Nevertheless, an important property of the

dynamic system (36) is that the initial perturbation cannot, in general, excite all eigenmodes

since the elements  in δxel cannot be chosen independently. Rather, all are equal

to δx(t = 0+), which leads to

Definition 5: Let δx be a displacement variation satisfying given boundary conditions and

let the eigenvectors of ℒ be νi. Then we call

Cyron and Humphrey Page 14

Int J Eng Sci. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(37)

the set of the controllable eigenvectors of ℒ.

Any eigenvector of νi which is not orthogonal to all possible initial elastic displacements

δxel forms part of , that is,  is the space of all eigenmodes that can be excited by any

allowed initial value δxel. All other eigenmodes remain unaffected by any system

perturbation and thus need not be considered in the following stability analysis. The reason

the term “controllable” is used will become clear in Remark 4. With Definition 5 we arrive

at the most important

Theorem on Vascular Mechanobiological Stability: A mechanobiologically static state ȳ is mechanobiologically
stable if and only if it is mechanically stable (i.e., the real parts of all eigenvalues of Ktot in (22) are strictly positive) and
the real parts of all controllable eigenvalues of ℒ in (36) are strictly positive.

Proof: If ȳ is not mechanically stable, Ktot has eigenvalues with negative or zero real parts.

Negative real parts would render the system Lyapunov unstable; following certain pure

displacement perturbations δx the system would not return to a mechanical equilibrium (12)

close to the initial state. Zero real parts would allow an infinite initial elongation δx(t = 0+)

of the system for certain δM(t = 0+) because of the inverse of Ktot in (24). Thus, strictly

positive eigenvalues of Ktot (i.e., mechanical stability) are necessary for mechanobiological

stability. Mechanobiological stability is Lyapunov stability against arbitrary perturbations

δy. If the system is mechanically stable (i.e., stable against arbitrary displacement

perturbations δx), it is mechanobiologically stable if and only if it is additionally Lyapunov

stable against arbitrary mass perturbations δM(t = 0+). The elastic perturbation δxel(t = 0+)

caused by δM(t = 0+) according to (24) can be decomposed into the controllable generalized

eigenvectors νi of ℒ by

(38)

The solution to (36) can be written in the form

(39)

which will decay to zero if and only if all eigenvalues of ℒ related to eigenvectors

represented in δxel (i.e., all controllable eigenvalues) have positive real parts. Taking the

time integral of (28) from zero to infinity, we see that an exponential decay of δxel to zero

ensures that δxgr will remain for all t ≥ 0 below a saturation value directly proportional to

δxel(t = 0+) and thus δM(t = 0+); the same can be seen from (25) for mass perturbations δMi.

Moreover, from (3), the exponential decay of the elastic deformation and the bound for the

inelastic deformation δxgr reveal that the total deformation δx remains below a bound
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proportional to δM(t = 0+). Positive controllable eigenvalues of ℒ thus ensure Lyapunov

stability. On the other hand, if ℒ has at least one controllable eigenvalue smaller than or

equal to zero, its eigenvector represents an initial elastic deformation that according to (39)

will remain constant or even increase. Both would cause an unbounded growth of δxgr

according to (28) and the system would be mechanobiologically unstable.

Remark 3: The main purpose of the preceding discussion was the derivation of (36), which

forms the basis for the Theorem on Vascular Mechanobiological Stability and reveals that

G&R dynamics around any mechanobiologically stable state is governed exclusively by the

linear operator ℒ. The discussion in the remainder of this paper will examine practical

consequences of this theorem and properties of ℒ.

Remark 4: From a control engineering perspective, we can rewrite (36) with (24) as a linear

time-invariant MIMO (multiple input multiple output) system

(40)

with state matrix ℒ, state variable δxel, input matrix ℬ, and input signal δṀ. At t = 0, the

system is subjected to Heaviside jump δM, that is, a Dirac-type input δṀ. The Fourier

transform of a Dirac-function is constant in the frequency domain. Thus, this input can

excite all eigenmodes in the system that are not orthogonal to the image of ℬ. According to

Gilbert’s controllability criterion (for diagonalizable ℒ), the dynamics of these eigenmodes

can be controlled, that is, arranged arbitrarily by appropriate input signals. Comparing (37)

and (40) reveals, with (24), that  is but the space of controllable eigenmodes. Only if these

are stable (i.e., have strictly positive eigenvalues) will the system dynamics be stable under

all allowed input signals. This interpretation suggests that the Theorem on Vascular

Mechanobiological Stability might be simplified in future work using, for example, different

controllability criteria such as the one of Hautus.

4.2.2.2 Symmetric equal-turnover-time systems: Blood vessels consist of three primary

structural constituents: collagen fibers, smooth muscle, and elastic fibers, the last of which

do not turnover under normal conditions in maturity. The turnover time constants of smooth

muscle and collagen are not known precisely, but they appear to be similar. Assuming for

simplicity that they are equal, we arrive at a system with only one material group with a

finite turnover time, which without loss of generality equals to the characteristic turnover

time constant τ. Systems of this type can be classified by

Definition 6: A system composed of only two material groups (cf. (10)), namely the group

0 not subjected to material turnover and one other group whose species exhibit a turnover

time constant τ, is called an equal-turnover-time (ETT) system. If the stiffness Kext =

−δfext/δx due to the external load on the ETT system is symmetric, the system is called a

symmetric equal-turnover-time (SETT) system.
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If the external load is a uniform blood pressure p, which is often a good approximation, the

tangent stiffness of the external forces Kext = −δfext/δx is symmetric in case of Dirichlet

boundary conditions [15]. SETT systems can thus be expected to form a reasonable model

for blood vessels under particular conditions. The special mathematical properties of SETT

systems can be examined largely on the basis of

Lemma 1: Consider two real symmetric linear operators A. and B, with A positive definite.

Then AB has real eigenvalues and has the same number of negative eigenvalues as B.

Proof: As A is symmetric positive definite, there exists a square root A1/2 with A1/2A1/2 = A
and inverse A−1/2. Since AB = A1/2(A1/2BA1/2)A−1/2 and similarity transformations do not

change the eigenvalue spectrum, AB and A1/2BA1/2 have the same eigenvalue spectrum. As

B is real symmetric, A1/2BA1/2 is as well; as real symmetric linear operators always have

real eigenvalues, A1/2BA1/2 and thus also AB do. Moreover, from Sylvester’s law of inertia

we know that B has the same number of positive, negative, and zero eigenvalues as

A1/2BA1/2 and thus also as AB.

In SETT systems, not only are the elastic stiffness operators  and related G&R stiffness

operators  real symmetric, but so too the external stiffness operator Kext and thus the

total tangent stiffness Ktot and , which consists of only one block 11 in ETT systems, in

ℒ. They all thus have real eigenvalues in SETT systems, and from Lemma 1 we conclude

that  also does. With Lemma 1, the Theorem on Vascular Mechanobiological

Stability simplifies for SETT systems to

Corollary 2: A SETT system is mechanobiologically stable if and only if it is mechanically

stable and  is positive definite.

Proof: In SETT systems,  in (36) consists of only one block 11 and δxel(t = 0) can take

on arbitrary values without the limitation that all  have to be equal, for it consists of only

one such . Then all eigenmodes of  are controllable. Recalling the positive

definiteness of Ktot in mechanically stable systems and using Lemma 1, we arrive at

Corollary 2.

Remark 5: The symmetry property of SETT systems is only required to ensure applicability

of Lemma 1. In future work it should be possible to derive a practically equivalent but

generalized version of Lemma 1 that includes not only a symmetric, but also a nearly

symmetric external stiffness Kext. This would allow statements derived herein for SETT

systems to apply also to ETT systems with minor fluid dynamical loads in a rigorous

manner.

4.2.3 Impact of model parameters on stability

4.2.3.1 General: Not only is it critical to know whether a system is stable or not, it is also

important to study the influence of parameter values on the stability. To this end, we

introduce
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Definition 7: The smallest real part of any controllable eigenvalue of ℒ is called the

mechanobiological stability margin G&R.

If G&R is zero or negative, the system is mechanobiologically unstable, and there is at least

one perturbation mode that will never decay to zero or at the least remain small. In general, a

larger stability margin improves the system’s stability: for G&R ≤ 0 a higher margin slows

down instabilities and for G&R > 0 it makes the system more robust against parameter

uncertainties or perturbations that might spoil the system’s stability when exceeding a

certain limit. In control engineering, the stability margin is a widely used heuristic criterion

for classifying stability and robustness of dynamic systems.

As can be seen in (34), all terms in ℒ are weighted inversely with turnover time constants

(although one has to keep in mind that  comprises at the same time a proportionality to

the turnover time constant, cf. (29)). In this sense, the characteristic turnover time τ

establishes a natural time scale for G&R, and it is thus often convenient to examine G&R

with respect to a normalized time t/τ using a normalized stability margin

(41)

which is the smallest eigenvalue of the time-normalized operator . Next

we will study the impact of different model parameters on the stability margin. The one of

prestress is described by

Proposition 2: The operator ℒ, characterizing G&R in the neighborhood of a

mechanobiologically static state y̅ and thus also the stability margin G&R, is determined

uniquely by the elastic stiffnesses , gain factors , turnover time constants τJ, and

external loading in the interior and on the boundary of the domain. It does not depend

directly on the prestress σi̅, but only indirectly via these quantities.

Proof: From (22), (29) and (34) we see that, for given geometry and constant kσ, τJ and ,

the operator ℒ depends only on Kgeo. According to [13],  and  are determined by

the Cauchy stress of the i-th species on which they depend linearly. Thus the sums of

 and  in Kgeo depend only on the total membrane stress T̅. The same is true

for all other terms in Kgeo except for Kext = δfext/δx. Kext is determined by the external

loading fext in the interior of the domain. At the same time, it is well-known that the

membrane stress field T̅ is uniquely determined everywhere in the domain by the load fext in

the interior of the domain and the traction on the boundary. Thus , τJ and the external

loading uniquely determine the G&R around a mechanobiologically static state.

Physically, Proposition 2 can be understood in the sense that the prestress σi̅ does not appear

in ℒ directly, but only as a part of the membrane stress T̅. Loading and geometry determine

T̅ so that in a given static state any change of σ̅i must be accompanied by an opposing

change of M̅i so that no net effect remains on ℒ. Nevertheless, σ̅i can indirectly affect the

mechanobiological stability of the system, as, for example, via  in cases of strain

stiffening. This indirect impact can be understood from separate statements such as
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Proposition 5 for the elastic stiffness. Note, too, that Proposition 2 is applicable only for

examining mechanobiological stability around a given equilibrium state when assuming that

the prestress remains the same during G&R. A mathematical analysis beyond the scope of

this paper reveals that increases of prestress after the perturbation of a given homeostatic

state may have strongly stabilizing effects.

Besides prestress, another important system parameter is the characteristic gain factor,

whose impact on mechanobiological stability can be understood from

Proposition 3: A mechanically stable system, satisfying Hypothesis 1 and subject to

external loading with symmetric tangent stiffness, can always be stabilized by a sufficiently

high product of characteristic turnover time τ and gain factor kσ.

Proof: From (34) and (29) we know

(42)

which means that the N block lines in  become identical and so too the G&R of all material

groups. The situation is then comparable to that in ETT systems, which means that in the

limit as τkτ → ∞

(43)

As  differs from  only by the positive scalar factors  and τj (cf. (29)), the sum of

the  in this equation inherits the essential properties of the sum of the elastic

stiffnesses of the species subject to G&R, especially its positive definiteness if Hypothesis 1

is satisfied. Finally, in each mechanically stable system subject to external loading with

symmetric tangent stiffness,  is symmetric positive definite and using Lemma 1 we

arrive at the given proposition.

A further general discussion of the impact of other model parameters on the stability margin

is intricate for one reason: the Theorem on Vascular Mechanobiological Stability provides a

stability condition on the basis of controllable eigenvalues alone as all other eigenvalues are

unaffected by the initial perturbation. Discussing the impact of changes in model parameters

on these eigenvalues would be possible to a certain extent using standard methods. It would

not be sufficient for practical purposes, however, because small parameter changes may turn

previously uncontrollable eigenmodes into controllable eigenmodes such that uncontrollable

eigenmodes should not be totally neglected. This issue is intrinsically tied to the question of

robust stability and should be discussed in more detail in future work. Here, we concentrate

on SETT systems, where this problem does not arise.

4.2.3.2 Symmetric equal-turnover-time systems: In SETT systems, the system matrix 

consists only of one block 11. To benefit from this special property, we first state
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Lemma 2: Consider two linear operators A and B where  is the smallest eigenvalue of

A and  the smallest one of A + B. If all eigenvalues of B are strictly positive, then

.

Proof: Let ν be a unit eigenvector of A + B related to . Then

 if all eigenvalues of B are strictly

positive.

From Lemma 2 and (34) and (36) we conclude

Proposition 4: In a mechanically stable SETT system satisfying Hypothesis 1, the

(normalized) stability margin  increases with the product of the characteristic turnover

time τ and gain factor kσ.

Proof: In a SETT system, all eigenvalues of  are real and controllable. Thus, the smallest

eigenvalue  of  is the system’s normalized stability reserve.

Increasing τkσ by a factor c > 1 is equivalent to adding the increment  to

τ . If Hypothesis 1 is satisfied, this increment inherits positive definiteness from 

as discussed in the proof of Proposition 3. Adding this increment to τ  is equivalent to

adding to ℒτ the increment , which has strictly positive

eigenvalues because of the assumed mechanical stability (i.e., positive definiteness of Ktot)

and Lemma 1. From Lemma 2 we infer then that the smallest eigenvalue  of ℒτ will

increase if we add this latter increment to ℒτ.

In short, Proposition 4 is a slightly improved version of Proposition 3 for the limited

subclass of SETT systems, establishing (compared to Proposition 3) even a monotonicity of

the positive effect of turnover time and gain factor on the stability margin. Proposition 4

reveals the two-fold effect of the characteristic turnover time: on the one hand it sets a

characteristic time scale for G&R as discussed in the context of (41) and on the other hand it

also stabilizes the system.

The influence of the characteristic material stiffness is captured by

Proposition 5: Provided the system is mechanically stable and Hypothesis 1 is satisfied,

then increasing the characteristic elastic stiffness Cel sufficiently can always stabilize a

SETT system. If the geometric stiffness Kgeo of the system has at least one negative

eigenvalue, the system can always be destabilized by a sufficiently small characteristic

material stiffness.

Proof: The first part of the proposition can be proven along the same lines as Proposition 4.

The second part is a trivial consequence of setting the characteristic elastic stiffness to zero

so that Ktot = Kgeo.
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As will be seen from the example discussed in section 6.2, in practice, Kgeo typically has at

least one negative eigenvalue, which underlines the importance of Proposition 5 to

understand the mechanobiological stability of blood vessels.

5 Mechanobiological adaptivity

5.1 Definition

Within the context of Lyapunov stability, where stability need not automatically mean

asymptotic stability, it is essential to consider possible residual perturbations. To this end,

we first calculate the inelastic deformation due to G&R as a function of time. From (28) and

(39) we conclude

(44)

where diag (τI) is the diagonal matrix formed by the turnover time constants τI of the

different material groups in (10). Since all elastic strains have to be zero in a stable system at

t → ∞ and the sum of elastic and inelastic deformation must equal the total deformation δx
for all material groups, stability implies the same residual inelastic deformation

 for all material groups. In stable systems, the time integral in

(44), and thus δx (t → ∞), is due to the exponential decay function remaining finite but non-

zero for at least some possible δxel (t = 0+). Mechanobiologically stable systems following

the modeling equations considered herein are therefore always neutrally (Lyapunov) stable,

never asymptotically stable. To quantify the adaptation of a neutrally stable system under

perturbations, it is instructive to examine the ratio of residual to initial perturbations. To this

end, we define the displacement adaptivity

(45)

and mass adaptivities

(46)

where we use a direction for the initial mass perturbation δMj (t = 0+) of the j-th species that

maximizes the residual mass perturbation δMj (t → ∞) of the i-th species. In general, the

larger the adaptivities x and , the greater the permanent changes in the system after

perturbations.

5.2 Symmetric equal-turnover-time systems

For SETT systems we can state

Cyron and Humphrey Page 21

Int J Eng Sci. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Proposition 6: The displacement adaptivity of a mechanobiologically stable SETT system is

.

Proof: For stable SETT systems, (44) can be rewritten as

(47)

All eigenvalues of ℒ are real in SETT systems, thus (45) becomes

(48)

which proves the proposition.

Recalling Proposition 4, Proposition 6 establishes an inverse relation between the gain factor

and turnover time on one hand and adaptivity on the other hand, and is complemented by

Proposition 7: The mass adaptivity of a mechanobiologically stable SETT system is

(49)

where ‖․‖2 is the spectral norm.

Proof: For the species in 0, . Then (49) simplifies to , which shows that the

mass of these species is either changed by the mass perturbation at t = 0 itself or not at all

since no G&R occurs. For all other species, we conclude from (25) and (36) for t > 0 that

(50)

or, with (22) and (29) and the pseudo-inverse ,

(51)

Using (24) in (51), we arrive at

(52)

and after time integration at

(53)
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With (46)

(54)

which can be expressed, using the spectral norm, as (49)

5.3 Adaptivity: a corner stone of the design of mechanobiological systems?

Neutral Lyapunov stability is an inevitable consequence of the equations modeling the

systems studied herein. As discussed in section 4.2.2, both the spatial configuration and the

material density are, in general, neutrally, not asymptotically, stable. This suggests that

stability in mechanobiological systems is profoundly different from stability in most human-

made mechanical systems, where asymptotic stability is often a major design criterion. A

fundamental question is therefore: why does nature prefer a different approach to stability

than do humans? The obvious advantage of asymptotically stable systems is they return

reliably to a well-defined operating point whose well-known properties can be exploited to

perform certain tasks efficiently. These benefits are enjoyed, however, at the cost of

flexibility. An asymptotically stable system can hardly or even not at all adapt to a changing

environment. For human-made systems this seems to be an acceptable trade-off since many

function in carefully controlled environments. In contrast, mechanobiological systems are

typically exposed to strongly varying conditions, thus adaptivity is important and asymptotic

stability seems unfavorable. Neutral Lyapunov stability is a natural way to combine a

general form of stability, as required for equipping biological systems with sufficient

robustness against minor perturbations, with a capacity to adapt on a slow time scale to

changing conditions. In neutrally Lyapunov stable systems, the residual effects of repeating

small perturbations can accumulate in general on a slow time scale to become large changes.

Thus on such a slow time scale, vessels are expected to preserve their state only if there is a

temporal equilibrium of density perturbations, namely

(55)

where 〈․〉 denotes a time average. Interestingly, (55) provides an interface for information

exchange from the micro- to the macro-scale: microscopic perturbations can shape the

system on a macroscopic level when applied over a sufficiently long period if (55) is not

satisfied. By contrast, no such obvious interface exists in classical asymptotically stable

solid mechanical systems, perhaps suggesting that mechanobiological systems are designed

to be particularly sensitive to microscopic cues.

6 Examples

In the following we consider two idealized examples that allow all relevant quantities to be

determined analytically and thus to be compared easily with numerical simulations. A

homogeneous, thin-walled, axisymmetric cylindrical vessel of radius R̅ and length 2L is

fixed in the axial direction on both ends. The vessel consists of one axial and one

circumferential collagen fiber family, circumferential smooth muscle, and an isotropic

elastin matrix. Elastin is assumed to exhibit no mass turnover and thus belongs to material
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group 0. In contrast, smooth muscle and collagen fibers are assumed to exhibit the same

turnover time constant τ and thus to form a second material group 1. The mechanical

behavior of elastin is modeled as neo-Hookean and that of collagen and smooth muscle as

Fung exponentials (cf. equations (2.6) – (2.8) in [16] with material parameters and

prestresses according to table 1 there), with a mass density ϱ = 1050 kg/m3 for all species.

The initial areal mass density M̅ is uniform all over the vessel. Note that the parameters

taken from [16] resemble the situation in the human abdominal aorta whereas the chosen

collagen fiber families, an orthogonal grid of axial and circumferential fibers, rather mimic

collagen alignment in muscular arteries and veins [17]. This idealized (hybrid) situation was

chosen because the present theory of mechanobiological stability neglects the effects of wall

shear stress on G&R and thus seems more applicable to elastic arteries (like the aorta) than

to muscular arteries, whereas the choice of only one axial and one circumferential fiber

family (rather than a helical fiber reinforcement as typical for elastic arteries) allows a

simple, analytical treatment of both axial and circumferential instability in section 6.1 and

section 6.2. A discussion of mechanobiological stability on the basis of more realistic vessel

models will be presented in future work.

All quantities in the following example are expressed in (axial, radial, and circumferential)

cylindrical coordinates (z, r, φ), which denote as subscripts components of vectors or

tensors. The vessel domain in the initial configuration is the surface

(56)

The vessel is subject to a constant internal pressure p. Thus, generalized internal and

external force vectors in (12) become with (A2) in Appendix A

(57)

because curvature in the axial direction equals zero. Here, Tzz, Tzφ, and Tφφ are components

of the membrane stress tensor, with Tzφ = Tφz = 0 and ∂Tφφ/∂φ = 0 because of the assumed

axisymmetry.

6.1 Axial G&R of a homogeneous vessel after a small lesion

In the first example, areal mass density is assumed to be zero for elastin, but greater than

zero and initially uniform all over the vessel for axial collagen fibers. At time t = 0, the areal

mass density of the axial collagen fibers is reduced in the region z ε[−ΔL, ΔL], with ΔL ≪ L,

by a uniform small perturbation δM(0)(cf. Figure 1), which initiates axial G&R governed by

the axial collagen fibers as there is no other species in this direction and all other directions

remain unaffected. We thus focus on the axial direction and drop indices for species

referring always to axial collagen for the remainder of this example. The (axial) generalized

internal and external forces from (12) become

(58)
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Thus Tzz is constant over the domain and the Cauchy stress (and also strain) is therefore

constant in the two subdomains |z̅| < ΔL and ΔL < |z̅| < L (within which mass density is

uniform), respectively. Due to symmetry with respect to z̅ = 0, we focus on the half-domain

0 ≤ z̅ ≤ ΔL. There, the displacement variation in z-direction is

(59)

where δẑ is the displacement variation at z̅ = ΔL and the only relevant displacement degree

of freedom in the system. With ΔL ≪ L, we can neglect variations in strain, and thus stress,

within the subdomain ΔL < |z̅| < L and therefore neglect too the G&R processes in this

subdomain. Hence, we can focus on the subdomain |z̅| < ΔL. There (axial) displacement,

strain, and thus stress depend only on δẑ and can be treated as simple scalar functions rather

than scalar fields with

(60)

so that we can infer from (22)

(61)

and with J = 1 + δεzz, and thus δJ/δẑ = δεzz/δẑ, as well as δTzz/δJ = −Tzz additionally

(62)

With (61) and δTzz/δM = σ̅
zz/ϱ we can rewrite (24) as

(63)

and with (62) we conclude from (34) that

(64)

with the normalized stability margin

(65)

Thus, with (28) and (48)
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(66)

(67)

(68)

And, with (25), (60), (63) and (64), the (scalar) axial collagen areal mass density

(69)

(70)

(71)

The normalized stability margin  obviously increases monotonically with τkσ, which is

consistent with Proposition 4. Moreover, (68) is consistent with Proposition 6 and (71) with

Proposition 7.

This analytical solution was compared with numerical simulations in MATLAB. To this

end, G&R and deformation after an initial perturbation of 0.01% of the axial collagen areal

mass density was simulated similarly to [16] but without a finite element discretization in

space as there was only one spatial degree of freedom δẑ in our example. Using a time step

size Δt = 10−2τ, results in Figure 2 show an excellent agreement between the simulation and

the above derived analytical solution. Note in the lower right plot of Figure 2 that even for a

positive stability margin there remains a residual deformation, which becomes larger for

smaller values of G&R, as expected from (48). For  we observe a

nearly linear increase of the total deformation as expected because in this case the elastic

deformation remains almost constant over time giving rise to a nearly constantly growing

inelastic deformation according to (28). For negative G&R unstable exponential

deformation is observed as expected.

6.2 Uniform circumferential G&R of a homogeneous vessel

In this second example, R̅ = 1.25 cm and the a real mass densities were assumed to be 0.34

kg/m2, 0.22 kg/m2, 0.60 kg/m2 and 0.30 kg/m2 for elastin, circumferential smooth muscle,

circumferential and axial collagen fibers, similar to the human aorta studied in [16], with
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mean blood pressure p = 93 mmHg. At time t = 0, a small fraction of the elastin layer was

uniformly removed throughout the vessel as a perturbation of the mass field so that the

whole vessel experienced a uniform dilation δR of the radius without axial deformation. This

situation mimics aging. The only non-zero variation in strain is

(72)

and the only relevant components in (57) are

(73)

From (57) and (72), and noting that δ(fext)r/δR = 0 and δJ/δR = 1/R̅, we find around the

initial mechanobiologically static state,

(74)

where the factor of two comes from adding contributions of decreased curvature and

decreased wall thickness during dilation δR. In (74) we dropped the lower indices φφ on σ̅i

and will similarly do so in the following for the elastic stiffnesses  since only the

circumferential component matters. With δ(fint)r/δTφφ = −1/R̅ and δεφφ/δR = 1/R̅, we arrive

at

(75)

Note that δ(fext)r/δR = 0 because (12) refers to the (respective current) spatial configuration

in which the out-of-plane pressure load on the membrane remains constant. The system

studied is an SETT system, hence the sum in (34) runs over only one index value J = 1.

Then with (73), (74) and (75) we can rewrite (24), (34) and (36) as

(76)

(77)

and thus

(78)

with the (radial) stability margin
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(79)

where the upper index “e” is in this section reserved for elastin. Time integration of (78)

used in (28) yields

(80)

(81)

and (45), assuming the system is stable,

(82)

Using (76), (78) and (79) in (25) gives

(83)

and after time integration

(84)

The stability condition for the system is , which under the physiologically

reasonable assumption that  is, according to (79), equivalent to

(85)

This result confirms the positive impacts of increased elastic stiffness , gain factor ,

and turnover time τ on the mechanobiological stability shown theoretically in Proposition 3,

Proposition 4, and Proposition 5.

Blood vessels are typically assumed to be at least mechanically stable. Otherwise, they

would incidentally rupture or deform significantly from their preferred cylindrical shape and

preferred size. Nevertheless, they may lose their mechanobiological stability at some time.

As seen from (79), this instability may result from a loss of elastin or a decreased capacity of
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collagen production (i.e., reduced kσ) in our model. Once this happens, even minor

perturbations that are common in the vasculature could lead to an unstable G&R process

along with a potentially unbounded dilatation on the slow time scale defined by the

characteristic time constant of mass turnover (cf. (78) and (80) in the case of ). It

thus seems natural to study a neurysms as a potential consequence of such a

mechanobiological instability. In fact, the stabilizing effects of an increased capacity of

collagen production (i.e., increased ) or increased elastic stiffness (i.e., increased ) as

predicted by our theory, and clearly visible in (79), has been observed clinically and

experimentally in aneurysms [18, 19] and studied numerically using a G&R approach [16].

Our mechanobiological stability theory may serve as a theoretical basis to systematically

harness and strengthen such observations in future therapies.

Remark 6: An interesting consequence of (85), given

, is that mechanobiological stability is controlled

by the parameters in the first term: if the gain factor, turnover time, or stiffnesses of the

species subject to G&R processes decrease (increase) sufficiently, each system can be

destabilized (stabilized). This insight may help us to understand better the initiation of

aneurysms and may form a basis for future therapies as numerous interventions (e.g.,

inhibition of proteases or microRNAs) can affect the production rate and turnover time for

collagen (i.e., kσ and τ).

Remark 7: In (65) and (79), we see that prestress appears in the stability margin only in the

sum over all M̅iσ̅i, that is, indirectly via the membrane stress, which is consistent with

Proposition 2. The membrane stress in (79) is determined by the external loading via (73) so

that there is no way to change the stability margin for the given blood pressure by a

modification of prestresses.

Remark 8: Perivascular support of blood vessels was neglected in the above examples. In

general, this support can be modeled by a positive contribution Kperi to the external

geometric stiffness −δfext/δx. The stability margin in (79) would then become

(86)

That is, the stiffness arising from perivascular support has a stabilizing effect, which agrees

with clinical experience and intuition.

Finally, for the example in this section we compared our theoretical predictions with

numerical G&R simulations (in MATLAB) for various parameter combinations and found

excellent agreement between theory and simulation as illustrated in Figure 3. Again, these

biologically motivated but otherwise idealized examples were constructed primarily to

enable numerical evaluations of the predictions of the current concepts. Future studies

should now be pursued to consider (patho)physiological situations.
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7 Conclusions

On the basis of Lyapunov’s stability theory, we generalized the concepts of equilibrium and

stability from engineering mechanics to address mechanobiological systems subject to mass

turnover, as, for example, blood vessels. We demonstrated in Corollary 1, the “Prestress

Corollary”, that a generalized concept of mechanobiological equilibrium implies that new

material must be deposited with a non-zero prestress during any turnover process, which

explains its presence in the vasculature. Subsequently, we demonstrated in the Theorem on

Vascular Mechanobiological Stability that blood vessels can maintain their geometry and

properties over long periods despite small perturbations that are common in vivo if and only

if they are stable both mechanically and mechanobiologically. While most human-made

systems are designed to be asymptotically stable, and thus to return after minor perturbations

to their operating point, we demonstrated in section 5 that mechanobiological stability in the

vasculature follows the concept of neutral Lyapunov stability, which further allows vessels

to adapt over time to a changing environment. Adaptivity is an essential feature of all living

tissues.

On the basis of this conceptual framework we propose a change of paradigm: whereas

aneurysms often appear to be mechanically stable [20], they may be understood in terms of

mechanobiological instabilities. Future predictions of rupture risk should thus take into

consideration not only geometry and wall stress, but also measures of mechanobiological

stability. To derive such measures, we proposed a number of general propositions that reveal

the impact of different parameters on the mechanobiological stability. In particular, we

demonstrated that an increased characteristic gain factor kσ (e.g., increased collagen

production in dilated vessels), an increased characteristic time constant τ of mass turnover

(e.g., decreased proteolytic insult), and an increased elastic stiffness (e.g., increased collagen

cross-linking) all improve the mechanobiological stability. The characteristic time constant

of mass turnover was furthermore shown to set a natural time scale for G&R. Although it

must be non-zero, the exact magnitude of prestress had only an indirect impact on the

mechanobiological stability if it remained constant during G&R. This does not exclude,

however, a potential positive impact of increases in prestress in already perturbed systems.

It is hoped that these collective insights might help not only to understand the genesis of

aneurysms, but also potentially to find new treatments focused on collagen production rate,

turnover time, and stiffness, each of which one may be modified by appropriate

interventions.
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Appendix A

In (12), the mechanical balance equation for a membrane is given using generalized internal

and external forces fint and fext, which are defined in this appendix. The membrane is

represented geometrically by a curved surface that can be parametrized by two (curvilinear)
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coordinates (u, ν). At each point of the membrane, a coordinate frame can be defined by the

two in-plane tangent vectors along constant values of u and ν, and the cross product of these

two vectors provides a third coordinate direction perpendicular on the membrane. Then

(A1)

is simply the external force per unit membrane area consisting of the in-plane load vector

 and the out-of-plane load  perpendicular to the tangent vectors along constant

values of u and ν. In membrane models of blood vessels,  typically equals the blood

pressure and  the wall shear stress. Equilibrium requires, according to eqs. (2.15) and

(2.16) in [21], that

(A2)

where ∇T is the divergence of the membrane stress tensor and  the shape tensor (or

second fundamental tensor) of the curved surface representing the membrane. Note that if w
is a unit tangent vector to the membrane, then the curvature of the membrane in the section

plane in which w lies is κ(t) = w w. The curvature computed with the shape operator will

be positive if the angle between w and the third axis of the Cartesian frame is growing as w
is convected along the curved surface in the direction it is pointing. Choosing u and ν such

that the first two axes of the local coordinate frame are principal directions of the membrane

stress tensor T, one understands that : T is the sum of the products of the two principal

membrane stresses times their respective principal curvatures, which has to counterbalance

.

Note that, in general, not only does fext depend on the spatial configuration x, but via  also

fint does, which has to be accounted for in variational calculations.
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Figure 1.
Illustration of examples in section 6.1 and 6.2: Cross section through a vessel parallel to its

long axis with axial collagen fibers removed in the central region as in example 6.1 (left).

Cross section perpendicular to the long axis with circumferential elastin damage as

described in example 6.2 (right). The perturbed regions are delimited by dashed lines, with

the removed mass denoted by grey and the mass after perturbation denoted by black.
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Figure 2.
Comparison between simulation (crosses) and analytical solution (continued lines) for

example in section 6.1: elastic (upper left) and inelastic (upper right) deformations and areal

mass density (lower left) after perturbation for τkσ = 1.5, G&R = 1.5/τ, total deformation

for different stability margins (lower right)
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Figure 3.
Comparison between simulation (crosses) and analytical solution (continued lines) for

example in section 6.2: elastic (upper left) and inelastic (upper right) deformations and areal

mass density (lower left) after perturbation for τkσ = 1.5, G&R = 1.5/τ, total deformation

for different stability margins (lower right)
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