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Summary

In epidemiologic studies of time to an event, mean lifetime is often of direct interest. We propose

methods to estimate group- (e.g., treatment-) specific differences in restricted mean lifetime for

studies where treatment is not randomized and lifetimes are subject to both dependent and

independent censoring. The proposed methods may be viewed as a hybrid of two general

approaches to accounting for confounders. Specifically, treatment-specific proportional hazards

models are employed to account for baseline covariates, while inverse probability of censoring

weighting is used to accommodate time-dependent predictors of censoring. The average causal

effect is then obtained by averaging over differences in fitted values based on the proportional

hazards models. Large-sample properties of the proposed estimators are derived and simulation

studies are conducted to assess their finite-sample applicability. We apply the proposed methods

to liver wait list mortality data from the Scientific Registry of Transplant Recipients.
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1. Introduction

Often in clinical and epidemiologic studies, groups of subjects are compared with respect to

their survival times. Since any study is of finite duration, the time until the event of interest

may be censored. Typically in observational studies, the factor of interest is not randomized

(e.g., method of treatment) and may not even be assigned (e.g., race, gender, diagnosis),

necessitating some form of covariate adjustment, such as that obtained through regression

modeling. Since its development, the proportional hazards model (Cox, 1972) has

dominated the biomedical literature as the method of choice for the regression modeling of

censored data.

The popularity of the Cox model among practitioners and, by now, clinical investigators

makes it an attractive means of comparing groups in observational studies. In Cox

regression, the impact of each covariate is usually summarized by its effect on the hazard
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function. However, when comparing groups of subjects, investigators are often more

interested in differences in mean lifetime than ratios of hazard functions. The survival time

distribution may be heavily right skewed. Moreover, for semi- or non-parametric modeling,

the mean is not well estimated; e.g., the estimated survival function need not drop td

alternative is the restricted mean lifetime; i.e., for fixed L > 0, if T denotes survival time,

then the restricted mean lifetime is defined as E{min(T, L)}. Restricted mean lifetime can

also be expressed as , the area under the survival curve over (0, L], a quantity

easily understood by clinical investigators. For example, if L =5 years, one could interpret

E{min(T, L)} as the average number of years lived out of the next 5. Restricted mean

lifetime is typically of greater interest to clinicians than the usual Cox metric, the hazard

ratio. In fact, in certain settings E{min(T, L)} may be of more interest than E(T) itself. For

example, in the context of pediatric liver transplantation, it is almost always that case that a

child receiving a liver transplant will need a second liver transplant in the next 10 years.

Hence, using T to represent post-transplant survival time, survival after the first 10 years of

post-transplant follow-up could not be realistically assumed to be due to the initial liver

transplant; making E{min(T, 10)} of greater relevance than E(T).

This article is motivated by the desire to compare wait list survival among end-stage liver

disease (ESLD) patients listed for liver transplantation. A frequent cause of chronic liver

disease is Hepatitis C virus (HCV), the primary diagnosis for approximately 40% of ESLD

cases. Liver transplantation is the preferred treatment for ESLD, but there are far more

patients awaiting transplantation than there are available donor organs. The principle

underlying the current system for allocating deceased-donor livers in the U.S. is that priority

for transplantation should be based on a patients's death rate in the absence of liver

transplantation. Specifically, the patients most likely to die on the wait list should get top

priority for transplantation. Currently, patients on the liver transplant wait list are sequenced

in decreasing order of Model of End Stage Liver Disease (MELD) score (Weisner et al,

2001). The MELD score is a function of three laboratory measures indicative of liver

function, but does not consider underlying liver disease. It is suspected that HCV+ patients

have lower wait list survival than HCV- patients. However, few studies have directly

compared mean wait list survival time by diagnosis group. To our knowledge, no published

analysis has compared mean wait list survival times (i.e., survival, in the absence of liver

transplantation) between HCV+ and HCV- patients. Therefore, our objective is to estimate

the difference between wait list lifetime between HCV+ and HCV- patients, adjusting for

baseline (i.e., time 0) characteristics (e.g., age, gender, race, MELD score).

Comparison of liver wait list survival times is complicated by the potential for dependent

censoring. Specifically, death on the liver wait list is censored by the receipt of a liver

transplant, and such censoring is not independent of the survival time that would have been

observed on the wait list, even conditional on the baseline adjustment covariates. A given

patient's MELD score typically changes over time. The updating of MELD scores is

mandatory, meaning that a longitudinal sequence of MELD scores is observed for each

patient. As discussed by several previous authors in the context of causal inference (e.g.,

Robins, 2000; Hernan et al 2000, 2001), a comparison of survival time by HCV status

should not adjust for internal time-dependent covariates, as defined by Kalbfleisch and
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Prentice (2002). The fact that time-dependent MELD strongly affects both wait list mortality

and censoring (liver transplantation) means that lack of its adjustment (i.e., by adjusting for

baseline values only) will result in the dependent censoring of wait list death time via liver

transplantation.

Various authors have proposed methods for comparing restricted mean survival time in the

context of Cox regression (e.g., Karrison, 1987; Zucker, 1998; Chen and Tsiatis, 2001). For

example, the method of Chen and Tsiatis (2001) proposes fitting separate group-specific

Cox models, then averaging over the fitted restricted mean lifetimes, with the averaging

being with respect to the covariate distribution of the entire study sample. These approaches

have several nice properties. First, it is not required that treatment-specific hazards be

proportional. Second, an ‘overall’ treatment effect estimator is obtained, without assuming

that treatment-specific adjustment covariate effects are equal. Third, the target treatment

effect is interpretable as an average over a well-defined covariate distribution. However,

each of the afore-listed methods assumes that censoring conditionally independent of the

survival time, conditional on baseline adjustment covariates.

We propose methods for estimating group-specific differences in restricted mean lifetime,

for the setting in which survival time is dependently censored. The structure of the hazard

model we assume is very flexible, allowing for group-specific baseline hazards and

regression coefficients. In its most general form, this amounts to fitting separate models for

each treatment group. The dependent censoring is overcome through the well-established

inverse probability of censoring weighting (IPCW); see Robins and Rotnitzky (1992),

Robins (1993); Robins and Finkelstein (2000).

The remainder of this article is organized as follows. In Section 2 we set up the notation and

formalize the problem of interest. The proposed methods are described in Section 3.

Asymptotic properties are listed in Section 4, with corresponding proofs given in the Web

Appendix. In Section 5, a simulation study is presented. The proposed methods are applied

to national liver wait list data in Section 6. The article concludes with a discussion in Section

7.

2. Notation and Data Structure

Suppose we are interested in comparing two groups (A = 0, 1), which are not randomized, in

terms of restricted mean lifetime up to time L. We denote the survival time by T. As in

almost all studies involving time to an event, the event time T may be censored due to

various reasons. Two types of censoring are considered in the following development. We

let C1 denote censoring which is independent conditional on baseline covariates, Z, and

group indicator, A; e.g., censoring due to the end of study. We let C2 denote dependent

censoring; i.e., censoring which is not independent of T given (Z, A). For example, in the

context of the data which motivated our work, a patient's wait-list mortality is censored if

and when the patient receives a liver transplant and the transplant hazard and wait list

mortality hazards may be correlated, even conditional on (Z, A), through mutual dependence

on time-dependent covariates (e.g., MELD score). In notation, we assume that C1╨T|Z, A,

where ╨ denotes “independent of ”; while C2 is not assumed to satisfy this condition. In
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practice, one observes the minimum of the survival time and time to censoring. We therefore

let U = T ∧ C1 ∧ C2 represent the observation time and define indicators for observing the

failure time and dependent censoring times: Δ1 = I(T ≤ C1 ∧ C2) and Δ2 = I(C2 ≤ T ∧ C1),

respectively. We let X†(t) represent the time-dependent covariate at time t. Note that X†(0)

would include the elements of Z and potentially other factors predictive of C2. We let X̃(t) =

{X†(u); u ∈ [0, t)} denote the history of all baseline and time-dependent covariates up to just

before time t. The observed data may be summarized as Oi = {Ai, Ui, Δ1i, Δ2i, Zi, X̃
i(Ui)},

with the Oi assumed to be independent and identically distributed (iid) across i = 1,…, n.

Note that the set of observed variates is redundant, in the sense that X̃(t) includes all baseline

covariates Z; however, this representation is convenient for presentation purposes.

To define the parameter of interest, we follow the potential outcome framework studied by

Rubin (1974 Rubin (1978) and adopted by Chen and Tsiatis (2001). Let T0 denote the

potential (or counterfactual) lifetime for a randomly selected subject from the population if,

possibly contrary to the fact, s/he were in group 0, and similarly T1 the potential random

variable corresponding to group 1. In reality, T0 and T1 are never observed simultaneously

for a subject and the (possibly) observed survival time T relates the two-dimensional

potential outcomes (T0, T1) through T = I(A = 0)T0 + I(A = 1)T1. The group-specific

difference in restricted mean lifetime is defined as

(1)

Under the assumption that(T0, T1)╨A|Z, it follows that P(T > t|A = j, Z) = P(Tj > t|A = j, Z)

for j = 0, 1. Although defined through potential outcomes, the parameter of interest, δ, can

then be expressed in terms of observable variates as

(2)

where the expectation EZ is taken respect to the marginal distribution of Z. When A is an

indicator of treatment, δ has the interpretation of average causal treatment effect. We set Sj(t|

Z) = P(T > t|A = j, Z) and Sj(t) = EZ{Sj(t|Z)} for j = 0, 1.

Estimators for δ are proposed by Chen and Tsiatis (2001) under the assumption of

independent censoring. That is, in our notation, it was assumed that censoring C2 does not

exist. Using sample averages to estimate expectations, if one can obtain estimators for S0(t|

Z) andS1(t|Z), say, Ŝ0(t|Z) and Ŝ1(t|Z) respectively, then a natural estimator for δ is given by

(3)

3. Methods

As argued in the previous section, we wish to model the conditional survival function of T

given baseline covariates and group indicator, Sj(t|Z), j = 0, 1. Because of its flexibility and
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popularity in practice, we adopt the Cox's proportional hazards model (Cox, 1972, 1975)

and, in the following development, we work with the more general model where both

baseline hazards functions and regression coefficients of Z are allowed to vary by group.

Specifically, it is assumed that

(4)

where λ(t|Zi, Ai = j) denotes the conditional hazard function given baseline covariates Zi and

membership in group Ai = j, while λ0j(t) is the unspecified baseline hazard function for

group A = j.

We now describe how to estimate parameters for model (4). To begin, suppose that C2i was

not dependent censoring, but was instead another form of censoring that was conditionally

independent of T given (Z, A). In this case, βj could be consistently estimated by the

maximum partial likelihood estimator, , which could be computed as the root of the

estimating equation,

(5)

where τ satisfies P(U ⩾ τ) > 0 and, in practice, can be set to the maximum observation time

in the study; Nij(t) = I(Ai = j)I(Ui ≤ t,Δ1 i = 1); and Yij(t) = I(Ai = j)I(Ui ⩾ t). Additionally,

 could be consistently estimated by the Breslow estimator,

(6)

From a different perspective,  and  are the solutions to the following estimating

equations,

(7)

(8)

respectively, where dMij(t;β,Λ) = dNij(t) − Yij(t)eβT ZidΛ(t) and dMij(t) ≡ dMij(t;βj, Λ0 j).

Under the assumption that (C1 i, C2 i)╨Ti|(Ai, Zi), we have E{dMij(u)|Zi, Ai} = 0 and E{Zi

dMij(u)|Zi, Ai} = 0 such that (7) and (8) have mean zero at the true parameter values.

However, as stated previously, although C1i ╨Ti |(Ai, Zi), it is not the case that C2i╨Ti|(Ai,

Zi). As a result, neither (7) nor (8) have mean zero at the truth, meaning that consistent
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estimators of βj and Λ0j(t) cannot be obtained from (5) and (6) respectively. We assume that

the dependence of C2i and Ti occurs through (and only through) the time-dependent process,

X̃
i(Ui); i.e., observed data. That is, we assume that C2i is conditionally independent of Ti

given {Zi, Ai, X̃
i(Ui)}; a condition we can express formally as follows,

(9)

Assumption (9) is the critical “no unmeasured confounders” (Rubin, 1977; Robins, 1993)

for censoring assumption. In our setting, the assumption essentially states that the hazard of

being censored by C2 at time t depends only on observed data up to time t and not

additionally on future possibly unobserved data. We define the hazard function for the

dependent censoring time, C2i for a subject in group j as

then set .

We return now to the issue of estimating the parameters in (4). Reconsidering (7) and (8),

although E{dMij(t)|Zi, Ai} ≠ 0, under (9), it can be shown that

 (Robins and Finkelstein, 2000) and, after iterating

the expectation, that . More generally, it can be shown that

E{Wij(t)dMij(t)|Zi, Ai} = 0, where , where the function κ(t;Zi,

Ai) acts as a stabilization factor. Similarly, it can be shown that E{Wij(t)Zi dMij(t)|Zi, Ai} = 0.

Combining these zero-mean properties suggests the following set of inverse probability of

censoring weighted (IPCW) estimating equations,

(10)

(11)

Substituting the solution to (10) into (11) then re-organizing algebraically suggests that βj be

estimated by the solution to

(12)

and that the weighted Breslow estimator,
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(13)

be used to estimate Λ0j(t) for j = 0, 1.

The estimators in (12) and (13) are Inverse Probability of Censoring Weighting (IPCW)

estimators (Robins and Rotnitzky, 1992; Robins, 1993; Robins and Finkelstein, 2000). The

quantity  can be thought of heuristically as the inverse of the probability of not

having been dependently censored as of time t. Note that X̃
i(t) is an internal time-dependent

covariate (Kalbfleisch & Prentice, 2002); i.e., a process generated by subject i (as opposed

to an external time-dependent covariate such as temperature or air quality). Therefore,

 is not actually a probability, per se, but a product of conditional probabilities.

Nonetheless, using Robins' Fundamental Identities (Robins & Rotnitzky, 1992; Robins and

Finkelstein, 2000), it can be shown that the estimating function in (12) can be expressed as a

(dependent censoring process) Martingale integral and hence has mean 0; a proof for which

is outlined in Section 2 of the Web Appendix. The function κ(t; Ai, Zi) can be any function

of Zi and Ai (since these are conditioned upon by model (4) anyway) and is intended to

stabilize the weighted estimators. In particular,  could be quite large towards the

tail of the observation time distribution, which would result in weights which are quite large.

One choice of κ which has been suggested (e.g., Robins and Finkelstein, 2000; Hernán,

Brumback, and Robins, 2000) is . While  would be based on a time-

to-censoring model which used X̃
i(t−) as covariates,  would only use the

baseline values. If censoring was in fact independent, then Wij(t) would tend towards 1. κ(t;

Ai, Zi) = 1, which may be appropriate if censoring is light or moderate, in which case Wij(t)

does not get unduly large. Hereafter, we refer to κ(t; Ai, Zi) = 1 as the ‘unstabilized’

estimator. Stabilized estimators are intended to be more efficient than the unstabilized

version, at the expense of additional modeling effort.

In practice,  in the weight function is unknown to us and therefore has to be modeled

and estimated. To fit models for the dependent censoring time C2 i, one uses Ui as the

censored time variable but use Δ2i as the indicator for observing C2i. Again, due to its

flexibility, the proportional hazards model is a natural choice for the dependent censoring

time, C2i, with the model being conditional on the group indicator and both baseline and

time-dependent covariates. To allow for more flexibility in modeling and hence robustness

in estimating the weight, one could fit group-specific Cox models,

where , j = 0, 1, are unspecified group-specific baseline hazard functions for C2i and

Xi(t) is a function of X̃
i(t) determined empirically (e.g., using standard model selection

techniques, such as stepwise regression) to satisfy . Based on the
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fitted model, one can estimate  by , which can then be used to compute the

estimated weight function, Ŵij(t).

Having estimated βj and Λ0 j(t), one can correspondingly estimate Sij(t) ≡ Sj(t|Zi) by

(14)

Finally, the proposed estimat or for difference in restricted mean lifetime δ is then given by

(15)

where  for j = 0, 1.

The key step in implementing the proposed method is to solve the weighted estimating

equation (12), for which existing software may be exploited. For example, one can use proc

phreg (SAS Institute; Cary, NC) with the counting process input format and the weight

option. Correspondingly, Λ̂
0 j(t) and Ŝij(t) can be easily obtained. Estimating the variance is

more involved, requiring additional programming (e.g., SAS's proc iml). For illustrative

purpose, a SAS macro implementing the proposed methods is available at http://

www.sph.umich.edu/mzhangst/.

4. Asymptotic Properties

In this section, we derive the asymptotic properties of the proposed estimators given by (15).

To begin, we specify the regularity conditions, assumed to hold for i = 1,…, n and j = 0, 1.

a. {Ai, Zi, Ui, Δ1i, Δ2 i, X̃
i(Ui)} are independent and identically distributed.

b. P(Ui ⩾ τ) > 0.

c.
|Zik| < bz and , where bz < ∞ and bX < ∞, and k denotes the kth

element.

d. Λ0j(τ) < ∞; .

e. For d = 0, 1, 2,

where we define
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with z⊗0 = 1, z⊗1 = z and z⊗2 = zzT.

f. The matrices Ωj(βj) and  are assumed to be positive-definite, where

with  and .

g. P(Ai = j|Zi) ∈ (0, 1).

Variations on Condition (a) are possible, although at the expense of additional

technical (e.g., Lindeberg-type) conditions. Condition (b) is a standard

identifiability criterion. The boundedness implied by Condition (c) helps ensure the

convergence of the several stochastic integrals used in the proofs; the same can be

said for Condition (d). The second-derivative matrices in condition (f) are at least

non-negative definite and will be positive-definite under any sensible specification

of the covariate vectors. Condition (g) is the well-known positivity requirement

from the causal inference literature. If it fails, δ fails to have a causal interpretation.

We describe the primary asymptotic result for our proposed unstabilized group

effect estimator in the following theorem.

Theorem 1: Under conditions (a) ‒ (g), as n → ∞, δ̂ converges in probability to δ, and for

the unstabilized estimator, n1/2(δ̂ ‒ δ) converges to a zero-mean Normal with variance

E{(ϕi1 − ϕi0)2}, where

where  and

 with Φij(t) and Uij(βj) defined in the Web

Appendix.
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The variance can be consistently estimated by , where ϕ̂
ij is obtained

by replacing limiting values in ϕij with their empirical counterparts. However, as shown in

the Web Appendix, the computation of ϕ̂
ij is quite complicated owing to the complexity of

Ûij(β̂
j) and Φ̂

ij(t). As a result, estimating the variance through ϕ̂
ij is very inconvenient

computationally. A computationally attractive alternative is to estimate Var(δ̂) by

, where  is obtained by replacing Ûij(β̂
j) and Φ̂

ij(t) with  and

, respectively, where

The key difference between ϕ̂
ij and

is that the former accounts for the fact that Ŵij(t) is estimated, while  is derived with

Ŵij(t) treated as fixed.

We refer to (ϕi1 − ϕi0) in Theorem 1 as the influence function of δ̂, which satisfies

. The asymptotic results stated in Theorem 1 are for

the unstabilized estimator with the stabilization factor κ(t; Ai, Zi) = 1. As equations (12) and

(13) are unbiased estimating equations for general κ(t; Ai, Zi), by similar argument, it can be

shown that consistency and asymptotic normality hold for estimators with κ(t; Ai, Zi) ≠ 1 but

the form of influence function will be different and even more complicated. Therefore,

treating the weights as fixed would be a practical way to estimate the variance of the

proposed estimators. As demonstrated in the Web Appendix, for general κ(t;| Ai, Zi), Var(δ̂)

can still be estimated by  with  specified previously. According to

Tsiatis (2006) Chapter 9.1, the influence function of δ̂, if the weight is estimated, is the

projection of the influence function when weight is known and fixed onto the orthogonal

complement of the nuisance tangent space; e.g., the spaces associated with the nuisance

baseline hazard function and nuisance parameter θj in the model for C2. As the true

influence function is a projection, its variance is smaller than the influence function if

weight is fixed and therefore the proposed variance estimator will be conservative in

estimating the variance of δ̂ where weight is actually estimated. This point is discussed by

several previous authors (Hernán et al. 2000 and 2001; Pan and Schaubel, 2008). The effect

of estimating the weight is slight, as will be demonstrated empirically in the next section.
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5. Simulation Study

We report on simulations to evaluate performance of the proposed methods. Results of two

other methods are also reported: a naive method, which estimates δ by taking difference in

areas under group-specific Kaplan-Meier curves from time 0 to L and consequently ignores

all possible confounding, and the method proposed by Chen and Tsiatis (2001), which

adjusts for baseline covariates but not time-dependent confounders for censoring.

Data were generated under three scenarios, corresponding to different confounding

mechanisms and, in each scenario, two different percentages of censoring were considered,

referred to as light censoring or heavy censoring cases. Specifically, in each scenario, for the

light censoring case, about 20% subjects are censored by C2 and about 5% are censored by

C1, and for the heavy censoring case, about 30% subjects are censored by C2 and about 10%

are censored by C1. All reported results are based on 2000 Monte Carlo datasets, and L is

chosen to be 15.

In the first scenario, data were generated such that both baseline and time-dependent

confounders exist. For each Monte Carlo dataset, a single baseline confounder Z was

generated as a truncated standard normal, truncated at -4 and 4 on each side, and group

indicator A as Bernoulli with parameter exp(−0.6Z)/{1 + exp(−0.6Z)}. Survival time T was

generated by transforming ε1 ∼ Uniform (0, 1) using the inverse of the cumulative

distribution function (cdf) of a Weibull distribution with shape parameter 1.25 and scale

parameter exp(−0.3Z− 3.3) for group A = 1 or exp(−0.4Z−3) for A = 0. We then generated

dependent censoring C2 such that it depends both on baseline and time-dependent covariates

as follows. In order for a time-dependent covariate to be a confounder, it should be

correlated both with T and C2 conditioning on (A, Z). To achieve this, we first generated Xt

such that Xt = −5log{Aε1 + (1 − A)(1 − ε1)} + ε2, where ε2 ∼ Uniform(0, 1), independent of

all other variables, and then let X(t) = I(Xt ⩾ t). Consequently, the time-dependent covariate

X(t) is correlated with survival time T through their mutual relationships with ε1 and such

correlation exits even conditioning on (A, Z). Next, we generated dependent censoring time

C2 using a proportional hazards model with hazard rate exp{γ1 + 0.2A + 0.2Z+γ2X(t)}. This

procedure ensures that X(t) is a time-dependent confounder and C2 follows a proportional

hazards model with Z and X(t) as our model assumes. Finally, censoring time C1 was

generated as Weibull with shape and scale parameters 3 and exp(γ3) respectively. The

coefficients (γ1, γ2, γ3) are set to (-5.1, 1.5, -11) for light censoring case and to (-4.45,

1.5,-9.7) for heavy censoring case.

In the second scenario, data were generated such that, conditioning on (A, Z), timedependent

covariate X(t) correlates only with survival time T but not with censoring time C2 and

therefore it is not a confounder if (A, Z) is properly adjusted for. We compare the proposed

methods with the Chen and Tsiatis (2001) method, which should be consistent and

asymptotically normal under this scenario. Data are generated similarly as before except for

that γ2 was set to 0, ensuring that X(t) does not affect C2. Specifically, we chose (γ1, γ2, γ3)

equal to (-4, 0, -11) for light censoring case and equal to (-3.4, 0, -9.7) for heavy censoring

case.
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In the third scenario, we let the time-dependent covariateX(t) be conditionally independent

of survival time T but still correlated with censoring time C2 and, consequently, is not a

confounder either. Data were generated the same as in scenario one except for that Xt = —

51og{Aε3 + (1 — A)(1 — ε3)} + ε2, where ε3 ∼ Uniform(0, 1), independent of all other

variables. We evaluate how the proposed methods compare with those of Chen and Tsiatis

(2001), which should be unbiased under this scenario. All coefficients are set equal to those

used in scenario 1.

Tables 1 and 2 list the results of our simulation study. The proposed estimators (unstabilized

or stabilized) are consistent for the true parameter under all scenarios, whereas the Chen and

Tsiatis (2001) method leads to biased estimators under scenario 1, where a time-dependent

confounder exists. The naive estimator is biased under all three scenarios, where baseline

or/and time-dependent confounders exist. Although the variance is estimated by treating the

estimated weight as fixed, coverage probabilities of the proposed estimators achieve the

nominal level. On the other hand, due to the non-ignorable bias, coverage probabilities of

the other two estimators are very low, illustrating that the impact of confounders can be

severe if they are not properly accounted for in the analysis.

Under scenarios 2 and 3, where there are no time-dependent confounders, the usual partial

likelihood estimator is semiparametric efficient in estimating coefficients of a Cox

proportional hazards model. Therefore, the Chen and Tsiatis (2001) method can be used as a

benchmark to evaluate the loss of efficiency of the proposed methods due to inverse

probability weighting. Our results demonstrate that stabilized version of the proposed

estimator behaves very similarly to the estimator of Chen and Tsiatis (2001). This would be

expected since the weights would tend towards 1 in this scenario, such that the loss of

efficiency (corresponding to the unstabilized weighting) is only mild. In addition, simulation

results suggest that the effect of the stabilization factor, κ(t; Z, A), on the efficiency is more

pronounced for estimators of the Cox regression parameter, compared to the estimators of δ.

Results in Table 3 show that, at least under the simulated scenarios, stabilization results in

considerable efficiency gains for β̂
j but only mild increases in precision for δ̂.

6. Application

Data were obtained from the Scientific Registry of Transplant Recipients (SRTR). The study

population (n = 6, 371) included all chronic liver disease patients initially wait listed for

deceased-donor liver transplantation in the U.S. at age ⩾ 18 between March 1, 2002 and

February 28, 2003. For each patient, the time origin (t = 0) was the date of wait listing.

Patients were followed from that date until the earliest of death, receipt of a liver transplant,

loss to follow-up and the end of the observation period: December 31, 2008.

The event of interest was wait list mortality. Independent censoring consisted of random loss

to follow-up and administrative censoring at the end of the observation period. Dependent

censoring occurred through liver transplantation which, although not preventing the

observation of death, does preclude wait list death.

The objective of the analysis was to compare 5-year mean wait list survival time between

Hepatitis C positive (HCV+) versus HCV- patients. HCV is a leading cause of chronic liver
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disease. Baseline adjustment covariates included the following factors, as measured at the

time of wait initial listing: age, gender, race, region, Model for End-stage Liver Disease

(MELD) score, serum albumin, sodium, bodymass index, diabetes, hospitalization status,

ascites, dialysis and encephalopathy. The MELD score is a log linear combination of serum

creatinine, bilirubin and international normalized ratio for prothrombin time. MELD has

been shown to be a very strong predictor of wait list mortality. Currently, patients are

ordered on the wait list in decreasing order of MELD score, such that the higher the MELD

score, the greater the liver transplant hazard.

MELD is time-dependent, since a patient's score will be updated regularly. Other time-

dependent covariates include dialysis, serum albumin, sodium and active and removal status.

In the time-until-transplant model, each of these factors was represented in the time-

dependent covariate vector. The Cox model for transplant was given by

(16)

where Ii(t) is an indicator for being inactivated from the wait and Ri(t) is an indicator for

being removed from the wait list at time t. It is not possible for a patient to receive a

transplant while they are inactivated (usually temporary) or removed (typically permanent).

To fit model (16), we deleted patient subintervals where either Ii(t) = 1 or Ri(t) = 1. After

model (16) was fitted, the IPCW weight was then computed using

, such that the transplant hazard increment was set to 0

for each subinterval where the patient was either inactivated or removed.

The study population consisted of 2,754 HCV+ (j=1) and 3,617 HCV- (j=0) patients. There

were a total of 1,849 wait list deaths; 3,194 liver transplants and 1,328 independently

censored subjects. Average survival curves are presented in Figure 1. Average wait list

survival probability was 51% for HCV- patients at 5 years, compared to 41% for HCV+

patients. In Table 4, we compute 1-, 3- and 5-year average restricted mean wait list lifetime

for HCV+ and HCV- patients. For each of L = 1, L = 3 and L = 5 years, average restricted

mean lifetime is significantly greater for HCV- compared to HCV+ patients. In Figure 2, we

plot the point estimates and 95% confidence intervals for δ.

7. Discussion

In this article, we have proposed methods for estimating differences in restricted mean

survival time between groups where group assignment is not randomized and, conditional on

baseline covariates and group assignment, censoring may still be correlated with survival

time. Differences in restricted mean lifetime may be of direct interest, and could also serve

as a cumulative effect measure in settings where group-specific hazards are non-

proportional. To be general, in our formulation, we considered that both conditionally

independent and dependent censoring exist, which is often the case in practice; this

formulation includes as a special case when only one type of censoring exits. The proposed

methods employ two general approaches to account for two types of confounders. The

Zhang and Schaubel Page 13

Biometrics. Author manuscript; available in PMC 2014 October 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



proposed methods combine inverse probability of censoring weighting (e.g., Robins &

Rotnitzky, 1992) and the procedure of explicitly averaging over the marginal covariate

distribution (e.g., Chen & Tsiatis, 2001).

In our proposed procedure, computation is simplified by treating the IPCW weights as fixed.

Since the inverse weights are actually estimated using the data, treating them as fixed should

result in conservative confidence intervals and hypothesis tests, as reported by several

previous authors (e.g., Pan & Schaubel, 2008; Hernán et al. 2000 and 2001). Our simulation

results reveal the proposed standard error estimators and corresponding confidence intervals

are quite accurate. An alternative to treating the weights as fixed would be to use the

bootstrap, but this is much less convenient computationally.

The methods we propose require that the IPCW weight be correctly specified. The degree of

bias introduced by misspecifying the Cox model for censoring would be expected to

increase with increasing proportion of dependent (relative to independent) censoring;

increasing strength of association (i) between the death hazard and time-dependent

confounders and (ii) between the dependent censoring hazard and time-dependent

confounders; and of course degree to which the IPCW model is misspecified. Fortunately,

one can readily evaluate the fit of the proportional hazards model through well-established

techniques and using standard software.

There are several alternatives to our proposed approach, one being joint modeling. For

example, one could combine a mixed model for the longitudinal measurements with a

hazard model which uses time-dependent covariates (e.g., Proust-Lima & Taylor, 2009). Or,

one could also model mean residual survival time directly using pseudo-observations

(Andersen, Hansen, and Klein, 2004). It could well be the case that the preferred method is a

function of the data configuration. A detailed comparison of the three types of approaches

would be very useful to practitioners.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Average wait list survival probability for HCV- and HCV + patients at 5 years.
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Figure 2.
Point estimates and 95% confidence intervals for differences in average restricted mean wait

list lifetime between HCV+ and HCV- patients.
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