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To assess a species’ vulnerability to climate change, we commonly use

mapped environmental data that are coarsely resolved in time and space.

Coarsely resolved temperature data are typically inaccurate at predicting

temperatures in microhabitats used by an organism and may also exhibit

spatial bias in topographically complex areas. One consequence of these inac-

curacies is that coarsely resolved layers may predict thermal regimes at a site

that exceed species’ known thermal limits. In this study, we use statistical

downscaling to account for environmental factors and develop high-resolution

estimates of daily maximum temperatures for a 36 000 km2 study area over a

38-year period. We then demonstrate that this statistical downscaling provides

temperature estimates that consistently place focal species within their funda-

mental thermal niche, whereas coarsely resolved layers do not. Our results

highlight the need for incorporation of fine-scale weather data into species’

vulnerability analyses and demonstrate that a statistical downscaling approach

can yield biologically relevant estimates of thermal regimes.
1. Introduction
Global climate change represents a threat to biodiversity across multiple biomes

and organizational scales [1]. In the face of this threat, robust estimation of species’

vulnerability to climate change is necessary [2]. Species’ vulnerability can be seen

as a function of the environmental regimes which a species experiences in situ (its

‘exposure’) and its physiological and adaptive responses to this environment (its

‘sensitivity’) [2]. The use of inaccurate measures of exposure or sensitivity for

creating vulnerability analyses can potentially lead to false inference and wasted

conservation resources. Hence, we need to examine closely the analytical

procedures used to derive estimates of exposure and sensitivity for species.

Coarse-scale weather surfaces will likely make a poor surrogate for the

microclimate experienced by an organism. Coarse-scale weather surfaces are

typically created from empirical point climate data (daily temperature

maxima or minima, Tmax or Tmin), which are then splined through unsampled

geographic space according to elevation, latitude and longitude (e.g. [3]).

Splining approaches do not take into account factors known to decouple local

and regional thermal regimes and as a result are often inaccurate at the micro-

climate scale [4–6]. As well as this, coarse-scale weather takes no account of the

species’ behaviour: nocturnal and diurnal species, for example, may have very

different exposures.

We can move from coarse weather layers to fine-scale layers, and ultimately

species’ exposure, using either a correlative (statistical [6]) or a mechanistic
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(mass/energy balance [7]) downscaling approach. Mechanis-

tic methods use complex energy balance equations which

incorporate spatially mapped variables such as surface

albedo, relative humidity, incoming solar radiation and

wind speed (as well as conductivity and emission constants)

to generate estimates of microclimate [7]. While very flexible,

particularly for predicting microclimates into the future,

mechanistic approaches require a large number of parameters

to be estimated. Alternatively, a correlative approach may

lend itself well to producing spatial estimates of microclimate

under current conditions [6]. Such an approach does not

explicitly incorporate mechanism, but draws statistical associ-

ations between empirical microclimate observations and

spatial layers of environmental factors [6]. Unlike the

mechanistic approach, the correlative approach does not

require a large number of parameters to be specified

a priori, and it makes use of large datasets on microclimate

that already exist [6].

Microclimate estimates will need to meet three criteria to be

relevant to the species in question and therefore suitable for

constructing vulnerability analyses. First, factors that decouple

regional and local microclimates will need to be explicitly

incorporated. Second, microclimate estimates need to be tem-

porally resolved enough to quantify the effect of short-term

weather events on the focal species [8,9]. Finally, microclimate

estimates will need to be consistent with what we know of the

current distribution and physiological constraints of the species

in question. Meeting these criteria should produce estimates of

microclimate which are biologically sensible and useful for

vulnerability assessment.

Here, we assess the correlative approach to downscaling

weather data against our three criteria. We compare three

datasets that represent iteratively more complex statistical

downscaling. The first dataset (‘AWAP’) is of coarsely resolved

(5 km grid) data on daily Tmax and Tmin [3]. The second dataset

(‘DS1’) is a previously described statistical downscale (to

250 m resolution) of the first dataset that incorporates factors

that decouple regional and local climates [6]. We compare

these two datasets against the known critical thermal

maxima (CTmax, a hard physiological limit on individual

survival [10]) of seven species of endemic frog (family: Micro-

hylidae) in Australia’s Wet Tropics (AWT) and find them

wanting. Both indicate thermal regimes that routinely exceed

the focal species’ CTmax, yielding an impossible situation in

which focal species thrive outside their fundamental thermal

niche. We proceed to further statistically downscale DS1

using an independent dataset of microhabitat temperature

records from the focal species’ preferred diurnal shelter

(underneath fallen logs in rainforest). The resultant dataset

(‘DS2’) accurately predicts observed temperatures and, impor-

tantly, projects temperature regimes compatible with the

thermal niche of all the focal species. Indeed, our downscaled

weather data place the focal species firmly within their funda-

mental thermal niche, suggesting that our results are now at a

sufficient spatio-temporal scale as to be biologically valid and

useful for constructing vulnerability analyses.
2. Material and methods
We used the AWT as a case-study region to demonstrate the

problems inherent with using broad-scale weather layers to con-

struct microclimates. To this end, we use a biological criterion to
assess the accuracy of microclimate surfaces: their ability to accu-

rately portray a species’ fundamental thermal niche. For the

latter, we ask a simple question: do thermal regimes predicted

by weather surfaces at known species occurrence points conform

to known CTmax of the species?

Comparisons are drawn between three representations of

thermal regimes with increasing spatial resolution and complex-

ity of statistical downscaling. The AWAP surfaces represent the

daily open-air Tmax at approximately 1.5 m above the ground

at 5 km daily resolution [3]. The DS1 weather surfaces represent-

ing daily Tmax and Tmin are downscaled to 250 m resolution from

the AWAP layers, according to key environmental factors [6].

Lastly, we use the DS1 weather layers [6] in conjunction with a

paired empirical dataset of air and microhabitat (underneath

fallen logs) temperature records. A linear model is employed to

generate a relationship between daily air temperatures and

microclimate Tmax. Spatially mapped air temperature values

from DS1 are then substituted into the model to form a region-

wide spatial prediction of the daily thermal regime underneath

a fallen rainforest log (DS2 layers). For further details of the

linear downscaling model, see the electronic supplementary

material, appendix S1.

We determined CTmax for seven species of rainforest-

restricted, terrestrially developing microhylid frog: Cophixalus
aenigma, C. bombiens, C. exiguus, C. hosmeri, C. infacetus,
C. mcdonaldi and C. neglectus. The focal species are known to

be nocturnally active and shelter underneath fallen logs during

daylight hours [11] (C. Storlie 2013, personal observation).

Adult male frogs were identified by call and tested within 24 h

using a dynamic methodology [12] to determine CTmax. For

further details on the determination of the focal species’ CTmax

see the electronic supplementary material, appendix S2.

Location data for species occurrences were derived from

Williams et al. [11] and supplemented with recent records

vetted for positional and observer accuracy. These occurrences

were then overlaid on the weather surfaces in a GIS environment

using the SDMTools package 1.13 [13] in the R statistical soft-

ware package v. 2.15.1 [14] to extract absolute Tmax for all

occurrence points of focal species. Thirty-eight years of absolute

Tmax at known occurrence points were then standardized against

each species’ thermal limits by subtracting individual species’

CTmax from all records. We used kernel density estimation to rep-

resent the distribution of temperatures for all focal species.

Density distributions were calculated across the entire range of

predicted standardized temperatures and the total probability

density falling above each species’ CTmax was calculated (i.e.

the density above zero after standardization). These values rep-

resent the proportion of time (given the data) that CTmax is

exceeded across the set of species occurrence locations for each

species and are reported in table 1.
3. Results
In producing DS2, the linear model of microclimate Tmax fits

the empirical temperature data well, giving us confidence in

its ability to estimate microclimate Tmax from air temperature

(figure 1). For all focal species, the thermal regimes predicted

by AWAP and DS2 are non-overlapping, indicating substan-

tial differences in temperature between datasets for all

species (figure 2). Importantly, the DS2 spatial layers rarely

produce temperature estimates that exceed focal species’

CTmax (table 1 and figure 2). This contrasts sharply with

AWAP layers, for which the majority of all occurrences exist

in locations that exceed the focal species’ CTmax (table 1

and figure 2). The DS1 layers produce estimates of thermal

regimes that exceed species’ CTmax for four of the seven



Table 1. CTmax values and standard deviations (in 8C) for all focal species, the number of occurrence records, and the proportion of time that mean CTmax is
exceeded if we treat each of our datasets as truth.

species CTmax s.d. of CTmax N (CTmax)
N (occurrence
records)

AWAP prop.
above CTmax

DS1 prop.
above CTmax

DS2 prop.
above CTmax

C. aenigma 28.09 2.31 3 148 0.9595 0.2316 0.0002

C. bombiens 32.36 3.16 10 58 0.9990 0.1692 ,0.0001

C. exiguus 35.93 1.00 6 8 0.9874 ,0.0001 ,0.0001

C. hosmeri 31.73 0.41 4 86 0.9990 0.0111 ,0.0001

C. infacetus 35.08 0.71 5 121 0.9990 0.6355 ,0.0001

C. mcdonaldi 32.77 0.65 8 22 0.9999 ,0.0001 ,0.0001

C. neglectus 30.70 2.56 13 45 0.9985 0.0213 ,0.0001
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Figure 1. Relationship between empirical microclimate (underneath a fallen
log) Tmax and predicted microclimate Tmax from the linear microclimate
model. Line represents a 1 : 1 relationship.
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target species (table 1 and figure 2). Summing kernel densities

above individual species’ CTmax indicates an extremely low

probability that any DS2 thermal regimes exceed the species

known thermal limits ( p , 0.0002 in all the cases, table 1);

while the same procedure using the AWAP data show an

extremely high probability that conditions at known

occurrence sites exceed the species fundamental thermal

niche (table 1).
standardized max. exposure temp (°C)
−15 −10 −5 0 5 10 15

C. neglectus

Figure 2. Thermal regimes predicted by three sets of weather layers. Temp-
erature (x-axis) is standardized against individual species’ CTmax (zero is CTmax

for each species). The y-axis shows the probability density of temperature
given each dataset, scaled against the maximum density for each species set.
4. Discussion
Currently available weather layers are powerful resources for

ecological applications, yet in the context of vulnerability ana-

lyses they require adjustment to reflect microclimates species

experience in situ. The addition of key environmental infor-

mation to the AWAP layers via statistical downscaling allows

for the DS1 layers to very accurately depict thermal regimes of

open-air conditions [6]. In some cases, this procedure alone is

enough to produce estimates of thermal regimes that are

within the species’ fundamental thermal niche. Yet, these

layers are still not biologically sensible for a nocturnal species

that shelters underneath logs during the day. The addition of
the second, simpler, downscale procedure to the DS1 layers pro-

duces estimates of temperatures underneath logs during the day.

The resultant dataset, DS2, produces a biologically meaningful
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depiction of thermal regimes that is consistent with the known

thermal limits of all species.

We have presented a clear method for deriving microcli-

mate surfaces that are accurate with respect to empirically

measured temperatures and that predict thermal regimes

within the known physiological limits of resident species.

AWAP weather layers consistently predict thermal regimes at

known occurrence points that exceed the focal species’ CTmax,

effectively placing individuals outside of their fundamental

niche. The microhabitat-specific DS2 weather layers generated

here effectively never predict thermal regimes that exceed a

focal species’ CTmax at a known occurrence point. This finding

strongly supports the notion that increasing the biological rel-

evance of weather layers—by including the important effects

of behaviour (microhabitat use) and buffering at multiple

scales—is a key aspect of robust vulnerability assessments.

As well as demonstrating the importance of downscaling

coarsely resolved temperature data, our study also demon-

strates the importance of using biological criteria (e.g. the

physiological limits and distribution of species) to verify the

resultant data. While both mechanistic and correlative

approaches can be used to estimate microclimate (for a
mechanistic approach, see the recent global dataset of Kearney

et al. [15]), they both need to meet biological criteria to be con-

vincing. In meeting biological criteria they can be more

confidently used to estimate species’ vulnerabilities.

Global climate change and other stressors will continue to

threaten biodiversity into the foreseeable future, making the

application of robust vulnerability analyses for species key to

conservation outcomes. Estimates of species’ exposure and

sensitivity, which lie at the core of these analyses, must both

then be accurate. Inaccuracies in these estimates may result

in biologically nonsensical outcomes and call into question

inference on exposure that flows from such data. Thus, we

must generate accurate estimates of species’ thermal regimes

to be confident in the outcome of species’ vulnerability assess-

ments. Our results show that correlative techniques with

explicit consideration of key abiotic and biotic factors provide

biologically meaningful estimates of thermal regimes.

Data accessibility. Data deposited in Dryad, doi:10.5061/dryad.68m52.
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