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Summary

In epidemiologic studies of time to an event, mean lifetime is often of direct interest. We propose
methods to estimate group- (e.g., treatment-) specific differences in restricted mean lifetime for
studies where treatment is not randomized and lifetimes are subject to both dependent and
independent censoring. The proposed methods may be viewed as a hybrid of two general
approaches to accounting for confounders. Specifically, treatment-specific proportional hazards
models are employed to account for baseline covariates, while inverse probability of censoring
weighting is used to accommaodate time-dependent predictors of censoring. The average causal
effect is then obtained by averaging over differences in fitted values based on the proportional
hazards models. Large-sample properties of the proposed estimators are derived and simulation
studies are conducted to assess their finite-sample applicability. We apply the proposed methods
to liver wait list mortality data from the Scientific Registry of Transplant Recipients.
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1. Introduction

Often in clinical and epidemiologic studies, groups of subjects are compared with respect to
their survival times. Since any study is of finite duration, the time until the event of interest
may be censored. Typically in observational studies, the factor of interest is not randomized
(e.g., method of treatment) and may not even be assigned (e.g., race, gender, diagnosis),
necessitating some form of covariate adjustment, such as that obtained through regression
modeling. Since its development, the proportional hazards model (Cox, 1972) has
dominated the biomedical literature as the method of choice for the regression modeling of
censored data.

The popularity of the Cox model among practitioners and, by now, clinical investigators
makes it an attractive means of comparing groups in observational studies. In Cox
regression, the impact of each covariate is usually summarized by its effect on the hazard
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function. However, when comparing groups of subjects, investigators are often more
interested in differences in mean lifetime than ratios of hazard functions. The survival time
distribution may be heavily right skewed. Moreover, for semi- or non-parametric modeling,
the mean is not well estimated; e.g., the estimated survival function need not drop td
alternative is the restricted mean lifetime; i.e., for fixed L > O, if T denotes survival time,
then the restricted mean lifetime is defined as E{min(T, L)}. Restricted mean lifetime can

also be expressed as [ gP(T>t)dt, the area under the survival curve over (0, L], a quantity
easily understood by clinical investigators. For example, if L =5 years, one could interpret
E{min(T, L)} as the average number of years lived out of the next 5. Restricted mean
lifetime is typically of greater interest to clinicians than the usual Cox metric, the hazard
ratio. In fact, in certain settings E{min(T, L)} may be of more interest than E(T) itself. For
example, in the context of pediatric liver transplantation, it is almost always that case that a
child receiving a liver transplant will need a second liver transplant in the next 10 years.
Hence, using T to represent post-transplant survival time, survival after the first 10 years of
post-transplant follow-up could not be realistically assumed to be due to the initial liver
transplant; making E{min(T, 10)} of greater relevance than E(T).

This article is motivated by the desire to compare wait list survival among end-stage liver
disease (ESLD) patients listed for liver transplantation. A frequent cause of chronic liver
disease is Hepatitis C virus (HCV), the primary diagnosis for approximately 40% of ESLD
cases. Liver transplantation is the preferred treatment for ESLD, but there are far more
patients awaiting transplantation than there are available donor organs. The principle
underlying the current system for allocating deceased-donor livers in the U.S. is that priority
for transplantation should be based on a patients's death rate in the absence of liver
transplantation. Specifically, the patients most likely to die on the wait list should get top
priority for transplantation. Currently, patients on the liver transplant wait list are sequenced
in decreasing order of Model of End Stage Liver Disease (MELD) score (Weisner et al,
2001). The MELD score is a function of three laboratory measures indicative of liver
function, but does not consider underlying liver disease. It is suspected that HCV+ patients
have lower wait list survival than HCV- patients. However, few studies have directly
compared mean wait list survival time by diagnosis group. To our knowledge, no published
analysis has compared mean wait list survival times (i.e., survival, in the absence of liver
transplantation) between HCV+ and HCV- patients. Therefore, our objective is to estimate
the difference between wait list lifetime between HCV+ and HCV- patients, adjusting for
baseline (i.e., time 0) characteristics (e.g., age, gender, race, MELD score).

Comparison of liver wait list survival times is complicated by the potential for dependent
censoring. Specifically, death on the liver wait list is censored by the receipt of a liver
transplant, and such censoring is not independent of the survival time that would have been
observed on the wait list, even conditional on the baseline adjustment covariates. A given
patient's MELD score typically changes over time. The updating of MELD scores is
mandatory, meaning that a longitudinal sequence of MELD scores is observed for each
patient. As discussed by several previous authors in the context of causal inference (e.g.,
Robins, 2000; Hernan et al 2000, 2001), a comparison of survival time by HCV status
should not adjust for internal time-dependent covariates, as defined by Kalbfleisch and
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Prentice (2002). The fact that time-dependent MELD strongly affects both wait list mortality
and censoring (liver transplantation) means that lack of its adjustment (i.e., by adjusting for
baseline values only) will result in the dependent censoring of wait list death time via liver
transplantation.

Various authors have proposed methods for comparing restricted mean survival time in the
context of Cox regression (e.g., Karrison, 1987; Zucker, 1998; Chen and Tsiatis, 2001). For
example, the method of Chen and Tsiatis (2001) proposes fitting separate group-specific
Cox models, then averaging over the fitted restricted mean lifetimes, with the averaging
being with respect to the covariate distribution of the entire study sample. These approaches
have several nice properties. First, it is not required that treatment-specific hazards be
proportional. Second, an ‘overall’ treatment effect estimator is obtained, without assuming
that treatment-specific adjustment covariate effects are equal. Third, the target treatment
effect is interpretable as an average over a well-defined covariate distribution. However,
each of the afore-listed methods assumes that censoring conditionally independent of the
survival time, conditional on baseline adjustment covariates.

We propose methods for estimating group-specific differences in restricted mean lifetime,
for the setting in which survival time is dependently censored. The structure of the hazard
model we assume is very flexible, allowing for group-specific baseline hazards and
regression coefficients. In its most general form, this amounts to fitting separate models for
each treatment group. The dependent censoring is overcome through the well-established
inverse probability of censoring weighting (IPCW); see Robins and Rotnitzky (1992),
Robins (1993); Robins and Finkelstein (2000).

The remainder of this article is organized as follows. In Section 2 we set up the notation and
formalize the problem of interest. The proposed methods are described in Section 3.
Asymptotic properties are listed in Section 4, with corresponding proofs given in the Web
Appendix. In Section 5, a simulation study is presented. The proposed methods are applied
to national liver wait list data in Section 6. The article concludes with a discussion in Section
7.

2. Notation and Data Structure

Suppose we are interested in comparing two groups (A = 0, 1), which are not randomized, in
terms of restricted mean lifetime up to time L. We denote the survival time by T. As in
almost all studies involving time to an event, the event time T may be censored due to
various reasons. Two types of censoring are considered in the following development. We
let C4 denote censoring which is independent conditional on baseline covariates, Z, and
group indicator, A; e.g., censoring due to the end of study. We let C, denote dependent
censoring; i.e., censoring which is not independent of T given (Z, A). For example, in the
context of the data which motivated our work, a patient's wait-list mortality is censored if
and when the patient receives a liver transplant and the transplant hazard and wait list
mortality hazards may be correlated, even conditional on (Z, A), through mutual dependence
on time-dependent covariates (e.g., MELD score). In notation, we assume that C1-L-T|Z, A,
where - denotes “independent of ”; while C, is not assumed to satisfy this condition. In
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practice, one observes the minimum of the survival time and time to censoring. We therefore
let U=T A Cy A C, represent the observation time and define indicators for observing the
failure time and dependent censoring times: A; = (T<C; A Cy)and Ay = I(C2, < T A Cy),
respectively. We let XT(t) represent the time-dependent covariate at time t. Note that XT(0)
would include the elements of Z and potentially other factors predictive of C,. We let X(f) =
{XT(u); u € [0, t)} denote the history of all baseline and time-dependent covariates up to just
before time t. The observed data may be summarized as O;j = {A;, Ui, Aqi, i, Zj, Xi(Ui)},
with the O; assumed to be independent and identically distributed (iid) across i =1,..., n.
Note that the set of observed variates is redundant, in the sense that X(f) includes all baseline
covariates Z; however, this representation is convenient for presentation purposes.

To define the parameter of interest, we follow the potential outcome framework studied by
Rubin (1974 Rubin (1978) and adopted by Chen and Tsiatis (2001). Let TO denote the
potential (or counterfactual) lifetime for a randomly selected subject from the population if,
possibly contrary to the fact, s/he were in group 0, and similarly T! the potential random
variable corresponding to group 1. In reality, TO and T2 are never observed simultaneously
for a subject and the (possibly) observed survival time T relates the two-dimensional
potential outcomes (T°, T1) through T = I(A = 0)T% + I(A = 1)TL. The group-specific
difference in restricted mean lifetime is defined as

s=E{min(T*, L)} — E{min(T°, L)}=[E{P(T'>t) — P(T°>t)dt. (1)

Under the assumption that(T?, T1)-LA|Z, it follows that P(T > tjA=j, Z) = P(TIi > tjA =}, 2)
for j =0, 1. Although defined through potential outcomes, the parameter of interest, &, can
then be expressed in terms of observable variates as

0=[§E, {P(T>t|A=1,2) - P(T>t| A=0,Z)} dt, ()

where the expectation Ejy is taken respect to the marginal distribution of Z. When A is an
indicator of treatment, & has the interpretation of average causal treatment effect. We set Si(t|
Z)=P(T >t|A =}, Z) and Sj(t) = Ez{Sj(t[2)} for j=0, 1.

Estimators for §are proposed by Chen and Tsiatis (2001) under the assumption of
independent censoring. That is, in our notation, it was assumed that censoring C, does not
exist. Using sample averages to estimate expectations, if one can obtain estimators for Sq(t|
Z) andS(t|Z), say, Sp(t|Z) and S;(t|Z) respectively, then a natural estimator for &is given by

g:foLn_lz {gl(t|Zi) - §o(t|Z¢)} dt. (3)
=1

3. Methods

As argued in the previous section, we wish to model the conditional survival function of T
given baseline covariates and group indicator, Sj(t|2), j = 0, 1. Because of its flexibility and
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popularity in practice, we adopt the Cox's proportional hazards model (Cox, 1972, 1975)
and, in the following development, we work with the more general model where both
baseline hazards functions and regression coefficients of Z are allowed to vary by group.
Specifically, it is assumed that

Aij(t) = At Zi, A=j)=Doj(t)exp (8] Zi), j=0,1, ()

where A(t|Z;, A; = j) denotes the conditional hazard function given baseline covariates Zj and
membership in group A; = j, while Agj(t) is the unspecified baseline hazard function for
group A =j.

We now describe how to estimate parameters for model (4). To begin, suppose that C,; was
not dependent censoring, but was instead another form of censoring that was conditionally
independent of T given (Z, A). In this case, /5 could be consistently estimated by the

maximum partial likelihood estimator, 3% which could be computed as the root of the
estimating equation,

n S i1 Zeexp(BT Z,)Ye; (1)
T Z: — J j
;‘/ o S prexp(57 Zg) Yo (t)

}N;;(t)=0, (5)

where zsatisfies P(U > 7) > 0 and, in practice, can be set to the maximum observation time
in the study; Nj;(t) = I(A; = DI(Ui < t,A1 § = 1); and Yj5(t) = I(A = ))I(U; > t). Additionally,

Aoj(t)=fAoj(u)du could be consistently estimated by the Breslow estimator,

> 1dNi;(t) -
Srexp(B7 2 Y0 ©

Ay (=1}

From a different perspective, /A\Sj(t) and Ej* are the solutions to the following estimating
equations,

> [odM;j (w8, A)=0 ()
1=1

> 02 dM;j(t:;8,A)=0 (g
i=1

respectively, where dM;j(t;8.A) = dNjj(t) - Yij(t)eﬂT ZidA(t) and dMij(t) = dMjj(t:5, Ao ).
Under the assumption that (Cy i, C5 i)-L-Til(Aj, Z;), we have E{dM;;(u)|Z;, Ai} = 0 and E{Z;
dM;j(u)|Z;, Aj} = 0 such that (7) and (8) have mean zero at the true parameter values.

However, as stated previously, although Cq; L-T; [(Aj, Zj), it is not the case that Coi-L-T;j|(A;,
Z;). As a result, neither (7) nor (8) have mean zero at the truth, meaning that consistent
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estimators of /4 and Ag;(t) cannot be obtained from (5) and (6) respectively. We assume that
the dependence of C,;j and T; occurs through (and only through) the time-dependent process,
Xi(Ui); i.e., observed data. That is, we assume that C»; is conditionally independent of T;
given {Z;, A;, Xi(Ui)}; a condition we can express formally as follows,

limh = P{t < U;<t+h, Ag;=1|U;>t, A;, Xi(t), T;}

h—0 ~
= lmhTP{t < Ui<th, Ag=1{Usst, A;, Xi(1)}. ©

Assumption (9) is the critical “no unmeasured confounders” (Rubin, 1977; Robins, 1993)
for censoring assumption. In our setting, the assumption essentially states that the hazard of
being censored by C, at time t depends only on observed data up to time t and not
additionally on future possibly unobserved data. We define the hazard function for the
dependent censoring time, Cy; for a subject in group j as

)\g(t):}lii%h’lP{t < Ui<t+h, Agi=1|U;>t, Ai=j, X;(t)},

then set AS (t)=[H A (u)du.

We return now to the issue of estimating the parameters in (4). Reconsidering (7) and (8),
although E{dM;;(t)|Z;, A} # 0, under (9), it can be shown that

Elexp{A{;(t)}dM;;(t)| Z;, A;, X:(£)]=0 (Robins and Finkelstein, 2000) and, after iterating
the expectation, that E[exp{Ag(t)}dJ\fij (t)|Z;, A;]=0. More generally, it can be shown that

E{Wjj(t)dM;;(®)IZ;, Ai} = 0, where Wij(t):exp{AiCj(t)}m(t;Zi, A;), where the function x{(t;Z;,
Aj) acts as a stabilization factor. Similarly, it can be shown that E{W;;(t)Z; dM;;(t)|Z;, A} = 0.
Combining these zero-mean properties suggests the following set of inverse probability of
censoring weighted (IPCW) estimating equations,

> JoWij(w)dMij (w8, A)=0  (10)
i=1

S [TWii(8) Zid M (58, A)=0. 1)
=1

Substituting the solution to (10) into (11) then re-organizing algebraically suggests that /5 be
estimated by the solution to

i1 Wej(t)Ye;(t) Zoexp(B] Ze)
S i1 Wej(8)Ye; (t)exp(B] Zy)

> Jolzi— FWii(£)dN;;(1)=0, (12)
1=1

and that the weighted Breslow estimator,
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i=1 Wij(u)Yij (w)exp(8] Z;)

Ao ()=} ;(13)

be used to estimate Agj(t) for j =0, 1.

The estimators in (12) and (13) are Inverse Probability of Censoring Weighting (IPCW)
estimators (Robins and Rotnitzky, 1992; Robins, 1993; Robins and Finkelstein, 2000). The

quantity eXp{Ag(t)} can be thought of heuristically as the inverse of the probability of not
having been dependently censored as of time t. Note that Xi(t) is an internal time-dependent
covariate (Kalbfleisch & Prentice, 2002); i.e., a process generated by subject i (as opposed
to an external time-dependent covariate such as temperature or air quality). Therefore,

exp{Ag(t)} is not actually a probability, per se, but a product of conditional probabilities.
Nonetheless, using Robins' Fundamental Identities (Robins & Rotnitzky, 1992; Robins and
Finkelstein, 2000), it can be shown that the estimating function in (12) can be expressed as a
(dependent censoring process) Martingale integral and hence has mean 0; a proof for which
is outlined in Section 2 of the Web Appendix. The function «{t; A;, Z;) can be any function
of Zj and A; (since these are conditioned upon by model (4) anyway) and is intended to

stabilize the weighted estimators. In particular, exp{Ag (t)} could be quite large towards the
tail of the observation time distribution, which would result in weights which are quite large.
One choice of xwhich has been suggested (e.g., Robins and Finkelstein, 2000; Hernan,

Brumback, and Robins, 2000) is eXp{Ag(t\Zl—, A;)}. While Aicj(t) would be based on a time-

to-censoring model which used Xi(t—) as covariates, A%(t|ZZ-, A;)would only use the
baseline values. If censoring was in fact independent, then Wij;(t) would tend towards 1. x{(t;
Aj, Zj) = 1, which may be appropriate if censoring is light or moderate, in which case Wijj(t)
does not get unduly large. Hereafter, we refer to «{t; A;, Zj) = 1 as the “unstabilized’
estimator. Stabilized estimators are intended to be more efficient than the unstabilized
version, at the expense of additional modeling effort.

In practice, Ag(t) in the weight function is unknown to us and therefore has to be modeled
and estimated. To fit models for the dependent censoring time C, j, one uses U; as the
censored time variable but use Ay; as the indicator for observing C,;. Again, due to its
flexibility, the proportional hazards model is a natural choice for the dependent censoring
time, Cyj, with the model being conditional on the group indicator and both baseline and
time-dependent covariates. To allow for more flexibility in modeling and hence robustness
in estimating the weight, one could fit group-specific Cox models,

AG (=G (t)exp {07 Xs(1)}

where Aocj (t),j=0,1, are unspecified group-specific baseline hazard functions for Cy; and
Xi(t) is a function of X;(t) determined empirically (e.g., using standard model selection

techniques, such as stepwise regression) to satisfy )\g (t|)~(i(t)):>\icj(t|Xi(t)). Based on the
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fitted model, one can estimate Aicj(t) by /A\g—(t), which can then be used to compute the
estimated weight function, Wij(t).

Having estimated /5 and Ag j(t), one can correspondingly estimate S;j(t) = Sj(t|Z;) by

§J(t‘Zi) = §ij(t)=exp{—f\0j(t)exp(BfZi)}, j=0,1. (14

Finally, the proposed estimat or for difference in restricted mean lifetime §is then given by

where S;(t)=n"">_" Si;(t)forj=0,1.

The key step in implementing the proposed method is to solve the weighted estimating
equation (12), for which existing software may be exploited. For example, one can use pr oc
phr eg (SAS Institute; Cary, NC) with the counting process input format and the wei ght
option. Correspondingly, A(;j(t) and .§ij(t) can be easily obtained. Estimating the variance is
more involved, requiring additional programming (e.g., SAS's pr oc i m ). For illustrative
purpose, a SAS macro implementing the proposed methods is available at http://
www.sph.umich.edu/mzhangst/.

4. Asymptotic Properties

In this section, we derive the asymptotic properties of the proposed estimators given by (15).
To begin, we specify the regularity conditions, assumed to hold fori=1,...,nandj=0, 1.

a. {Ai Z, Ui, Agj, Dy, Xi(Ui)} are independent and identically distributed.
b. P(Uj>17>0.

C. T
|Zik| < b; and /0d|X’ik(t)|<bX, where b, < co and by < oo, and k denotes the kth

element.

Agj(7) < o0; Ag;- (1)< 0.

e Ford=0,1,2,

Sup]u%g‘d) (t:8) — V@) 0

te[0,
sup R (1:0) — r@(x0)| 20,
te[0,7]

where we define
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R§d) (t:8)=n"" izl:lyij(t)IVij (t)ZPexp{ 87 Z;}

R (t;8)=n""13 Yi;(£) XPlexp{0T Xi(t)}
=1

Cj

with 280 =1, 791 =7 and 282 = 77T,

The matrices (/) and QJC(GJ-) are assumed to be positive-definite, where

@
T )75 (tQﬂ)
Q(B)=E | [, m -

% (t;,@)®2} i (£8) 205 (2) dt]
2 (4,0) 7 (t;0)®2} Tg? (t;e))\ocj (t)dt:| ,

Clp)— T} ey
G O=E | Io) T

with 2(t;8)=r{" (£:8) /r\” (1;8) and Z(t:0)=r1) (1,0) /7 (£:0),
9. P(A=]lz) € (0, 2).

Variations on Condition (a) are possible, although at the expense of additional
technical (e.g., Lindeberg-type) conditions. Condition (b) is a standard
identifiability criterion. The boundedness implied by Condition (c) helps ensure the
convergence of the several stochastic integrals used in the proofs; the same can be
said for Condition (d). The second-derivative matrices in condition (f) are at least
non-negative definite and will be positive-definite under any sensible specification
of the covariate vectors. Condition (g) is the well-known positivity requirement
from the causal inference literature. If it fails, & fails to have a causal interpretation.

We describe the primary asymptotic result for our proposed unstabilized group
effect estimator in the following theorem.

Theorem 1: Under conditions (a) - (g), as n — oo, 56onverges in probability to &, and for
the unstabilized estimator, n/2(5 - &) converges to a zero-mean Normal with variance

E{(¢i1 ~ ¢i0)°}, where
b= —B | 2T [§{mi (L) — iy} ()] @57 (8,)U5(8))

— S B [ 7 i (L) — pig ()] A (8)+ (i — 1),

t ~ n
where Aij (L)=pij, pij (t)= /OSij (u)du, n {R;(£)—Aoj ()} =23 ®y5(t)+0,(1) and

n%(ﬁj — 5j):Qj(ﬂj)‘ln*%Z;lUij(ﬁj)+op(1)with ®ijj(t) and Ujj(45) defined in the Web
Appendix.
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The variance can be consistently estimated by 7 12 ¢11 %))2, where (p,inS obtained
by replacing limiting values in ¢j; with therr empirical counterparts However, as shown in
the Web Appendlx the computation of (pl is quite complicated owmg to the complexity of
IJ(ﬂj) and <I>,](t) As a result, estimating the variance through gj is very inconvenient
computationally. A computatronally attractive alternative is to estimate Var(5) by

7122 N o — Where [ﬁrj is obtained by replacing Oij(ﬁjfand fI)i](t) with ﬁ;(ﬁj) and

=t .
@}, (t), respectively, where

Tl(@)=15{2: = Z;(6:8, W)} Wi (£)dM; (2)
L (0=h] (O0(8)) OB+ oWy ()R (538, W) b (9).

The key difference between go,jAand

Bl= '3 (2T I5 (D) — Ay (0}aRy ()] 5 (B)T5B)
*Tfl;zblfoL {egfzi{ﬁij(fl) - ﬁij(t)}} d(/ﬁij(t)+(//zij — [15)s

is that the former accounts for the fact that W,J(t) is estimated, while ¢ is derived with
IJ(t) treated as fixed.

We refer to (¢j1 — ¢jg) in Theorem 1 as the influence function of &Which satisfies

%(5 6)—n*%2 (@1 — dio)+o0p(1)- The asymptotic results stated in Theorem 1 are for
the unstabilized estlmator with the stabilization factor «{(t; A;, Zj) = 1. As equations (12) and
(13) are unbiased estimating equations for general «{(t; Aj, Z;), by similar argument, it can be
shown that consistency and asymptotic normality hold for estimators with «{(t; A;, Z;j) # 1 but
the form of influence function will be different and even more complicated. Therefore,
treating the weights as fixed would be a practical way to estimate the variance of the
proposed estimators. As demonstrated in the Web Appendix, for general «{t;| Aj, Zj), Var(é)A

can still be estimated by n_lzll(fgl 'LO) with gb specified previously. According to
Tsiatis (2006) Chapter 9.1, the influence function of 6, |f the weight is estimated, is the
projection of the influence function when weight is known and fixed onto the orthogonal
complement of the nuisance tangent space; e.g., the spaces associated with the nuisance
baseline hazard function and nuisance parameter ¢ in the model for C,. As the true
influence function is a projection, its variance is smaller than the influence function if
weight is fixed and therefore the proposed variance estimator will be conservative in
estimating the variance of Swhere weight is actually estimated. This point is discussed by
several previous authors (Hernan et al. 2000 and 2001; Pan and Schaubel, 2008). The effect
of estimating the weight is slight, as will be demonstrated empirically in the next section.

Biometrics. Author manuscript; available in PMC 2014 October 09.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Zhang and Schaubel Page 11

5. Simulation Study

We report on simulations to evaluate performance of the proposed methods. Results of two
other methods are also reported: a naive method, which estimates &by taking difference in
areas under group-specific Kaplan-Meier curves from time 0 to L and consequently ignores
all possible confounding, and the method proposed by Chen and Tsiatis (2001), which
adjusts for baseline covariates but not time-dependent confounders for censoring.

Data were generated under three scenarios, corresponding to different confounding
mechanisms and, in each scenario, two different percentages of censoring were considered,
referred to as light censoring or heavy censoring cases. Specifically, in each scenario, for the
light censoring case, about 20% subjects are censored by C, and about 5% are censored by
C4, and for the heavy censoring case, about 30% subjects are censored by C, and about 10%
are censored by C4. All reported results are based on 2000 Monte Carlo datasets, and L is
chosen to be 15.

In the first scenario, data were generated such that both baseline and time-dependent
confounders exist. For each Monte Carlo dataset, a single baseline confounder Z was
generated as a truncated standard normal, truncated at -4 and 4 on each side, and group
indicator A as Bernoulli with parameter exp(=0.62)/{1 + exp(-0.62)}. Survival time T was
generated by transforming &, ~ Uniform (0, 1) using the inverse of the cumulative
distribution function (cdf) of a Weibull distribution with shape parameter 1.25 and scale
parameter exp(—0.3Z- 3.3) for group A = 1 or exp(—0.42-3) for A = 0. We then generated
dependent censoring C» such that it depends both on baseline and time-dependent covariates
as follows. In order for a time-dependent covariate to be a confounder, it should be
correlated both with T and C, conditioning on (A, Z). To achieve this, we first generated X;
such that X; = =5log{A& + (1 - A)(1 - &)} + &, where & ~ Uniform(0, 1), independent of
all other variables, and then let X(t) = I(X; > t). Consequently, the time-dependent covariate
X(t) is correlated with survival time T through their mutual relationships with & and such
correlation exits even conditioning on (A, Z). Next, we generated dependent censoring time
C, using a proportional hazards model with hazard rate exp{j; + 0.2A + 0.2Z+»X(t)}. This
procedure ensures that X(t) is a time-dependent confounder and C, follows a proportional
hazards model with Z and X(t) as our model assumes. Finally, censoring time C; was
generated as Weibull with shape and scale parameters 3 and exp(j3) respectively. The
coefficients (1, 1, y3) are set to (-5.1, 1.5, -11) for light censoring case and to (-4.45,
1.5,-9.7) for heavy censoring case.

In the second scenario, data were generated such that, conditioning on (A, Z), timedependent
covariate X(t) correlates only with survival time T but not with censoring time C, and
therefore it is not a confounder if (A, Z) is properly adjusted for. We compare the proposed
methods with the Chen and Tsiatis (2001) method, which should be consistent and
asymptotically normal under this scenario. Data are generated similarly as before except for
that y» was set to 0, ensuring that X(t) does not affect C,. Specifically, we chose (11, 12, 13)
equal to (-4, 0, -11) for light censoring case and equal to (-3.4, 0, -9.7) for heavy censoring
case.
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In the third scenario, we let the time-dependent covariateX(t) be conditionally independent
of survival time T but still correlated with censoring time C, and, consequently, is not a
confounder either. Data were generated the same as in scenario one except for that X; = —
5log{As; + (1 — A)(1 — &3)} + &, where g3 ~ Uniform(0, 1), independent of all other
variables. We evaluate how the proposed methods compare with those of Chen and Tsiatis
(2001), which should be unbiased under this scenario. All coefficients are set equal to those
used in scenario 1.

Tables 1 and 2 list the results of our simulation study. The proposed estimators (unstabilized
or stabilized) are consistent for the true parameter under all scenarios, whereas the Chen and
Tsiatis (2001) method leads to biased estimators under scenario 1, where a time-dependent
confounder exists. The naive estimator is biased under all three scenarios, where baseline
or/and time-dependent confounders exist. Although the variance is estimated by treating the
estimated weight as fixed, coverage probabilities of the proposed estimators achieve the
nominal level. On the other hand, due to the non-ignorable bias, coverage probabilities of
the other two estimators are very low, illustrating that the impact of confounders can be
severe if they are not properly accounted for in the analysis.

Under scenarios 2 and 3, where there are no time-dependent confounders, the usual partial
likelihood estimator is semiparametric efficient in estimating coefficients of a Cox
proportional hazards model. Therefore, the Chen and Tsiatis (2001) method can be used as a
benchmark to evaluate the loss of efficiency of the proposed methods due to inverse
probability weighting. Our results demonstrate that stabilized version of the proposed
estimator behaves very similarly to the estimator of Chen and Tsiatis (2001). This would be
expected since the weights would tend towards 1 in this scenario, such that the loss of
efficiency (corresponding to the unstabilized weighting) is only mild. In addition, simulation
results suggest that the effect of the stabilization factor, «(t; Z, A), on the efficiency is more
pronounced for estimators of the Cox regression parameter, compared to the estimators of &.
Results in Table 3 show that, at least under the simulated scenarios, stabilization results in
considerable efficiency gains for ﬁAbut only mild increases in precision for S

6. Application

Data were obtained from the Scientific Registry of Transplant Recipients (SRTR). The study
population (n = 6, 371) included all chronic liver disease patients initially wait listed for
deceased-donor liver transplantation in the U.S. at age > 18 between March 1, 2002 and
February 28, 2003. For each patient, the time origin (t = 0) was the date of wait listing.
Patients were followed from that date until the earliest of death, receipt of a liver transplant,
loss to follow-up and the end of the observation period: December 31, 2008.

The event of interest was wait list mortality. Independent censoring consisted of random loss
to follow-up and administrative censoring at the end of the observation period. Dependent
censoring occurred through liver transplantation which, although not preventing the
observation of death, does preclude wait list death.

The objective of the analysis was to compare 5-year mean wait list survival time between
Hepatitis C positive (HCV+) versus HCV- patients. HCV is a leading cause of chronic liver
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disease. Baseline adjustment covariates included the following factors, as measured at the
time of wait initial listing: age, gender, race, region, Model for End-stage Liver Disease
(MELD) score, serum albumin, sodium, bodymass index, diabetes, hospitalization status,
ascites, dialysis and encephalopathy. The MELD score is a log linear combination of serum
creatinine, bilirubin and international normalized ratio for prothrombin time. MELD has
been shown to be a very strong predictor of wait list mortality. Currently, patients are
ordered on the wait list in decreasing order of MELD score, such that the higher the MELD
score, the greater the liver transplant hazard.

MELD is time-dependent, since a patient's score will be updated regularly. Other time-
dependent covariates include dialysis, serum albumin, sodium and active and removal status.
In the time-until-transplant model, each of these factors was represented in the time-
dependent covariate vector. The Cox model for transplant was given by

A ()= {1 - L1 - ROYAT Oexp {07 X:(0)}, o)

where I;(t) is an indicator for being inactivated from the wait and R;(t) is an indicator for
being removed from the wait list at time t. It is not possible for a patient to receive a
transplant while they are inactivated (usually temporary) or removed (typically permanent).
To fit model (16), we deleted patient subintervals where either I;(t) = 1 or R;(t) = 1. After
model (16) was fitted, the IPCW weight was then computed using

ot
AC

/0 {1 = i)} {1 — Ri(s)}dAG (5) sych that the transplant hazard increment was set to 0

for each subinterval where the patient was either inactivated or removed.

The study population consisted of 2,754 HCV+ (j=1) and 3,617 HCV- (j=0) patients. There
were a total of 1,849 wait list deaths; 3,194 liver transplants and 1,328 independently
censored subjects. Average survival curves are presented in Figure 1. Average wait list
survival probability was 51% for HCV- patients at 5 years, compared to 41% for HCV+
patients. In Table 4, we compute 1-, 3- and 5-year average restricted mean wait list lifetime
for HCV+ and HCV- patients. For each of L =1, L =3 and L = 5 years, average restricted
mean lifetime is significantly greater for HCV- compared to HCV+ patients. In Figure 2, we
plot the point estimates and 95% confidence intervals for ¢.

7. Discussion

In this article, we have proposed methods for estimating differences in restricted mean
survival time between groups where group assignment is not randomized and, conditional on
baseline covariates and group assignment, censoring may still be correlated with survival
time. Differences in restricted mean lifetime may be of direct interest, and could also serve
as a cumulative effect measure in settings where group-specific hazards are non-
proportional. To be general, in our formulation, we considered that both conditionally
independent and dependent censoring exist, which is often the case in practice; this
formulation includes as a special case when only one type of censoring exits. The proposed
methods employ two general approaches to account for two types of confounders. The
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proposed methods combine inverse probability of censoring weighting (e.g., Robins &
Rotnitzky, 1992) and the procedure of explicitly averaging over the marginal covariate
distribution (e.g., Chen & Tsiatis, 2001).

In our proposed procedure, computation is simplified by treating the IPCW weights as fixed.
Since the inverse weights are actually estimated using the data, treating them as fixed should
result in conservative confidence intervals and hypothesis tests, as reported by several
previous authors (e.g., Pan & Schaubel, 2008; Hernan et al. 2000 and 2001). Our simulation
results reveal the proposed standard error estimators and corresponding confidence intervals
are quite accurate. An alternative to treating the weights as fixed would be to use the
bootstrap, but this is much less convenient computationally.

The methods we propose require that the IPCW weight be correctly specified. The degree of
bias introduced by misspecifying the Cox model for censoring would be expected to
increase with increasing proportion of dependent (relative to independent) censoring;
increasing strength of association (i) between the death hazard and time-dependent
confounders and (ii) between the dependent censoring hazard and time-dependent
confounders; and of course degree to which the IPCW model is misspecified. Fortunately,
one can readily evaluate the fit of the proportional hazards model through well-established
techniques and using standard software.

There are several alternatives to our proposed approach, one being joint modeling. For
example, one could combine a mixed model for the longitudinal measurements with a
hazard model which uses time-dependent covariates (e.g., Proust-Lima & Taylor, 2009). Or,
one could also model mean residual survival time directly using pseudo-observations
(Andersen, Hansen, and Klein, 2004). It could well be the case that the preferred method is a
function of the data configuration. A detailed comparison of the three types of approaches
would be very useful to practitioners.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
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Average wait list survival probability for HCV- and HCV + patients at 5 years.

Biometrics. Author manuscript; available in PMC 2014 October 09.

Page 16



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Zhang and Schaubel

Page 17

0.1
A
3
2 -0.1
()] -
()
[
2 02
3
= [
9 o3
-04 i f f —
1 2 3 4 5

L (years)

Figure 2.
Point estimates and 95% confidence intervals for differences in average restricted mean wait

list lifetime between HCV+ and HCV- patients.
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