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Abstract

Recent advances in the understanding of the complex biology of non-small cell lung carcinoma

(NSCLC), particularly activation of oncogenes by mutation, translocation and amplification, have

provided new treatment targets for this disease, and allowed the identification of subsets of

NSCLC tumors, mostly with adenocarcinoma histology, having unique molecular profiles that can

predict response to targeted therapy. The identification of a specific genetic and molecular

targetable abnormalities using tumor tissue and cytology specimens followed by the

administration of a specific inhibitor to the target, are the basis of personalized lung cancer

treatment. In this new paradigm, the role of a precise pathology diagnosis of lung cancer and the

proper handling of tissue and cytology samples for molecular testing is becoming increasingly

important. These changes have posed multiple new challenges for pathologists to adequately

integrate routine histopathology analysis and molecular testing into the clinical pathology practice

for tumor diagnosis and subsequent selection of the most appropriate therapy.
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Introduction

Lung cancer is the leading cause of deaths in the United States and worldwide.1 The high

mortality associated with lung cancer is in part due to late diagnosis after regional or distant

spread of the disease.2 From biological and clinical perspectives, lung cancer is a

heterogeneous disease with multiple histological subtypes, being the most frequent non-
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small cell lung carcinoma (NSCLC). Traditionally, NSCLC has been used to designate

tumors that exhibit histological and cytological features different than small cell carcinoma

(SCLC). Most NSCLCs can be grouped into three main categories: squamous cell

carcinoma, adenocarcinoma and large cell carcinoma; however, there are other less

frequently diagnosed histologic types.3 Nowadays, due to the utilization of new therapeutic

strategies and molecular diagnostic testing in NSCLC, particularly adenocarcinomas,4 it is

imperative that pathologists are more specific in the diagnosis of subtypes of NSCLC and

they make sure that there is sufficient tissue or cytology sample for molecular testing.

In this review, we described the most frequently described targetable genetic abnormalities

in NSCLC and discuss the current status and challenges of molecular testing in this disease,

including the implementation of new molecular methodologies to better predict the outcome

of the disease and select the appropriate therapy.

Clinically relevant molecular abnormalities of NSCLC

During the last decade, multiple molecular abnormalities affecting oncogenes and tumor

suppressor genes have been described in NSCLC.56 Of those, several gene mutations,

amplifications and rearrangements have been identified as potential molecular targets. Here

we review the characteristics of key cancer-related genes that have been emerged as

potential targets in NSCLC using either tyrosine kinase inhibitors (TKIs) or monoclonal

antibodies.

EGFR (epidermal growth factor receptor gene)

Mutations of EGFR in lung cancer are mostly limited to the first four exons of the tyrosine

kinase domain (exons 18–21). The most frequent mutations are in-frame deletions in exon

19 (44% of all mutations) and missense mutations in exon 21 (41% of all mutations). These

mutations are frequently diagnosed in lung adenocarcinomas (~20%–48%, vs. other NSCLC

histologies ~2%), and strongly correlate with never-smoking status (50–60%), female

gender (40–60%), and East Asian ethnicity (30–50%).7 There are some reports suggesting

that EGFR mutations are encountered most frequently in lung adenocarcinomas with non-

mucinous differentiation and with a lepidic or papillary predominant pattern.89 Activating

EGFR mutations are biologically important because most of them have enhanced tyrosine

kinase activity in response to epidermal growth factor stimulation.210 EGFR mutations are

diagnosed mostly using gene sequencing methodologies, although quantitative (q)PCR-

based assays are also available. (Figure 1) There are some antibodies that identify mutant

EGFR proteins, but they have not shown to be clinically useful.

The presence these EGFR mutations are clinically relevant because they have been

associated with sensitivity to small molecule TKIs (gefitinib and erlotinib).11–13

Unfortunately, some patients with activating EGFR mutations that respond initially EGFR

TKIs subsequently relapse.14 This resistance appears to occur through a range of different

mechanisms, including most frequently, a second EGFR mutation (50%) in exon 20 (T790M

and D761Y),15 as well as other molecular mechanisms that include amplification of the MET

oncogene (21%), 161718 mutations of PI3KCA, 192021 22 and epithelial-to mesenchymal

transition (EMT) phenomenon.
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ALK (anaplastic lymphoma kinase gene)

In lung cancer, aberrant ALK expression has been identified in a subset of NSCLC, mostly

adenocarcinomas. This abnormality consists in the formation of a fusion transcript with cell

transforming activity and that is the product of a translocation of EML4 (echinoderm

microtubule associated protein like-4 gene) gene located at chromosome 2p21 and the ALK

gene located at 2p23.23 The encoded fusion protein with increased catalytic activity contains

the N-terminal part of EML4 and the intracellular catalytic domain of ALK.23 EML4-ALK

rearrangements have multiple distinct isoforms with demonstrated transforming activity and

that can be detected by multiplex reverse transcription-PCR methodologies.2425 The EML4-

ALK fusion positive tumors are detected in 2–7% of NSCLC,2627 mostly adenocarcinomas

arising usually in young never- or light-smokers patients.28293031 Tumors with EML4-ALK

translocation usually lack EGFR and KRAS mutations. 323334 ALK rearrangement has been

mostly associated with an acinar pattern including a cribriform morphology and with signet

ring cell features.35

It has been demonstrated that crizotinib, an oral inhibitor of the ALK and MET tyrosine

kinases, showed that this drug is effective against advanced NSCLC carrying activated

EML4-ALK translocation assessed by a fluorescence in situ hybridization (FISH) utilizing

an ALK “break-apart” probe.36 The cut-off criteria for positive ALK “break-apart” FISH

test is the presence of >15% tumor cells having split ALK 5′ and 3′ probe signals, or had

isolated 3′ signals.30 (Figure 1) The overall partial and complete tumor response rate

observed in patients with NSCLC tumors with positive FISH test and treated with crizotinib

was shown to be of 57%, and the rate of stable disease was 33%.26 It has been shown that

patients with NSCLC EML4-ALK rearrangement treated with ALK inhibitors developed

resistance.37 The genetic alterations associated with documented acquired resistance to

crizotinib are ALK amplification or secondary mutations within the kinase domain of gene

(L1196M, C1156Y and F1174L).38

ROS1 (c-ros 1 gene)

This gene encodes for a tyrosine-kinase receptor of the insulin receptor family.39 Gene

rearrangements affecting ROS1 with the development of oncogenic fusion protein have been

identified in approximately 1% of NSCLC, and more frequently in younger, nonsmoking

patients with adenocarcinoma.4041 A phase I clinical trial has demonstrated that crizotinib

has dramatic antitumor activity in patients with ROS1-rearranged NSCLC, with a high

objective response rate of 57.1%.42 Therefore, the identification of ROS1 fusion variants is

important for personalized therapy in lung cancer, particularly in patients adenocarcinoma

histology.43444041 Up to now, a couple of fusion gene partners of ROS1 have been identified

in lung tumors.4546

RET

The tyrosine kinase receptor RET is involved in cell proliferation, migration and

differentiation.4748 RET mutations are known to incline to multiple endocrine neoplasia type

2 and sporadic medullary thyroid cancer.48 A novel fusion oncogene between RET and

KIF5B (kinesin family member 5B gene) was reported recently in lung cancer affecting

approximately 1% of patients with lung adenocarcinoma, mostly young never smokers.4950
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KRAS (Kirsten rat sarcoma viral oncogene homolog gene) and BRAF (v-raf murine
sarcoma viral oncogene homolog B gene)

KRAS is RAS family gene most frequently activated in lung cancer by point mutations

detected in approximately 20% of lung adenocarcinomas, and more frequently found in

patients with smoking history.51 Most KRAS mutations are single amino acid substitutions in

codon 12,13 and 61.252 Ras signaling pathways are also activated in tumors in which

growth-factor-receptor tyrosine kinases have been overexpressed.5354 Of great interest,

EGFR and KRAS mutations in lung adenocarcinoma are mutually exclusive, suggesting

different pathways to lung cancer in smokers and never smokers. KRAS mutations a have

been associated to low response rates to EGFR-TKI therapies.55 RAS is considered a not

targetable molecule, therefore recent studies have evaluated the activation of the Ras

downstream pathway, RAS/RAF/MEK, as a potential target for therapy in lung cancer.5657

BRAF is a serine/threonine kinase that lies downstream of RAS in the RAS-RAF-MEK-

ERK-MAP pathway.58 The V600E BRAF mutation is frequently identified in melanomas.58

BRAF mutations occur in 2 to 4% of with lung adenocarcinoma.58596061 Most BRAF

mutations detected in lung cancer are non-V600E mutations affecting exons 11 and 15, and

they are mutually exclusive to EGFR and KRAS mutations.626364

HER2 (human epidermal growth factor receptor 2 gene)

The incidence of HER2 mutations ranges from 1 to 6 % of lung adenocarcinomas. In lung

cancer, HER2 kinase domain mutations (in-frame insertion in exon 20) and EGFR kinase

domain mutations have similar associations with female gender, non-smoker and Asian

ethnicity.65666768 HER2 amplification has been reported in 4%–5% of NSCLCs and is also

more frequent in the adenocarcinoma histology (8%).6970

MET

This gene encodes for a receptor tyrosine kinase that activates multiple signaling pathways

involved in cell proliferation, survival motility, and invasion.71 MET amplification occurs in

up to 7 % of NSCLC7216, and has been associated to resistance to targeted therapy in

patients whose tumors harbor EGFR mutation treated with EGFR TKIs. 161718

PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha gene)

Phosphatidylinocitol 3-kinases (PI3Ks) are family of lipid kinase that play an important role

in regulating cell growth, proliferation and survival.27374 PIK3CA mutations are found in

approximately 1 to 3% of NSCLCs.19202122 PIK3CA copy number gain (>3 copies per cell)

is a common abnormality in NSCLC, predominantly in squamous cell carcinomas (33%–35

%) compared to adenocarcinomas (2%–6%).2175 PI3K, and its downstream effectors, PTEN,

mTOR and AKT, are potential therapeutic targets for NSCLC therapy and are evaluated in

clinical trials for lung cancer.76 PTEN is a lipid phosphatase that inhibits PI3K-dependent

signaling with tumor suppressor gene activity.77 PTEN mutations are common in squamous

cell carcinomas of the lung.6787980 PTEN inactivation has been related decreasing EGFR

TKIs sensitivity of EGFR-mutant lung tumors. 67
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FGFR1 (fibroblast growth factor receptor type 1 gene)

This gene encodes a cell surface tyrosine kinase receptor of the FGFR tyrosine kinase family

that includes four kinases (FGFR1 to 4). FGFRs play a critical role in cell proliferation and

survival.7481 It has been reported that FGFR1 is somatically amplified in ~20% of squamous

cell carcinomas and in 1–3% of adenocarcinomas of the lung.828384 Currently, the preferred

method to assess FGFR1 copy number is FISH, but the definitions of copy number gain and

gene amplification still need to be determined.

DDR2 (discoidin domain receptor 2 gene)

This receptor tyrosine kinase has been reported to be mutated in ~4% of squamous cell

carcinoma of the lung.8586 Mutations were found both in the kinase domain and in other

regions of the protein sequence without hot-spots, which makes the analysis of mutations of

this gene challenging. DDR2-mutant tumors have been suggested to respond to dasatinib

therapy in patients with squamous cell carcinoma of the lung.

Molecular testing of lung cancer

The recent advances in NSCLC targeted therapy require the analysis of a panel of molecular

abnormalities in tumor specimens, including gene mutations, amplifications and

rearrangements, by applying different methodologies to tumor tissue specimens.875

However, the diagnostic biopsy or cytology specimens available for molecular testing in

advanced metastatic lung tumors are likely to be small specimens, including core needle

biopsies (CNB) and/or fine needle aspiration (FNA), which may significantly limit

molecular testing with currently available methodologies and technologies. It is known that

both formalin fixation and paraffin embedding compromise the integrity of proteins and

nuclei acids for molecular testing, particularly when non-buffered formalin is utilized and

the specimens are fixed in formalin for greater than 24 hours. The cytology specimens are

usually fixed in alcohol which is optimal for preservation of DNA. When the cytology

specimen has abundant material, the sample can be fixed in formalin and processed as a cell

block to obtain histology sections; both smears and cell block sections with abundant

malignant cells can be successfully used for molecular testing in lung cancer. Few studies

showed that the sensitivity of cell block specimens for molecular testing in lung cancer

showing that, although slightly lower, are compatible to smears and ThinPreps.88899091 92

Currently, the surgical pathologist plays a crucial role on determining the appropriate

therapy for patients with NSCLC. The handling of the biopsy and cytology specimens for

pathological diagnosis and subsequent molecular testing requires thoughtful prioritization of

the utilization of the sample to prevent the loss of tissue in less important analysis that the

molecular testing requires for selection of therapy. (Figure 2) Also, the pathologist should

determine if the amount of malignant cells available in the specimen is adequate for DNA

extraction and also for histology section-based molecular tests (e.g., fluorescent in situ

hybridization and immunohistochemistry).

On the other hand, our growing understanding of cancer biology of NSCLC, particularly the

molecular evolution of tumors during local progression and metastasis, and the identification

of molecular abnormalities developed after resistance to targeted therapies, emphasizes the
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importance of characterize the molecular abnormalities of the disease at every stage of its

evolution. For molecular testing of advanced metastatic NSCLC is important to sample and

analyze the tumors’ specimen at each time point of clinical decision-making.9376 In lung

cancer, the National Comprehensive Cancer Network (NCCN), the American Society of

Clinical Oncology (ASCO) and the International Association for the Study of Lung Cancer

(IASLC)/College of American Pathologists (CAP)/Association of Molecular Pathology

(AMP) recommended to use testing for EGFR mutations and ALK fusions to guide patient

selection for appropriate TKI therapy in all patients with advanced stage adenocarcinoma,

regardless of sex, race, smoking history, or other clinical risk factors.949596

New techniques for molecular testing

The most used technique for DNA mutation analysis is direct sequencing previous PCR

amplification of extracted DNA. There are several of these methods available for mutation

analysis of DNA extracted from FFPE tumor tissue specimens, including lung cancer.

Sanger sequencing is one of the preferred sequencing methods to detect mutations of

clinically relevant genes, such as the EGFR hot-spot mutations for selection of EGFR TKI

therapy. It can detect essentially all base substitutions, small insertions and deletions.

However, the main disadvantage is the relatively low sensitivity of mutant alleles, estimated

to be ~20% of mutant vs. wild-type alleles,97 and most importantly, its inability to examine

multiple gene hot-spots simultaneously. The need for analysis of multiple genetic changes in

small, clinically relevant biopsy and cytology specimens, has prompted to the development

of multiplexed approaches for molecular testing, particularly for gene mutation analysis.

Multiplex genotyping methodologies

Multiplex PCR is defined as the simultaneous amplification of two or more DNA or cDNA

targets in one reaction.98 There are two major highly sensitive multiplex genotyping

methodologies widely used for mutation analysis in lung cancer, the primer extension

(SNaPshot®) assay (Life Technologies, Grans Island, NY) and the matrix-assisted laser

desorption ionization time-off light (MALDI-TOF) mass spectrometry (Sequenom®, San

Diego, CA). SNaPshot involves multiplexed PCRs, multiplexed single-base primer

extension, and capillary electrophoresis. 99,100 Sequenom® involves multiplexed PCR and a

mass spectrometry detection system. Both systems are able to detect multiple hot-spot

mutation simultaneously using small amounts of DNA obtained from small FFPE biopsy

specimens.101102 These multiplex genotyping platforms are not designed for discovery

purposes.

Next generation sequencing (NGS)

This technology has been available since 2004.103 NGS has been applied to studies of DNA

and RNA to examine the whole genome, exome, transcriptome and epigenome, and is

rapidly changing the paradigm of lung cancer research and patient care.103 Currently,

commercially available NGS platforms include, among others, Illumina® HiSeq 2500

(Illumina Inc, San Diego CA), Personal Genome Machine (PGM™) and Ion Torrent™

systems (Life Technologies Grand Island, NY).6 NGS technologies have been rapidly

applied to clinical setting almost all tumor types. NGS can detect mutations, chromosomal

Fujimoto and Wistuba Page 6

Semin Diagn Pathol. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



rearrangements and copy number alterations at high resolution.510476 Currently, clinical

application of NGS is hampered by the large amount of data generated and the resultant and

computational bioinformatics challenges needed for secondary verification, and the

relatively high cost.76

Future directions

In lung cancer, molecular testing of tumors is usually performed using samples obtained for

histological diagnostic intent and often using residual tissue specimens obtained from

surgical resection procedures for treatment. However, based on our growing understanding

of the molecular events associated to tumor progression and the mechanisms of resistance to

targeted therapy, it is becoming clearer that molecular analysis should be applied directly to

clinically relevant tumor specimens. This is important to consider in recurrences of

surgically resected stages I–III tumors or refractory advanced metastatic chemotherapy-

treated tumors obtained at treatment or diagnosis of the disease, respectively. These “old”

samples may not reflect the current state of biomarkers after tumor progression or treatment

with chemotherapy. Therefore, to ensure the most accurate assessment of a lung cancer

patient’s disease and treatment responsiveness, their tumors should be molecularly

characterized at multiple time points during the clinical decision-making process.

On the other hand, there are increasing concerns that intra-tumor heterogeneity of lung

cancer can lead to underestimation of tumor genomics landscape portrayed from a single

tumor biopsy and may present major challenges to personalized-treatment and biomarker

development.105106 In lung adenocarcinoma, mixed populations of EGFR-mutant and wild-

type cells have been reported and associated to reduced response to EGFR TKI.107 Recently,

it has been demonstrated in renal cell carcinoma that 73–75% of the driver genetic

aberrations detected using NGS were sub-clonal, confounding the estimation of driver

mutation prevalence. The presence of sub-clonal driver events in tumors, including lung,

may provide an explanation for the inevitable acquisition of resistance to targeted

therapeutics in advanced disease.108105

Abbreviations

ALK anaplastic lymphoma kinase gene

AMP Association of Molecular Pathology

ASCO American Society of Clinical Oncology

BRAF v-raf murine sarcoma viral oncogene homolog B gene

CAP College of American Pathologists

CNB core needle biopsies

DDR2 discoidin domain receptor 2 gene

EGFR epidermal growth factor receptor gene

FFPE formalin-fixed and paraffin-embedded
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FGFR1 fibroblast growth factor receptor type 1gene

FNA fine needle aspirations

HER2 human epidermal growth factor receptor 2 gene

IASLC International Association for the Study of Lung Cancer

IHC immunohistochemistry

KIF5B kinesin family member 5B gene

KRAS Kirsten rat sarcoma viral oncogene homolog

MALDI-TOF MS matrix assisted laser desorption/ionization-time of flight mass

spectrometry

NCCN National Comprehensive Cancer Network

NGS next-generation sequencing

NSCLC non-small cell lung carcinoma

PCR polymerase chain reaction

PI3K phosphatidylinocitol 3-kinase gene

PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit

alpha, gene

PTEN phosphatase and tensin homolog gene

qRT-PCR quantitative reverse transcription polymerase chain reaction

ROS1 c-ros 1 gene

SCLC small cell lung carcinoma

TKI tyrosine kinase inhibitor

VIPR1 Vasoactive Intestinal Peptide Receptor 1 gene

WHO World Health Organization
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Figure 1. Histology section-based molecular tests for NSCLC
A. Immunohistochemistry panel: Thyroid transcription factor (TTF-1) is a marker of

adenocarcinoma, and p40 (p63) is a marler of squamous cell carcinoma. B. EGFR mutation

analysis. C. EML4-ALK fusion fluorescent in situ hybridyzation (FISH) analysis.
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Figure 2. Histology subtyping based on treatment algorithm for lung cancer
The utilization of multiplex platforms to test mutations in tumor samples allows testing all

NSCLC histologies for panel of mutations and other gene abnormalities regardless of their

histology. SCLC, small cell lung cancer; NSCLC, non-small cell lung cancer; NOS, not

otherwise specified
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