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consortium

MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, UK Centre for Tobacco and

Alcohol Research Studies, School of Experimental Psychology, University of Bristol, Bristol, UK

*Corresponding author. School of Experimental Psychology, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK.

E-mail: amy.taylor@bristol.ac.uk

The evidence for a causal association between tobacco con-

sumption and mortality presented in the Mendelian ran-

domization (MR) study by Rode and colleagues1 is not

unexpected. Nevertheless, it is the first time that the smok-

ing-mortality relationship has been demonstrated using

these causal analysis methods, although studies of
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monozygotic twins discordant for smoking have arrived at

similar conclusions.2 This is an important proof of prin-

ciple of the MR technique for investigating the causal ef-

fects of smoking. However, this finding also raises a

potentially important methodological issue for future MR

studies using this variant.

The genetic variant used in this analysis, rs1051730, is

a single nucleotide polymorphism (SNP) in perfect correl-

ation with a variant in the CHRNA5 gene (rs16969968)

that leads to an amino acid change (D398N) in the nico-

tinic receptor alpha-5 subunit protein. This is by far the

strongest genetic determinant of smoking behaviour identi-

fied in genome-wide association studies to date.3 This vari-

ant is robustly associated with smoking heaviness among

smokers and shows evidence in some populations of associ-

ations with smoking cessation.4,5 However, associations

with smoking initiation (i.e. being an ever rather than a

never smoker) have not been clearly established.6

The lack of evidence for an association of this vari-

ant with ever smoking has been a useful feature of the
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Figure 1. Association between rs16969968-rs1051730 and smoking initiation in the CARTA consortium and the Copenhagen General Population

Study.
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smoking MR analyses conducted to date. As the variant

only associates with smoking heaviness among smokers,

never smokers can be used as a control group to test the as-

sumption of no pleiotropy. The lack of association be-

tween rs1051730 and mortality in never smokers in the

analyses by Rode and colleagues is good evidence that

these effects are due to tobacco consumption, and not to a

pleiotropic effect of the gene.1

However, this in turn raises an interesting possibility.

We would expect that higher rates of mortality among

smokers carrying the smoking-increasing allele of this vari-

ant1 would lead to an association between genotype and

likelihood of being an ever smoker in older age. As smok-

ers with the smoking-increasing allele are less likely to

survive into old age, the smoking increasing allele will in

turn become less prevalent among smokers as the age of

the population increases. Some support for this was found

by Rode and colleagues in the Copenhagen General

Population Study, where there was some evidence that the

smoking increasing allele of rs1051730 was weakly associ-

ated with lower age in ever smokers.1 Furthermore, a nega-

tive association between the smoking-increasing allele and

being an ever smoker, could potentially mask associations

between the variant and smoking initiation in samples with

a wide age range.

It is not currently clear to what extent this attrition by

genotype impacts on associations with ever smoking.

Figure 1 shows data from the Copenhagen General

Population Study combined with data from the consortium

for Causal Analysis Research in Tobacco and Alcohol

(CARTA: http://www.bris.ac.uk/expsych/research/brain/

targ/research/collaborations/carta), a collaboration of over

30 studies established to conduct MR analyses of the

health and socioeconomic effects of smoking. We stratified

analyses within each study by age (<50 years, �50 years),

based on data suggesting that the effects of smoking on

mortality are strongest after the age of 50 years.7 There is

suggestive evidence that the smoking increasing allele may

be positively associated with smoking initiation (i.e. ever

vs never) in the under-50 age group, but negatively associ-

ated with smoking initiation in the 50 and over age group

(P-value for heterogeneity between age groups¼ 0.001). It

Overall  (I-squared = 0.0%, p = 0.747)
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Figure 2. Association between rs16969968-rs1051730 and smoking cessation in the CARTA consortium and the Copenhagen General Population

Study. *Median age is median age of total sample (including never smokers).
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is important to note that these data are not conclusive, and

more in-depth analyses of this possibility are required. For

example, the crude age stratification we have employed

may not be the most appropriate. Family studies may also

be useful for investigating selection effects due to mortal-

ity, as genotypes of missing parents may be inferred from

offspring genotypes. Within the CARTA and Copenhagen

General Population Study samples, there is also clear evi-

dence for an effect of rs16969968-rs1051730 genotype on

smoking cessation, with the minor allele associated with

an 9% increase in the odds of being a current rather than a

former smoker [95% confidence interval (CI): 7% to 11%]

(see Figure 2).

Associations between genotype and smoking status

have potentially important implications for future MR

studies of the causal effects of smoking. This is because

stratification on a common effect of two variables can in-

duce a phenomenon known as collider bias.8 If smoking

status is a common effect of both genotype and either the

outcome of interest or confounders of the association be-

tween smoking status and the outcome of interest, this can

lead to a statistical association between genotype and out-

come measure in the absence of a true causal effect.9

Researchers will therefore need to consider associations be-

tween rs16969968-rs1051730 and smoking initiation and

cessation when conducting MR analyses. The association

between this variant and smoking cessation may be less

problematic if we are interested in the difference between

ever and never smokers. One approach to overcome the

problem of collider bias, which has been used in MR ana-

lyses of alcohol, is to stratify analyses by an exogenous

variable, sex, rather than by drinking status.10 This can

only be done in samples where prevalence of alcohol con-

sumption is strongly patterned by sex (e.g. in East Asian

populations where alcohol consumption is very low among

females11). This may not be possible for smoking MR due

to the low allele frequencies of rs16969968-rs1051730 in

many non-European populations.

MR is a potentially very useful tool for unravelling the

causal effects of tobacco use and the pathways through

which these operate; there are still many health outcomes

which are strongly associated with smoking, but for which

causal evidence is lacking. It is important that future MR

studies of tobacco use take into account issues such as col-

lider bias and other selection biases related to this variant,

such as misreporting of smoking status, to prevent the re-

introduction of confounding into analyses designed to min-

imize this problem.

Acknowledgements
We are grateful to the CARTA studies for providing data for

these analyses. Acknowledgements for each of the CARTA

studies can be found at [http://www.bris.ac.uk/expsych/research/

brain/targ/research/collaborations/carta]. We would also like to

thank Rode and colleagues for providing genotype counts from the

Copenhagen General Population Study to contribute to this

commentary.

Funding
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