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Abstract

Background: Errors, introduced through poor assessment of physical measurement or

because of inconsistent or inappropriate standard operating procedures for collecting,

processing, storing or analysing haematological and biochemistry analytes, have a nega-

tive impact on the power of association studies using the collected data. A dataset from

UK Biobank was used to evaluate the impact of pre-analytical variability on the power of

association studies.

Methods: First, we estimated the proportion of the variance in analyte concentration that

may be attributed to delay in processing using variance component analysis. Then, we

captured the proportion of heterogeneity between subjects that is due to variability in the

rate of degradation of analytes, by fitting a mixed model. Finally, we evaluated the im-

pact of delay in processing on the power of a nested case-control study using a power

calculator that we developed and which takes into account uncertainty in outcome and

explanatory variables measurements.

Results: The results showed that (i) the majority of the analytes investigated in our ana-

lysis, were stable over a period of 36 h and (ii) some analytes were unstable and the

resulting pre-analytical variation substantially decreased the power of the study, under

the settings we investigated.

Conclusions: It is important to specify a limited delay in processing for analytes that are

very sensitive to delayed assay. If the rate of degradation of an analyte varies between

individuals, any delay introduces a bias which increases with increasing delay. If pre-

analytical variation occurring due to delays in sample processing is ignored, it affects

adversely the power of the studies that use the data.

Key words: Biobank, Pre-analytical variation, Biosamples, Statistical power

VC The Author 2014; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association 1633
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Epidemiology, 2014, 1633–1644

doi: 10.1093/ije/dyu127

Advance Access Publication Date: 1 August 2014

Original article

http://www.oxfordjournals.org/


Introduction

A biobank may be defined as ‘an organized collection of

human biological material (e.g. blood, urine or extracted

DNA) and associated information stored for one or more

research purposes’.1,2 Most contemporary biobanks are

large by design because the aetiological determin-

ants(genes, environment and interactions) of complex dis-

eases are typically weak (e.g. relative risks between 1.1 and

1.3) and their resolution therefore demands many subjects3

with data that are both accurate and precise. Crucially,

errors introduced through poor assessment of physical

measurement or because of inconsistent or inappropriate

standard operating procedures (SOPs) for collecting, pro-

cessing, storing or analysing biosamples can seriously

impair data quality. This can dramatically reduce the stat-

istical power of a study, particularly if one is studying

gene-environment interactions.3,4 Given the vast cost and

effort that are needed to establish and maintain a contem-

porary biobank, even a small loss of power can impact

substantially on the balance of costs and benefits of de-

veloping adequately powered study resources. The quality

and future utility of biological samples can be affected by

factors arising during the collection, transport, processing

and storage of biosamples.5 It is therefore crucial to use

carefully selected and validated protocols that minimize

any changes in the quantity or nature of the constituents

(biological analytes) of each biosample and allow for the

further re-use of the samples.6–9 It is for this reason that

certain SOPs9,10 that ensure minimal pre-analytical vari-

ability between samples are published—as best practice

guidelines for biological resource centres—by organiza-

tions involved in the conceptualization, design and conduct

of sample collection, processing and analysis. This includes

guidelines from the National Cancer Institute (NCI),11

Organization for Economic Cooperation and Development

(OECD)12 and International Society for B, Environmental

R (ISBER),13 as catalogued in the website of the Public

Population Project in Genomics (P3G).14,15

A critical issue is the impact of any delay between sam-

ple collection and the processing step that definitively

stabilizes that sample (the ‘needle-to-freezer’ time). This is

because some biological analytes are not stable before per-

manent storage and their concentration changes over time.

For example, the concentration of aspartame transaminase

(AST), a biochemical analyte present in red blood cells,

increases by 15.2% at 21�C and by 1.5% at 4�C, over

24 h.16 If there is any tendency for an analyte to degrade,

or accumulate, over time ahead of stabilization, any delay

in definitive processing will introduce measurement error.

If the rate of degradation is very similar in all samples,

then an SOP requiring a fixed (though non-zero) delay till

processing (e.g. 24 h) will ensure that all samples to be ana-

lysed will be similarly affected and biostatistical and/or

epidemiological analyses may be unbiased. But if case and

control samples are processed under different protocols—

e.g. with a different needle-to-freezer time—serious sys-

tematic bias may arise. Additional problems will arise if

the rate of degradation varies markedly from subject to

subject. Then any delay in processing will introduce ran-

dom error that will reduce statistical power, even if every

sample is subject to the same delay. Furthermore, the mag-

nitude of the consequent bias will become steadily more

serious as the duration increases.

There are three possible solutions to pre-analytical vari-

ability in this setting: (i) use a common standard operating

procedure (SOP) involving local processing at all collection

sites; (ii) set up a large study with rapid sample transporta-

tion and central processing such that any delays are min-

imal; or (iii) carefully assess the impact of biosample

deterioration so that an evidence-based decision can be

made regarding the maximum delay that may be reason-

able and that, where possible, the delay time can be taken

into proper account in designing or analysing studies to be

based on the stored biosamples.

All else being equal, an SOP involving a short needle-to-

freezer time in all participants is undoubtedly to be pre-

ferred. But the first two solutions are both expensive. For ex-

ample, the first solution requires every collection site to have

a local capacity for state-of-the-art processing and storage,

rather than restricting such facilities to a single central facil-

ity. In a nationwide study this may well be unaffordable.

Given that any decisions about the optimum protocol will

therefore have major scientific and financial implications, it

is clear that a sound quantitative understanding is required

of the manner in which analytes degrade or accumulate in

unprocessed samples. But, because the degradation profile is

likely to vary from analyte to analyte, it is necessary to inves-

tigate a wide range of different biomarkers.

Key Messages

• This work demonstrates that between-subject heterogeneity in the stability of biological analytes can over time lead

to substantial degradation

• It also provides a framework for quantifying the power loss due to degradation.
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The analyses described in this article fulfil these aims.

They form part of the international biobank harmonization

programmes of P3G, Maelstrom17 and BioSHaRE-EU.18

The work is based on a set of pre-pilot blood samples that

were originally collected by UK Biobank with the express

purpose of exploring the stability of analytes in the period

prior to definitive storage. Although these data have previ-

ously been analysed19 with a closely related intention in

mind, the conclusions of those earlier analyses focused pri-

marily on the rate of degradation/accumulation per se,

rather than on the potential impact of heterogeneity in rate

among samples from different participants. As shall be dem-

onstrated, a comprehensive exploration of the latter raises

important additional considerations that ought to be taken

into proper account in developing the SOPs for sample col-

lection in a major biobank and/or in designing or analysing

the individual studies to be based upon a biobank.

Methods

Three complementary sets of analyses were undertaken,

exploring changes in the concentration of 47 analytes over

time in the period before definitive long-term storage. The

first set explored the extent to which any variation in the

measured concentration of each analyte might reasonably

be attributed to delays in processing. These replicated the

equivalent analyses reported in the earlier paper19 by

Jackson et al. and demonstrated that our approaches were

fundamentally equivalent. The second set focused specific-

ally on heterogeneity in the rate of change of concentration

of each analyte, between samples from different subjects.

The third set explored the impact of that heterogeneity on

the power of a typical association study. It is in the inter-

pretation of the second and third sets of analyses that our

investigation moves beyond that reported by Jackson

et al.19 and leads to important additional conclusions that

should necessarily be taken into account in considering the

power of association analyses to be based on a biobank.

Description of the data

UK Biobank (UKBB) is a large biobank of 500 000 partici-

pants, aimed at investigating the role of genetic factors, en-

vironmental exposures and lifestyle in the causes of major

diseases of late and middle age20. The data used in our ana-

lysis are from a pre-pilot study set up during the design

phase of UKBB. They consist of the measured values of 47

blood and urine analytes from 40 subjects, that were put

into definitive long-term frozen storage between 0 and 36 h

after initial blood collection. All samples were kept at 4�C

until they were frozen. The 40 samples are from healthy

unrelated volunteers that were not among the 500 000

participants ultimately recruited into UK Biobank. The 40

volunteers consisted of 20 males with an average age of

56 years and a median of 56 years, and 20 females with an

average age of 51 years and a median of 49 years. In com-

parison, the UK biobank participants were from males and

females aged 40–69 years;21 the proportions of males and

females among the 500 000 UK Biobank participants are,

respectively, 45 and 55%.22 We do not have information

about the socio-economic statuses of the 40 subjects who

provided the samples analysed in this work.

The data structure is hierarchical, with three levels: sub-

ject; time point; and replicate measures. Analyte concentra-

tions were measured at four time points (0, 12, 24 and 36 h)

for 19 of the 47 analytes and at two time points (0 and 24 h)

for the other 28. The designated times represent time since

sample collection; 0 h implies the assay was carried out im-

mediately after sample collection (Figure 1). Two replicate

measurements were taken at each nominal time point except

at 24 h when four replicate measurements were taken: two

of those four were used to study the effect of freeze/thaw.19

These two latter samples were not true replicates and were

excluded from our analysis. A total of 320 measurement val-

ues were therefore analysed across the 40 participants for

each of the 19 analytes with measurement at four distinct

time points and 160 values in the other 28 analytes. The

analyte C Reactive Protein was excluded from the analysis

because its data were censored; all measurement values

<0.2 were reported as 0.2, and this distorted the correlation

structure both within and between subjects. The remaining

46 analytes were analysed one at a time.

First set of analyses: estimating the proportion of

the variance in analyte concentration that may

reasonably be attributed to delay in processing

The observed variability between different samples from

different participants reflects a combination of: (i) real bio-

logical heterogeneity between subjects; (ii) random meas-

urement error; and (iii) pre-analytic variability caused by

Figure 1. Repeated measurements are taken over 24 or 36 h for each ana-

lyte and each subject. **Two assays only used in the present analysis.
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processing delays. It is the first of these that carries the infor-

mation driving useful scientific investigation. Although the

variability due to delay in processing is in fact a ‘real’ biolo-

gical effecti.e. the change in concentration (usually degrad-

ation) of a biological analyte over time isa real

phenomenon, its effect is to produce a loss of information

from the sample and, in that sense, is analogous to random

measurement error. To estimate the proportion of the

observed variability between subjects that can reasonably be

attributed to delay in processing, a three-level variance com-

ponent model (Figure 2) was fitted in MLwiN 2.1.23

This is a simple ‘random intercept’ model:

yijk ¼ b0ijkx0 Model 1

Where i, j and k, respectively, index observations at the rep-

licate measurement, processing time and subject levels of the

data hierarchy, x0 ¼ 1 and b0ijk ¼ ballþw0k þ v0jkþ e0ijk.

The terms w0k �N 0,r2
w0

� �
, v0jk �N 0,r2

v0

� �
and

e0ijk �N 0,r2
e0

� �
are random ‘errors’acting at different levels

of the hierarchy. Variation at level 1 (r2
e0) reflects random

measurement error. Variance at level 2 (r2
v0) incorporates

variability arising from delay in processing. Level 3 is the

subject level and r2
w0 therefore captures the real biological

difference between subjects that provides the basis of useful

scientific enquiry. The distributions of the residuals at levels

1, 2 and 3—e0ijk, v0jk and w0k—were explored and verified

as Gaussian using normal probability plots. The model was

fitted without explanatory variables; the ‘intercept’ covari-

ate, x0, took the constant value 1. The response of each ob-

servational unit (each sample in every subject) was therefore

modelled as having a common underlying expectation, ball.

Under the stated parameterisation, time was effectively

modelled as a non-ordered categorical variable. An ordinal

parameterization could instead have been used. This would

have been more powerful for detecting a weak but consist-

ent decline (or increase) in concentration over time. But,

for this part of the analysis, it was considered preferable to

minimize any assumptions and to treat each time point as

an independent entity rather than assuming a natural

order. Given that consistent changes over time were easily

detected for many of the analytes with four time points

anyway, it would appear that this decision was reasonable.

For analytes measured at only two time points, the non-

ordered and ordinal models are equivalent.

Second set of analyses: investigating

between-subject heterogeneity in the rate of

decline(or accumulation) of analytes

In considering the stability of a biological analyte over time,

it is helpful to recognize three fundamental possibilities

(Figure 3): (i) samples are stable and there is no change in the

concentration of the analyte over time; (ii) samples are un-

stable, but the rate of change in concentration is the same in

all samples from all individuals; and (iii) samples are unstable

and the rate of change in concentration varies from individ-

ual to individual. These three scenarios may be modelled

using a series of nested two-level multilevel models. Figure 4

depicts the model for analytes with two measurements at 0 h

and 24 h. For analytes with measurements at 0 h, 12 h, 24 h

and 36 h, there would be four additional boxes at level 1

(two replicate measures at each of 12 h and 36 h) and the

dummy time covariate is parameterized as indicated below.

Scenario 3 is the most general case. It is encapsulated in

the model 2 below:

yik ¼ b0ikx0 þ b1kx1ik Model 2

where i and k index individual measurements and different

subjects, respectively:

b0ik ¼ b0 þ u0k þ eik

b1k ¼ b1 þ u1k

x0 ¼ 1

x1ik ¼a dummy time covariate denoting the timing of the

ith measurement in the kth subject. This covariate is coded

Figure 3. Variation in biological analyte concentration over time;

changes in concentration of one analyte in four individuals are com-

pared in three different scenarios.

Figure 4. Graphical depiction of a two-level multilevel model for an ana-

lyte measured at two time points (0 and 24 h) (model incorporates a

time covariate).

Figure 2. Graphical depiction of a three-level model fitted in MLwiN. 0 h

and 24 h components only for analytes measured twice (i.e. two

replicates).
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as 0 and 1 respectively for the time points 0 h and 24 h (for

analytes with two measurements); and as 0, 0.5, 1 and 1.5

respectively for the time points 0 h, 12 h, 24 h and 36 h (for

analytes with four measurements).

b0¼ expected concentration of analyte at time point 0 h;

b1¼ expected change in concentration of analyte between

time points 0 h and 24 h;

u0k �N 0,r2
u0

� �
subject level random effect reflecting the

variance between subjects in the expected concentration

of the analyte at time point 0 h;

u1k �N 0,r2
u1

� �
Ssubject level random effect reflecting the

variance between subjects in the expected rate of change

in concentration between time points 0 h and 24 h;

eik �N 0,r2
e

� �
independent residual error terms at level 1.

Under the most general model (scenario 3), the expected

change in concentration between time points 0 h and 24 h

may be non-zero (b1= 0) and the rate of change may vary

from subject to subject (r2
u1 > 0). Scenario 2 is a special

case of scenario 3, in which the slope may be non-zero

(b1=0) but the rate of change is the same in samples from

all subjects ðr2
u1¼ 0). Scenario 1 is a special case of scen-

ario 2, in which the slope is identically zero in all subjects

(b1¼ 0 and r2
u1¼ 0). Statistical inferences may be based on

a comparison of the likelihood of the nested models.

For example, a comparison of the likelihood between scen-

arios 3 and 2 enables inference on the question: ‘Is there

significant evidence of between-subject heterogeneity in

slope?’

The generality of model 2 may now be usefully ex-

tended to allow a correlation between u0k and u1k, re-

flected in an additional term (ru0:1Þ denoting the

covariance between the two sets of random effects. These

estimated variance and covariance terms might then be

used to estimate the overall variance at 0 h and the overall

variance at 24 h:

r2
0h ¼ r2

u0 þ r2
e Equation 1

r2
24h ¼ r2

u0 þ 2ru0:1 þ r2
u1 þ r2

e Equation 2

All models used in undertaking the second set of analyses

were fitted using MLwiN23.

Third set of analyses: estimating the impact of

delays in sample processing on the power of

case-control studies

The second set of analyses (above) would appear to indi-

cate a straightforward way to address the scientific aims of

the third set of analyses. Our results for the second set of

analyses are similar to those of Jackson et al. who

concluded that the contribution of heterogeneity in slope

was negligible, and this supported their general conclusion

that ‘any instability in assay results up to 36 h is likely to

be small in comparison with between-individual differ-

ences and assay error’.

However, Jackson et al.’s ‘percentage of total variation

in assay measurements explained by between-individual

differences’ is a blunt tool. The between-individual vari-

ance at baseline (0 h) reflects the true biological signal of

interest. Any additional variance arising, after 0 h, from be-

tween-subject differences in slope, reflects a distortion of

that true signal. Furthermore, after baseline, the covariance

between the baseline biological signal and the subsequent

slope complicates the interpretation of the combined

‘between-individual variance’. This is because two add-

itional terms contribute to between-individual variance

after time 0: r2
u1 and 2ru0:1 (Equations 1 and 2). If the co-

variance term ðru0:1Þ is negative, a higher analyte concen-

tration at baseline is, on average, associated with a steeper

subsequent decline. Lines depicting concentration (e.g.

Figure 5) may therefore converge from left to right but,

despite the resultant fall in total variability, the true biolo-

gical signal reflected in the magnitude of r2
u0 neverthe-

less degrades as time progresses. Arguing quantitatively, if

ru0:1 is negative and greater in absolute magnitude

than r2
u1=2, the total variance will decline, but the biolo-

gical signal will nevertheless degrade and statistical power

will fall.

One situation is particularly illuminating: if 2ru0:1 ¼
� r2

u1, the total between-individual variance at time 0 and

time 1 (24 h) will be equivalent: r2
u0 ¼ r2

u0 þ 2ru0:1 þ r2
u1, as

will the total variance r2
u0 þ 2ru0:1þ r2

u1 þ r2
e ¼ r2

u0 þ r2
e .

The proportion of total variability that is explained by vari-

ability between individuals—the parameter that Jackson

et al. compare over time—therefore remains constant, but

the original biological signal has degraded and is partially

balanced by variance arising from between-subject hetero-

geneity of slope. This latter may well be a real biological

difference between individuals, but it will not in general

be the same biological difference that accounts for

Figure 5. Using the variance components to determine total variability

at 0 and 24 h.
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between-subject heterogeneity at baseline. Thus, although

Figure 2 in Jackson et al.19 does indeed demonstrate that

the proportion of total variance that can be explained by

variation between individuals is relatively constant over

time for most analytes, slope heterogeneity between indi-

viduals may nevertheless be causing a substantial degrad-

ation of the baseline biological signal and a loss of

statistical power. An alternative approach is therefore

needed to explore the degradation more rigorously: a dir-

ect comparison of statistical power with and without slope

heterogeneity between individuals.

To illustrate, let us consider perhaps the simplest of

scenarios: a nested case-control study is to focus on the

question: ‘Is the concentration of analyte A associated with

disease D?’ To explore statistical power, we might use the

ESPRESSO simulation-based power calculator (Estimating

Sample-size and Power in R by Exploring Simulated Study

Outcomes), that was originally developed to estimate

the power of nested case-control analyses based on

UK Biobank24 and has since been extended to model

quantitative exposures.25,26 The use of ESPRESSO to esti-

mate the power of case-control studies using uncondi-

tional logistic regression has been described in detail

elsewhere.3

Briefly, a simulation-based power calculation may be

undertaken involving a logistic regression model taking

case-control status (presence or absence of disease D) as its

binary outcome, one quantitative covariate reflecting the

analyte of interest A, and which has been ‘spiked’ by incor-

porating realistic levels of measurement error, and other

factors that are likely to influence statistical power

(see Appendix A, available as Supplementary data at IJE

online). The required sample size for a case-control ana-

lysis to have 80% power to detect the true association be-

tween D and A (across a range of true effect sizes) can then

be compared between two different settings. All simulation

parameters pertaining to the generation of AO, the

observed analyte concentration, in both settings for each

analyte are derived directly from the multilevel models fit-

ted earlier in the analysis.

Setting 1—no heterogeneity in degradation slope

All measurements are assumed to have been taken at 0 h

and slope heterogeneity has no impact. A vector of ‘true’

simulated analyte concentrations AT (error-free data) is

generated using a two-step procedure that separately gen-

erates the fixed expected values (AF) and random terms re-

flecting biological heterogeneity (AR). AT is generated with

a mean b0 (expected intercept at time 0 h) and a between-

subject variance of r2
u0 (both estimated in the MLwiN

analysis for the chosen analyte—Table 2). The ‘observed’

analyte concentration AO is then obtained by adding a ran-

dom measurement error term (ER) to AT:

AF ¼ b0

AR � N 0, r2
u0

� �
AT ¼ AF þ AR

ER � N 0, r2
e

� �
AO ¼ AT þ ER

In this particular setting, the true biological signal associ-

ated with the analyte is captured by variation in AT and

the only error (measurement error)is reflected in ER: As in

any ESPRESSO analysis,3 AT is used to stochastically gen-

erate a vector of simulated ‘true’ case-control statuses

CCT, which are then subject to appropriate misclassifica-

tion error to generate an ‘observed’ case-control status vec-

tor CCO. A logistic regression of CCO on AO now allows

an estimation—based on this single simulation—of the

odds ratio (and standard error) relating CCO to a one unit

change in AO, and this in turn allows an empirical estimate

of the sample size that would have been required to detect

this effect with 80% power.3 This simulation process is

then repeated 500 times, and the estimated sample sizes

averaged to generate a consistent estimate of the required

sample size.3

Setting 2—slope heterogeneity present

All measurements are taken at 24 h. Precisely the same pro-

cedure is followed as in setting 1, except: (i) the fixed ef-

fects include b1, the overall slope, which is a fixed value in

the simulation and has no impact on power; (ii) the ran-

dom effects include SR which reflect slope heterogeneity;

(iii) the AR and SR random effects are generated so as to

have the correct covariance (ru0:1) (Equation 2) using

an approach we originally developed for simulating—

potentially negatively correlated—family data.27,28

Appendix B provides R code for generating the required

covariance (available as Supplementary data at IJE online).

AF ¼ b0 þ b1

AR � N 0, r2
u0

� �
AT ¼ AF þ AR

ER � N 0, r2
e0

� �

SR � N 0, r2
u1

� �

Crucially: Cov(AR, SR)¼ ru0:1

And finally: AO ¼ AT þERþ SR

It should be noted that SR, the random effects reflecting

slope heterogeneity, are actually multiplied by ‘time’ (see

model 2), but the parameterization is such that at 24 h

time¼ 1, so it is excluded from the presentation for

simplicity.
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Having estimated the sample sizes required in both

settings, their ratio (setting 2/setting 1) indicates the multi-

plicative increase in sample size that is required to precisely

compensate for slope heterogeneity if sample processing is

delayed to 24 h.

In order to render the power calculations for each ana-

lyte directly comparable, all distributional parameters—as

estimated in MLwiN—were first standardized by dividing

all the variance components for a given analyte by its esti-

mated r2
u0, subtracting the mean (b0), and dividing b1

by
ffiffiffiffiffiffiffi
r2

u0

q
. This meant that the estimated sample size pro-

vides 80% power to detect the true impact (as simulated)

of one standard deviation change on the odds of the par-

ticular disease being studied.

As usual,3 the ESPRESSO analyses incorporated a

full and realistic range of power-determining factors

(Appendix A, available as Supplementary data at IJE

online; see online material25,26 for a full list of parameter

values that were actually specified).

Results

First set of analyses

Using the three-level model with no heterogeneity in slope

between subjects (Model 1), the proportion of the observed

variability that can reasonably be attributed to delay in

processing time (r2
v0) is �10% for 16 out of 46 analytes

(Table 1). Eight analytes have 5–10% of the observed vari-

ability attributable to delay in processing. For the remain-

ing 22 analytes, the contribution of the variance resulting

from delay in processing represents less than 5% of the

observed variance. Bicarbonate seems particularly sensitive

to delayed processing, with 61% of the observed variabil-

ity coming from r2
v0.

Second set of analyses

Results are summarized in Table 2. Crucially by applying

the likelihood ratio test to Model 2 (Figure 2), a compari-

son under scenarios 2 (constant slope across individuals)

and 3 (heterogeneity of slope across individuals) indicates

that almost all analytes exhibited significant evidence of

between-person heterogeneity of slope. This finding is en-

tirely consistent with the equivalent finding reported by

Jackson et al.19 However, they concluded that despite the

statistical significance of this slope heterogeneity, it would

in practice have little impact on statistical power.

Third set of analyses

The quantitative impact of slope heterogeneity on estimated

sample size requirement is detailed in Table 3. Five analytes

demand the sample size to be more than doubled: bicarbon-

ate (2.32), albumin (2.27), total protein (2.21), basophils

(2.19) and magnesium (2.15). Three further analytes

required sample size inflation of at least 25% and, in total,

29 analytes demand an increase of at least 10%. As would

be anticipated, the loss of power, and hence the required in-

crease in sample size, is largest when r2
u1 (the slope hetero-

geneity) is large relative to the biological signal (r2
u0).

Discussion

Because of the complexity of the aetiological architecture

of complex diseases, and because individual causal effects

are often weak, statistical power is at a premium. This

implies a need for large sample sizes and measurements

that are both accurate and precise.3,29 Standard operating

procedures (SOPs) for biosample collection, processing,

storage and analysis must be explored in detail and chosen

with care. Furthermore, key decisions about SOPs that are

taken when a biobank or major epidemiological study is

first set up have an irrevocable impact on the future utility

of data and samples. They not only impact on the future

science to be based on a large-scale biobank, but also on

utility of the huge investment that societies and science pol-

icy makers are currently willing to make in creating and

managing biobanks. The particular set of SOPs that is

adopted by a biobank really matters.

The work reported in this paper builds directly on an

earlier paper by Jackson et al.19 Both papers use empirical

pre-pilot data collected by UK Biobank to explore one key

element of the SOP for biosample handling—the impact of

extending the needle-to-freezer time, i.e. the time delay be-

tween collecting a biosample (blood or urine) and putting

aliquots of that sample into definitive storage. Our paper

significantly extends the interpretation of one critical

parameter in the model: the impact of between-subject het-

erogeneity in the rate of degradation (decline or accumula-

tion) of each analyte studied. This extended interpretation

substantively changes the conclusions of the overall ana-

lysis, and must therefore be taken into account when

designing or using a biobank.

Our analyses and those undertaken in the earlier

paper19 can be directly compared; the mathematical mod-

els are equivalent and quantitative conclusions are effect-

ively the same. Thus, the estimated average percentage

change for each analyte over 12 h, the estimated probabil-

ity that a trend over time is truly negative and the likeli-

hood ratio test for heterogeneity are all very similar.

For example, Jackson et al.19 reported that the percentage

change in analyte concentration over 12 h of delay was

<3% in absolute magnitude for all but two analytes: insu-

lin (þ3.9%) and eosinophil count (�12%). We entirely
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Table 1. Analytes ranked by decreasing contribution of delay in processing to observed variability between subjects. Two repli-

cate measurements where available for the analytes highlighted in light and four for the analyte highlighted in dark

Analyte (units) Mean Between

subject

variance (r2
w0)

Variance

due to delay in

processing (r2
v0)

Residual (r2
e0) Proportion of

variance due to delay

in processing r2
u0=r

2
v0 þ r2

u0 þ r2
e0

Bicarbonate (mmol/l) 26.094 0.679 1.288 0.156 61%

Albumin (g/l) 41.688 4.574 2.856 0.169 38%

Mean Corpuscular Haemoglobin

Concentration (g/dl)

33.016 0.144 0.112 0.058 36%

Total Protein (g/l) 68.731 14.459 9.181 2.406 35%

Potassium (mmol/l) 4.060 0.075 0.033 0.002 30%

Basophils (�109) 0.045 0.000 0.000 0.000 28%

Eosinophils (�109) 0.138 0.006 0.001 0.001 16%

Calcium (mmol/l) 2.235 0.007 0.001 0.000 15%

Packed Cell Volume (-) 0.421 0.002 0.000 0.000 15%

Haemoglobin (g/dl) 13.896 2.230 0.364 0.004 14%

Haemoglobin A1C (%) 3.305 0.051 0.011 0.017 14%

Sodium (mmol/l) 137.681 2.470 0.472 0.606 13%

Red Blood Cells (�1012/l) 4.545 0.236 0.033 0.003 12%

Chloride (mmol/l) 106.325 3.882 0.550 0.388 11%

Platelet Count (�109/l) 240.351 2873.890 346.155 46.660 11%

Haemoglobin A1CX (%) 0.484 0.004 0.000 0.000 10%

Glucose (mmol/l) 5.338 0.228 0.019 0.002 8%

Bilirubin (mmol/l) 14.786 16.922 1.491 2.274 7%

Glucose F Oxalate (mmol/l) 5.610 0.248 0.018 0.002 7%

Magnesium (mmol/l) 0.885 0.003 0.000 0.000 6%

Lymphocytes (�109/l) 1.925 0.346 0.020 0.007 5%

Insulin (mIU/l) 7.240 17.508 0.942 0.049 5%

Cholesterol (mmol/;) 5.248 1.049 0.054 0.002 5%

Monocytes (�109/l) 0.413 0.028 0.002 0.002 5%

Fibrinogen (g/l) 3.047 0.443 0.021 0.007 4%

High-Density Lipid (mmol/l) 1.567 0.189 0.007 0.002 3%

Amylase (IU/l) 71.525 559.694 15.512 2.038 3%

White Cell Count (�109/l) 6.438 6.166 0.167 0.050 3%

Alkaline Phosphatase (IU/l) 61.395 307.281 7.483 2.499 2%

Creatinine (mmol/l) 89.838 160.505 3.894 14.900 2%

Mean Cell Volume (fl) 92.788 17.590 0.376 0.049 2%

Aspartate Aminotransferase (IU/l) 22.969 29.118 0.606 0.744 2%

Neutrophils (�109/l) 3.918 4.505 0.068 0.027 1%

Mean Corpuscular Haemoglobin (pg) 30.627 1.599 0.023 0.046 1%

CK MB Fraction (IU/l) 4.795 21.852 0.235 0.146 1%

Urinary Urea (mmol/l) 246.229 11998.933 127.630 27.741 1%

Triglyceride (mmol/l) 1.265 0.556 0.006 0.001 1%

Creatinine Kinase (IU/l) 106.588 2655.407 20.775 2.013 1%

Gamma GT (IU/l) 30.596 354.594 2.142 3.012 1%

Alanine Aminotransferase (IU/l) 23.544 133.475 0.700 0.569 1%

Inorganic Phosphorus (mmol/l) 1.037 0.021 0.000 0.002 0%

Uric Acid (mmol/l) 301.956 3336.344 12.213 3.619 0%

Blood Urea Nitrogen (mmol/l) 2.688 0.319 0.001 0.002 0%

Urinary Calcium (mmol/l) 2.297 1.976 0.005 0.027 0%

Urinary Sodium (mmol/l) 96.128 2605.497 0.083 9.059 0%

Urinary Potassium (mmol/l) 49.653 651.427 0.657 6.833 0%
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Table 2. Heterogeneity in rate of change of analyte concentration (slope variance) and results of the comparison between the

models for scenario 3 and scenario 2 (i.e. 2-level model with and without a random slope). The analytes for which the models

were fitted with two time points are highlighted in light whereas those for which the models were fitted with four time points

are highlighted in dark

Analyte Mean (b0) Slope (b1) Expected %

change

per 12 h

Between-

subjects

variance (r2
u0)

Between-

slopes

variance (r2
u1)

Residual

(r2
e0)

v2 slope

heterogeneity

P-Value

Bicarbonate 26.688 –1.188 –2.22 1.506 1.165 0.156 64.687 8.78E�16

Albumin 42 –0.763 –0.91 6.766 5.131 0.169 151.673 7.47E�35

Mean Corpuscular

Haemoglobin

Concentration

32.9 0.231 0.35 0.166 0.17 0.058 32.018 1.53E�08

Total Protein 69.488 –1.513 –1.09 20.84 16.075 2.406 59.583 1.17E�14

Potassium 4.1071 –0.0316 –0.77 0.0925 0.0072 0.0177 188.21 1.35E�41

Basophils 0.046 –0.002 –2.47 0.00036 –0.00011 0.00008 31.491 2.00E�08

Eosinophils 0.157 –0.039 –12.4 0.009 0.001 0.001 27.142 1.89E�07

Calcium 2.2596 –0.0167 –0.74 0.0075 0.0001 0.0001 689.67 1.74E�150

Packed Cell Volume 0.428 –0.014 –1.68 0.002 0.001 0.00002 142.267 8.50E�33

Haemoglobin 14.078 –0.363 –1.29 2.482 0.597 0.004 270.89 7.26E�61

Haemoglobin A1C 3.2614 0.0289 0.89 0.0566 0.0021 0.0225 113.64 2.11E�25

Sodium 138.1313 –0.3000 –0.22 2.3641 0.0840 0.7621 0.00 1.00Eþ00

Red Blood Cells 4.604 –0.118 –1.29 0.259 0.052 0.003 118.8 1.16E�27

Chloride 106.15 0.35 0.16 4.159 0.978 0.388 23.268 1.41E�06

Platelet Count 245.738 –11.408 –2.32 3269.157 548.204 46.66 86.048 1.76E�20

Haemoglobin A1CX 0.4859 –0.0011 –0.23 0.0036 0.0001 0.0005 704.40 1.10E�153

Glucose 5.415 –0.021 –0.49 0.228 0.031 0.002 163.01 2.49E�37

Bilirubin 15.225 –0.879 –2.89 18.188 2.21 2.274 6.519 1.07E�2

Glucose F Oxalate 5.6505 –0.0270 –0.48 0.2530 0.0036 0.0108 224.60 1.69E�49

Magnesium 0.888 –0.006 –0.32 0.003 0.0036 0.00005 59.021 1.56E�14

Lymphocytes 1.966 –0.082 –2.09 0.389 0.032 0.007 45.793 1.31E�11

Insulin 6.8372 0.2681 3.92 17.5932 0.2391 0.4166 0.00 1.00Eþ00

Cholesterol 5.4026 –0.1030 –1.91 1.1333 0.0044 0.0272 92.41 8.58E�21

Monocytes 0.424 –0.022 –2.59 0.029 0.002 0.002 9.628 1.92E�03

Fibrinogen 3.161 –0.159 –2.09 0.471 0.038 0.008 183.268 9.37E�42

High-Density Lipid 1.6379 –0.0452 –2.76 0.2255 0.0010 0.0037 364.58 6.80E�80

Amylase 73.051 –3.05 –2.09 599.198 21.722 2.038 85.765 2.03E�20

White Cell Count 6.515 –0.155 –1.19 6.061 0.311 0.05 56.796 4.83E�14

Alkaline Phosphatase 62.471 –2.146 –1.72 318.718 10.379 2.497 38.308 6.04E�10

Creatinine 91.0225 –0.7900 –0.87 173.8155 0.4029 16.7704 0.00 1.00Eþ00

Mean Cell Volume 93.049 –0.521 –0.28 17.309 0.48 0.049 80.493 2.92E�19

Aspartate

Aminotransferase

23.05 –0.163 –0.35 29.938 1.186 0.744 13.05 3.03E�04

Neutrophils 3.923 –0.009 –0.11 4.313 0.136 0.027 49.6 1.89E�12

Mean Corpuscular

Haemoglobin

30.603 0.049 0.08 1.621 0.044 0.046 6.294 1.21E�02

CK MB Fraction 4.905 –0.218 –2.22 24.768 0.417 0.146 60.985 5.75E�15

Urinary Urea 246.5983 –0.2461 –0.1 11609.8408 24.6165 101.8849 0.00 1.00Eþ00

Triglyceride 1.3075 –0.0281 –2.15 0.5835 0.0006 0.0038 414.34 1.07E�90

Creatinine Kinase 108.225 –3.275 –1.51 2673.261 30.825 2.013 105.437 9.80E�25

Gamma GT 31.3238 –0.4881 –1.56 389.5020 0.54040 3.7376 0.00 1.00Eþ00

Alanine Aminotransferase 23.788 –0.488 –1.02 135.898 1.162 0.569 18.373 1.82E�05

Inorganic Phosphorus 1.042 –0.01 –0.46 0.021 0.0001 0.0016 0.275 6.00E�01

Uric Acid 300.875 2.163 0.36 3328.925 19.749 3.619 49.927 1.60E�12

Blood Urea Nitrogen 2.69 –0.004 –0.07 0.317 0.002 0.002 8.976 2.74E�03

Urinary Calcium 2.3050 –0.0056 –0.24 1.9686 0.0044 0.0250 0.00 1.00Eþ00

Urinary Sodium 96.3476 –0.14630000 –0.15 2629.6777 0.5562 8.3056 0.00 1.00Eþ00

Urinary Potassium 50.00150 –0.23490 –0.47 686.52110 0.60450 6.43210 0.00 1.00Eþ00
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concur, with corresponding estimates of þ3.92% and

�12.4% for insulin and eosinophil count, respectively.

Where our interpretation departs from the Jackson

et al. paper,19 and our analyses and findings provide an

important complement to theirs, is in regard to the impact

of heterogeneity between individuals in the rate of degrad-

ation of a given analyte. On the basis of their Figure 2

(‘Percentage of total variation in assay measurements ex-

plained by between-individual differences, plotted against

time of measurement’), Jackson et al.19 concluded that any

such heterogeneity would have only a limited impact. This

contributed to a globally reassuring conclusion that ‘any

instability in assay results up to 36 h is likely to be small in

comparison with between-individual differences and assay

error’, and that ‘a single assay measurement at any time be-

tween 0 and 36 h should give a representative value of the

analyte concentration at time zero for that individual’.

In contrast, our extended analysis suggests that the situ-

ation is more complex. This is of direct relevance both to

selecting SOPs for biosample management in designing

and constructing a biobank, and to designing and choosing

the sample size of future studies that may use that biobank

as a platform for investigating causal pathways involving

biomarkers and complex diseases. Thus, our analyses sug-

gest that for five of the biomarkers we studied (more than

1 in 10), the loss of biological signal consequent upon

delayed processing for even 24 h would require at least a

doubling of the sample size of a case-control study to inves-

tigate the impact of that analyte on disease risk. More

broadly, our results suggest that between-subject hetero-

geneity in the stability of a significant number of key analy-

tes can, over 24 h, lead to substantive degradation in the

biological information in biosamples and a requirement to

increase power by at least 25% to compensate (Table 3).

This interpretation implies that—if such analytes are to be

explored in a study based on a biobank—there is a need to

take proper account of the processing delay in interpreting

the measured concentrations of those analytes, and to ap-

propriately increase the sample size of the study to counter

this loss of information.

An important general message is that the management

rigor, including forward planning and comprehensive

documentation, that is fundamental to setting up and ex-

ploiting a large scale biobank,15 is desirable in its own

right. Well-thought-through and well-documented SOPs,

appropriate ancillary data (e.g. recording just how long an

individual biosample was delayed before entering defini-

tive frozen storage) and formal tests of quality assurance

are all critical if we are to know where problems may arise

and can respond appropriately to them. Furthermore,

given that all good biobanks do implement a rigorous re-

gime for data and sample management, the larger the size

Table 3. Sample size increase required to compensate for

power loss caused by bias arising from slope heterogeneity.

The analytes for which the models were fitted with two time

points are highlighted in light whereas those for which the

models were fitted with four time points are highlighted in

dark

Analyte Multiplicative increase

required to compensate

for power loss

Bicarbonate 2.32

Albumin 2.27

Total Protein 2.21

Basophils 2.19

Magnesium 2.15

Mean Corpuscular Haemoglobin

Concentration

1.83

Haemoglobin 1.26

Packed Cell Volume 1.25

Chloride 1.23

Red Blood Cells 1.21

Platelet Count 1.18

Eosinophils 1.13

Bilirubin 1.13

Potassium 1.11

Monocytes 1.09

Lymphocytes 1.08

Haemoglobin A1C 1.06

White Cell Count 1.04

Aspartate Aminotransferase 1.04

Amylase 1.04

Haemoglobin A1CX 1.03

Alkaline Phosphatase 1.03

Neutrophils 1.03

Mean Corpuscular Haemoglobin 1.03

Sodium 1.02

Mean Cell Volume 1.02

Glucose (F Oxalate) 1.02

Glucose 1.02

Calcium 1.01

Insulin 1.01

Cholesterol 1.01

Fibrinogen 1.01

Creatinine 1.01

Alanine Aminotransferase 1.01

CK MB Fraction 1.01

Creatinine Kinase 1.01

Inorganic Phosphorus 1.01

High-Density Lipid 1.00

Triglyceride 1.00

Blood Urinary Nitrogen 1.00

Uric Acid 1.00

Urinary Urea 1.00

Urinary Calcium 1.00

Urinary Potassium 1.00

Urinary Sodium 1.00

Gamma GT 1.00
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of any given biobank the better, provided this does not im-

pinge on biosample quality. It is often impossible to avoid

combining scarce data from several studies together in

order to answer an important scientific question,3 but there

is an undoubted benefit in minimizing the number of dif-

ferent studies that must be combined—because this limits

the potential heterogeneity. Ultimately, one can do no

more than aim to work where possible with larger, well

designed biobanks/studies, and to use whatever ancillary

information may be available from each to try to control

for whatever heterogeneity may be unavoidable.

Large-scale biobanks—particularly those with a na-

tional or even supranational design —must carefully think

through their SOPs for obtaining, transporting and pro-

cessing biosamples. Given that some analytes do appear to

be particularly sensitive to a prolonged needle-freezer time,

and given that in some cases this is due to heterogeneity in

degradation slope, this delay should wherever possible be

minimized. However, immediate biosample processing at

point of collection can be very expensive; some delay is

therefore inevitable and an undesirably long delay may

sometimes be unavoidable. It is therefore universally desir-

able to record that delay, to provide those ancillary data

with the relevant biosamples and/or analyte concentration

estimates when they are released to researchers and to

ensure that the time course of pre-processing-related

degradation of commonly studied analytes is properly

understood.

Our study complements the findings of Jackson et al. in

identifying a number of analytes where the rate of degrad-

ation is unusually high. Particular care should be taken

in analysing data pertaining to such analytes if cases and

controls have been sourced from different studies with

different SOPs or if the delay times vary widely within an

individual study. In some circumstances, where one of

these analytes happens to be the primary focus of scientific

attention, and there is a desire to avoid having to adjust for

differing delay times, consideration maybe ought to be

given to delaying processing of all samples to a common,

achievable, goal. However, our analysis suggests that such

a plan may be counterproductive if the analyte happens to

be one of those where the heterogeneity of degradation

varies so much between samples that any delay can lead to

loss of power.

Finally, if an analyte of interest is known to be particu-

larly sensitive to processing delay—either because of

rapid degradation or because of marked heterogeneity of

degradation—full account must be taken in designing sub-

studies. Rather than trying to produce exhaustive lists of

power adjustments for different delay times for a wide

range of analytes, we are currently extending the

ESPRESSO power calculator to take data from studies

such as the biobank pre-pilot study analysed in this paper,

and to convert these data into sample size inflation figures

for different settings and analytes. Given that there are

now many more analytes that can reasonably be analysed

in a high throughput manner than there were when the UK

Biobank data that we analysed were collected, there is

a clear need to undertake equivalent studies for other

analytes and in other settings. For robustness, these studies

should be based on measurements at four time points for

all analytes rather than just two for some.

Although the data used in this project were generated

in a pre-pilot phase of UK Biobank, the nature of the

analysis is such that its conclusions should be generaliz-

able to other biobanks and large-scale biosample collec-

tions. Furthermore, although UK Biobank has now

completed its primary sample collection and its standard

operating protocols for that collection are therefore im-

mutable, the analysis we describe will be of value to UK

Biobank in future sample collection sweeps, and to poten-

tial users designing sub-studies to explore the effect of

biomarkers.
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