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Abstract

Mass-spectrometry (MS) based proteomics has become a key enabling technology for the systems

approach to biology, providing insights into the protein complement of an organism.

Bioinformatics analyses play a critical role in interpretation of large, and often replicated, MS

datasets generated across laboratories and institutions. A significant amount of computational

effort in the workflow is spent on the identification of protein and peptide components of complex

biological samples, and consists of a series of steps relying on large database searches and

intricate scoring algorithms. In this work, we share our efforts and experience in efficient handling

of these large MS datasets through database indexing and parallelization based on multiprocessor

architectures. We also identify important challenges and opportunities that are relevant

specifically to the task of peptide and protein identification, and more generally to similar multi-

step problems that are inherently parallelizable.
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I. Introduction

Advances in technology coupled with innovative experimental and computational

workflows have transformed biology into a quantitative science, allowing elaborate inquiry

into the molecular basis of health and disease. The field of Proteomics, which characterizes

an organism’s proteome - the complete set of proteins expressed in various cells and tissues

– comprises of several challenging workflows [1]. A key feature of such “omic” sciences is

their high-throughput aspect, producing huge volumes of data in a short duration. For

example, a moderate-sized proteomics lab can generate several GB of data each day, and

this rate is continuously increasing with advancing technology [2]. Moreover, most
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experiments are replicated across laboratories and institutions, increasing the need for

collaborative mining of such large-scale datasets.

Currently, significant effort in proteomics research is directed towards algorithms for

identifying the many hundreds to thousands of proteins present in complex biological

samples. This is done via the “shotgun” method using tandem mass spectrometry (MS/MS)

technology, which generates large datasets of mass spectra with the goal being identification

of the molecular entities that generated those spectra [3]. A single experiment from a

modern mass-spectrometer can generate up to the order of 5-10K MS/MS spectra in less

than an hour. Associating the spectra with their true peptide/protein identification involves

searching large protein databases to retrieve, score and rank potential candidates. Depending

upon the size of the database and constraints applied on the search, each spectrum may have

to be evaluated against over 100K candidates to select the one that best explains the

observed data.

Scoring and evaluation of candidates involves several steps, and requires significant

computation time depending upon the algorithm applied. High noise content and variability

in MS/MS datasets present difficult data analysis challenges that contribute to loss of

identifications. Current state-of-the-art algorithms have a very low coverage and only < 30%

of spectra in a large-scale experiment are statistically confidently assigned with a candidate

[4]. Consequently, newer more complex scoring algorithms are constantly being researched

and developed – these typically provide a significant boost in identification accuracies at the

expense of greater computational cost. For example, a recent probabilistic scoring algorithm

called CSPI (details to follow) confidently identifies more spectra at a controlled false

discovery rate (FDR) as compared with popular state-of-the-art methods [5]. However, due

to the complexity of the model, it takes several seconds to evaluate each spectrum under

constrained searches, which is at least two orders of magnitude more than the closest

competitor. Moreover, search time will rapidly increase due to greater number of candidates

being evaluated, if constraints such as allowable post-translationally modified forms of

proteins are removed or reduced, as will be necessary for a more thorough analysis of the

data [6].

Fortunately this particular application is amenable to massive parallelization and can exploit

large multiprocessor and/or distributed computing architectures to alleviate the

computational bottleneck. This approach was followed for evaluating the recently developed

CSPI framework in our lab [5]. In this paper, we identify some challenges that we

encountered related to protein database indexing and multiprocessing-based parallelization,

along with opportunities for further innovations, based on our experience with developing

and implementing an efficient scoring framework for more confident assignment of peptides

to MS/MS spectra. In the next section, we give a brief background on the shotgun

proteomics approach and peptide identification problem. In section III, we present the

methods that we used for efficiently handling MS/MS data. Section IV concludes with other

potential avenues for future research.
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II. Background

MS/MS workflow proceeds in the following three steps [2, 7] (Fig. 1A): a) break or digest

large protein molecules, which are difficult to analyze using MS, into small manageable

pieces called peptides; b) chemical-property-based separation of peptides using liquid

chromatography, in order to reduce the mixture complexity [8]; c) isolation and

fragmentation of these peptides using tandem mass-spectrometry (MS/MS) [8]. The

fundamental unit of data in such experiments is a peptide MS/MS spectrum, which is

generated by collision-induced fragmentation of the peptides inside the mass-spectrometer.

The spectrum consists of a set of <mass-to-charge ratio or m/z vs. relative-abundance or

Intensity> pairs (called peaks) that represent various detected fragments of the

corresponding peptide as well as unexplainable noise peaks. The goal then is to confidently

identify peptides responsible for large datasets of experimental MS/MS spectra followed by

relating the identified peptides back to their parent proteins [7]. An example of how to

evaluate an MS/MS spectrum against one (arbitrary) peptide is given in Figure 1B.

A typical computational approach for assigning peptides to MS/MS spectra is called

‘Database Searching’, and consists of the following steps [9] (see Figure 2): a) From a

protein sequence database, generate a list of candidate peptides for each MS/MS spectrum;

b) Generate theoretical spectra for each candidate based on known rules of peptide

fragmentation and compare with the experimental spectrum; c) Rank the candidates

according to a scoring algorithm which gives higher scores to candidates that explain better

a larger number of more intense peaks - this is done by comparing the expected (theoretical)

peptide spectrum with the experimentally observed spectrum, and is the heart of peptide

identification systems; d) Statistical evaluation for reducing false peptide identifications by

controlling the FDR [10].

We have recently developed a novel probabilistic scoring algorithm called Context-Sensitive

Peptide Identification (CSPI), which utilized Input-Output Hidden Markov Models (IO-

HMM) to capture the effect of peptide physicochemical properties on their observed MS/MS

spectra [5, 11]. IOHMMs are an extension of the classic hidden markov models (HMMs)

and are used to stochastically model pairs of sequences, called input and output sequence.

These models have been previously successfully applied to several sequential data-mining

tasks, including financial data analysis [12], music processing [13] and gene regulation [14].

The graphical structure showing similarities and differences between HMM and IO-HMM is

shown in Figure 3. As can be seen, IO-HMMs contain extra nodes (than HMMs) for the

input sequence <x1, x2, …, xT>, which can probabilistically influence the output layer

and/or the hidden states, represented as <y1, y2, …, yT> and <q1, q2, …, qT> respectively.

They represent the joint conditional probability distribution P(y1y2…yT| x1x2…xT; Θ),

where ‘Θ’ are the model parameters. The intermediate hidden layer <q1q2…qt…qT>

facilitates modeling the sequential dependencies between the input-output sequence pair as

complex probability distributions. Both xt and yt can be uni-variate or multi-variate, discrete

or continuous, whereas the hidden states, qt, are typically discrete. In the case of CSPI

framework, input layer is a representation of the peptide sequence while the output layer is a

representation of their MS/MS spectrum intensities. Additionally, the input sequence can be

constructed with arbitrary features (from the domain) that may or may not overlap in
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location, allowing rich contextual information at local (specific location) as well as global

(sequence) level to be incorporated in the sequence mapping tasks. For notational

convenience, we have used the same length ‘T’ for all sequences. This is easily adapted to

more general cases).

Due to conditioning on the input layer, the transition probability distributions are potentially

non-stationary in location and must be computed afresh for each input sequence. In practice,

there is one transition function for each hidden state, to compute the probability distribution

of state at current location (qt) given the state at previous location (qt-1), i.e. P(qt | qt-1, xt).

Within CSPI, these are modeled using logistic functions. In the current implementation, a

constrained model structure is used such that the input layer influences only the transition

probabilities and not emission probabilities. Accordingly, there is one emission function for

every hidden state, to compute the probability distribution of the emission/observation at the

current location, given the state at current location, i.e. P(yt | qt). These are modeled using

simple distributions (Gaussian, Exponential or Beta) depending upon how the spectrum

intensities are normalized. The parameters of the model are trained using Generalized

Expectation Maximization algorithm (GEM). Trained CSPI models are used to score and

rank candidate peptides obtained via Database Search for each spectrum. This is done using

the Forward procedure, which follows similar mechanics as in HMMs with the exception

that all computations must take into account the context presented in the input layer.

Empirical evaluation showed that scores based on CSPI significantly improve peptide

identification performance, identifying up to ∼25% more peptides at 1% False Discovery

Rate (FDR) as compared with popular state-of-the-art approaches. Superior performance of

the CSPI framework has the potential to impact downstream proteomic investigations (like

protein quantification and differential expression) that utilize results from peptide-level

analyses. Being computationally intensive, the design and implementation of CSPI supports

efficient handling of large MS/MS datasets, achieved through protein database indexing and

parallelization of the computational workflow using multiprocessing architecture, as

described in the next section.

III. Methods for efficient processing of MS/MS spectra

The first step in analysis involves extracting candidate peptides for each spectrum by

querying a protein database. Protein databases are simple ASCII text files with a list of

protein sequences or character strings (the protein alphabet is of size 20, with each character

being of a different mass). Each sequence in the database is preceded with a single line

header (identified with the “>” symbol in the beginning) uniquely identifying and describing

the sequence, followed by the lines containing the actual sequence of amino-acids

(characters) making the protein. An example of such a file is given in Figure 4. The

sequences are of variable lengths, ranging from several tens to several thousands of

characters.

The extraction step amounts to a range query on the “expected mass” of the true peptide,

where a peptide mass is computed by summing the masses of individual characters in the

peptide. Hence, for a given mass query, the naïve approach would be to scan for sub-strings

Grover and Gopalakrishnan Page 4

Int Conf Collab Comput. Author manuscript; available in PMC 2014 October 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



in these protein databases such that the mass is within some allowable tolerance of the query

mass depending upon the accuracy of the data-generating instruments. For complex

organisms like Humans, the protein database files are typically large with several thousands

of protein sequences (the database used consisted of ∼89,575 protein sequences). Scanning

them afresh for each spectrum for retrieving sub-strings of required mass is prohibitive in

terms of time.

Database search as described above is performed with certain parameters that reflect the

experimental protocol used for generating the data, and remain the same for the entire

dataset of MS/MS spectra from the experiment. For example, all the sub-strings must end in

characters K or R while allowing up to three internal Ks and/or Rs, or that certain characters

are modified such that each occurrence of it will carry an extra mass than its native form.

This kind of constrained search eliminates the need to enumerate all possible sub-strings

from the protein database, and provides a way to speed up query and retrieval.

We process the protein database prior to analyzing the data and pre-compute an indexed

version by first generating the list of all possible sub-strings satisfying the desired search

constraints. For each peptide, we compute the mass up to one decimal point as well as note

its location in the database (protein number as it appears in the text file and position number

within the parent protein sequence) and its length in number of characters. This information

is stored in a key-value store where the “key” is the string representation of the peptide’s

mass while the “value” is the string concatenation of the auxiliary information using a

separator (location and length). ‘Values’ of peptides with the same key are concatenated

with a different separator. Additionally, in order to keep the size of index files small, the

entire range of expected peptide masses is split into bins of size 25 mass units (arbitrarily

chosen and may be optimized further), leading to multiple index files each storing a different

mass region.

Now, for every new query, the index allows for fast retrieval of candidates, by first mapping

the query mass (“key”) to the appropriate index file, followed by retrieval of peptides in the

corresponding mass-region that meet the mass-tolerance search criterion, and reconstruction

of the peptide sequences using the corresponding information stored in the “value” part of

the key-value pair (in conjunction with the original protein database ASCII text file).

Indexes were generated using the Berkeley DB key-value store [16] and was accessed using

its Python language interface.

Challenge 1

This approach works well for constrained database searches (total of ∼10 million peptides,

and ∼10-20K candidates per spectrum) that were employed in the current implementation

and analysis. However, unconstrained searches can yield a total search space of several

billion peptides, leading to larger index files and increased index generation as well as

querying time. A potential scalable solution is a distributed index with capability for

parallel generation and querying (using simple synchronization primitives) which is

facilitated by split indexes (as described above) as well as the fact that each spectrum can be

queried independently of others. Such schemes or variants thereof will be crucial for future

large-scale proteomics and must be explored.
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The next step in database searching evaluates all the candidates retrieved for each spectrum.

This is computationally the most expensive step in the peptide identification workflow but

comprises an embarrassingly parallel problem. Specifically, for each spectrum in the dataset,

searching and scoring/ranking candidate peptides can be performed in parallel, independent

of other spectra.

We used a simple multiprocessing application design using shared synchronized queues for

inter-process communication. The flow diagram is shown in Figure 5. The main process

reads in and preprocesses the spectra, queries the protein database stored as a pre-computed

index on the hard disk (as described above) and places the retrieved candidates along with

the preprocessed spectrum on a shared queue. From this queue, all the worker processes

extract the objects, run the CSPI scoring algorithm, and store the results onto a shared output

queue. Another child process extracts the results from this output queue and stores them in

an output file. The algorithm was tested on a single machine with eight quad-core processors

(total of 32 cores) as well as a large blade-based system (Blacklight server) with up to 64

requested cores at the Pittsburgh Supercomputing Center.

Database search and candidate evaluation time depend upon the size of the MS/MS datasets

as well as the number of candidates evaluated per spectrum (which in turn depends upon the

search constraints applied). Figure 6 shows how our CSPI framework scales with addition of

processor units, for the results presented in that work [5]. Specifically, the constrained

searches performed resulted in between 10K and 20K candidates to be evaluated per

spectrum.

We see that the throughput increases rapidly initially, although not linearly, but saturates at

about 15 processors. Although simpler scoring systems can achieve much higher

performance gains through parallelization [17], the gap can be possibly reduced with

alternate schemes for task-distribution. These are worth investigating due to good

performance characteristics of CSPI and other state-of-the-art complex algorithms for

confident peptide identification.

Challenge 2

As described above, the current workflow breaks the tasks at the individual spectrum level,

which means once a spectrum and its potential candidates are assigned to a child process,

they are evaluated sequentially within the same process. However, since evaluation of each

candidate against a spectrum itself requires several steps and can be performed

independently of all other candidates for all other spectra, there is scope for much further

optimization. It is important to note that although the entire process of peptide identification

is inherently parallelizable, optimum task distribution and sharing between processes will

need careful profiling of processing needs of individual steps and will also depend critically

upon such factors as the size of the database searched as well as search constraints applied.

Further, with greater granularity of tasks and number of processes, overhead due to inter-

process communication will become an important factor to consider [17]. Automatically

adjusting for all these dependencies within resource constraints is a non-trivial but

interesting problem to investigate.
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IV. Discussion and Concluding Remarks

Peptide, followed by protein identification is an important problem in current proteomics

research and offers several unique computational challenges. Confident identification is

critical to further downstream analyses like predictive biomarker discovery for disease

classification and characterization, and relies on complex and computationally expensive

scoring algorithms. With advancing technology and increasing trend towards integrated,

personalized healthcare, timely and efficient handling of concomitant large datasets is an

equally important aspect. Towards this end, we have presented insights based on our

experience in addressing two key computational bottlenecks related to the peptide

identification problem. Our methods have helped to significantly increase the efficiency of

our previously developed probabilistic scoring algorithm, CSPI [5]. We have also identified

important research challenges that will provide a further boost in that direction. All

experiments and analyses were performed using the Python programming language.

Parallelization was achieved using the multiprocessing package, while indexing was

performed using Python’s ‘bsddb’ interface to the Berkeley DB library.

The CSPI framework demonstrates the feasibility of applying context-sensitive markov

models to a complex real-world problem involving scoring and identification of peptides

from high-throughput tandem mass-spectrometry experiments. More generally, it shows the

applicability of IO-HMMs to handle big datasets that involve local and global sequential

dependencies in the sequence pairs being modeled. Further, the ability to parallelize such

problems demonstrated in this paper, allows for processing of collaborative big datasets

involving experimental data from multiple laboratories.

One proposal for such analyses could involve the cloud-computing architecture, where the

cloud would be the repository of centralized information on experimental outcomes/data,

which can then be processed in a distributed manner using their easily accessible and

integrated compute resources. The main issues relate to the complexity of the models

themselves, in terms of the large number of parameters that must be estimated. For example,

with four hidden states the number of parameters to be estimated for an IO-HMM model in

CSPI is over 700. The ability to obtain data through collaborative architectures should

greatly facilitate more accurate estimates of such parameters, and the efficient processing

achieved through parallelization will be a necessary component in the overall analytical

workflow.
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Fig. 1.
(A) Schematic of shotgun proteomics approach; (B) Peptide evaluation against MS/MS

spectrum. Cleavage at any position can yield a left and/or right fragment, called b or y-ions

respectively. The ions in the series have a different m/z, which can be located on the x-axis

of the spectrum. Black peaks represent unexplained events or noise. Y-axis represents the

relative abundance of respective entities.
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Fig. 2.
Schematic for Peptide identification by MS/MS via database searching (adapted from [3]).

E-value, which stands for expectation value, is a statistical measure of significance and

refers to the number of matches that are expected to obtain equal or better score by chance

alone.
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Fig. 3.
A) Classical Hidden Markov Model; B) Input-output Hidden Markov Model.
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Fig. 4.
Sample from Human protein database file (IPI stands for “International Protein Index” that

provides a unique and stable identifier to track protein sequences and allows a mapping

between variety of bioinformatics databases [15])

Grover and Gopalakrishnan Page 12

Int Conf Collab Comput. Author manuscript; available in PMC 2014 October 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 5.
Workflow of the multiprocessing version of CSPI scoring algorithm [5]
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Fig. 6.
Scalability of the multiprocessing version of CSPI scoring algorithm [5]
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