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The health benefits of diets containing rich sources of long-chain omega-3

polyunsaturated fatty acids (n-3 LC-PUFA) are well documented and include

reductions in the risk of several diseases typical of Western societies. The diet-

ary intake of n-3 LC-PUFA has also been linked to fertility, and there is

abundant evidence that a range of ejaculate traits linked to fertility in

humans, livestock and other animals depend on an adequate intake of n-3

LC-PUFA from dietary sources. However, relatively few studies have explored

how n-3 LC-PUFA influence reproductive fitness, particularly in the context of

sexual selection. Here, we show that experimental reduction in the level of n-3

LC-PUFA in the diet of guppies (Poecilia reticulata) depresses a male’s share of

paternity when sperm compete for fertilization, confirming that the currently

observed trend for reduced n-3 LC-PUFA in western diets has important

implications for individual reproductive fitness.
1. Introduction
As with many traits subject to sexual selection, ejaculates can be conspicuously

variable within individual species (e.g. [1–3]). While the basis for such variation

remains contentious (e.g. [4]), recent work exploring the role of condition depen-

dence in sperm traits suggests that variation among individual males in the

acquisition and/or allocation of resources may constitute a considerable source

of variance in ejaculate quality in polyandrous species [5–8].

The manipulation of resource availability, particularly through nutrient sup-

plementation, offers a useful way to test for condition dependence in ejaculate

traits. Accordingly, several studies have shown that males fed nutritionally

enriched diets produce higher-quality ejaculates compared with those fed low-

quality diets [5–9], and one study has reported significant effects of diet quality

in regulating the outcome of sperm competition [5]. Among the key nutrients

known to influence ejaculate quality, long-chain omega-3 polyunsaturated fatty

acids (n-3 LC-PUFA; namely eicosapentaenoic acid and docosahexaenoic acid)

play a critical role in determining the structural properties of spermatozoa, with

concomitant effects on male fertility [10–12]. Animals cannot synthesize PUFA

de novo, and their ability to bioconvert dietary C18 PUFA to LC-PUFA is limited.

Animals must therefore obtain n-3 LC-PUFA from dietary sources. The exper-

imental manipulation of dietary n-3 LC-PUFA levels therefore offers a useful

way to test their effects on ejaculate ‘fitness’, and ultimately in sperm competitive-

ness. Despite their importance in regulating ejaculate traits [13,14], only a single

study has considered fatty acids explicitly in the context of postcopulatory

sexual selection [15], and no study has investigated the link between n-3

LC-PUFA intake and sperm competitiveness.
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In this study, we use the guppy Poecilia reticulata, a highly

polyandrous livebearing fish known to exhibit condition

dependence in several ejaculate traits [16–18], to explore

the effects of n-3 LC-PUFA dietary manipulation on competi-

tive fertilization success. We used controlled heterospermic

artificial inseminations to show that males fed diets enriched

with n-3 LC-PUFA achieved significantly higher paternity

success than their counterparts fed nutritionally impaired

diets, thus confirming that ejaculate ‘fitness’ in this species

is highly condition dependent and functionally dependent

on resource acquisition.
Biol.Lett.10:20140623
2. Material and methods
(a) Study population and dietary treatments
The experimental male guppies (n ¼ 60), aged three months at

the start of the trials, were assigned haphazardly to one of two

experimental diet treatments (n ¼ 30 per treatment) that differed

in n-3 LC-PUFA levels (hereafter ‘n-3LC-enriched’ and ‘n-3LC-

reduced’). Both diets were compositionally similar, comprising

identical quantities of basal ingredients, with the only exception

being the type of added lipid sources. Both diets contained simi-

lar levels of saturated fatty acids and n-6 PUFA, but differed

in their n-3 LC-PUFA content (measured as 12.9% in the

n-3LC-enriched diet and 1.8% in the n-3LC-reduced diet; see the

electronic supplementary material, table S1). The variation in n-3

LC-PUFA content was offset by the proportional variation of

monounsaturated fatty acids (primarily oleic acid). Once assigned

to their treatments, males were reared individually in separate 2 l

aquaria for three months and fed ad libitum the crumbled diet

once daily (6 days per week) until they were tested at six months

old. Male standard length (SL: distance in millimetres from

the snout to tip of caudal peduncle) was measured after the

three month feeding trials and did not differ significantly bet-

ween treatments (mean+ s.e.: n-3LC-enriched¼ 16.87+0.2;

n-3LC-reduced ¼ 16.69+0.18; t-test, t ¼ 0.70; p ¼ 0.49).

(b) Artificial insemination
Each replicate comprised a pair of rival males (one from each diet

treatment; n ¼ 30 pairs) and three virgin females (n ¼ 90). We

used artificial insemination [19] to inseminate equal numbers

of sperm from the two males into three (unrelated) females.

Immediately after insemination, each female was placed in a 2 l

plastic aquarium and fed live Artemia nauplii until parturition.

Tissue samples from the caudal fin of males and females, and

the whole bodies of newborn fish, were collected and stored in

pure ethanol for paternity analyses (see below). Only offspring

arising from the female producing the largest brood in each repli-

cate were used for subsequent paternity analyses (i.e. if more than

one of the three females from a given replicate produced offspring,

we only considered the largest brood for our analysis).

(c) Paternity analyses
We used up to four microsatellite markers to assign paternity to

each brood, including TTA, Pr46, KonD15 and KonD21 (Genbank

accession numbers: AF164205, AF127242, AF368429, AF368430,

respectively). Genomic DNA was extracted from offspring

using the EDNA HISPEX extraction kit (Fisher Biotec, Subiaco,

Western Australia). PCR products were analysed on an ABI3730

Sequencer and visualized using GENEMARKER v. 1.91 (http://

www.softgenetics.com); paternity was assigned using CERVUS

v. 3.0 (http://www.fieldgenetics.com). Only broods comprising

three or more offspring were included in our subsequent analysis

(final sample size: n ¼ 26 independent broods).
(d) Statistical analysis
We used a generalized linear model (GLM) to analyse the effect

of diet treatment on the relative paternity share of competing

males. For each family, we selected at random one focal male,

such that in 50% of cases the focal male was assigned to the

n-3LC-enriched treatment and 50% to the n-3LC-reduced treat-

ment. Our model included the proportion of offspring sired by

the focal male as the response variable and treatment (diet) as

a fixed effect. The model was weighted by family size (total

number of offspring) and specified a quasi-binomial error distri-

bution to account for overdispersion. All analyses were

conducted using the ‘glm’ function in R v. 3.1.0 [20].
3. Results
The mean number of offspring per family was 7.92+0.4 s.e.

(range ¼ 3–14; total number of offspring ¼ 206; see figure 1

for relative paternity share in each brood). The GLM revealed

that dietary n-3 LC-PUFA levels had a significant effect on

paternity success, confirming that on average n-3LC-reduced

males sired a significantly lower proportion of offspring

(mean+ s.e.: 0.39+ 4.5) than their n-3LC-enriched rivals

(0.61+4.5; t ¼ 22.42; p ¼ 0.02; Cohen’s d ¼ 0.96; figure 1).
4. Discussion
Our study reveals a clear link between diet quality and repro-

ductive performance in male guppies, thus corroborating

previous evidence that PUFA play a critical role in regulating

sperm and semen quality in several species [11,12,21–23],

including guppies [24]. Our finding that males fed diets

enriched with n-3 LC-PUFA sired significantly more off-

spring than their counterparts fed reduced n-3 LC-PUFA

levels complements recent evidence from crickets that males

fed diets enriched with vitamin E and b-carotene produce

competitive superior ejaculates [5]. In both cases, nutritional

stress played a role in modulating the competitive perform-

ance of ejaculates, a finding that is likely to have important

implications for postcopulatory sexual selection and the

evolution of female multiple mating (polyandry).

One important implication of our findings is that vari-

ation in the availability of n-3 LC-PUFA, and/or differences

among individual males in patterns of resource acquisition

and allocation, will generate considerable phenotypic var-

iance in ejaculates (e.g. [25]). Such environmental effects

may explain, at least in part, the emerging evidence that eja-

culates are inherently variable (see §1), despite evidence

for directional and/or stabilizing selection on these traits

(e.g. [26,27]). To the extent that condition itself has a genetic

basis, polyandry may enhance female fitness by biasing

paternity in favour of genetically superior males (reviewed

in [28]). Thus, as with traits subject to precopulatory sexual

selection, ejaculates may serve as ‘honest’ signals of male con-

dition and genetic quality, and therefore serve as targets for

viability selection.

Finally, our results have broader implications in the

context of linking n-3 LC-PUFA availability to fertility

and reproductive fitness in a broad range of species. There

is already some speculation that global declines in the pro-

duction of n-3 LC-PUFA by marine phytoplankton (the

primary source of all dietary n-3 LC-PUFA available for

both the marine and the terrestrial environments) may be
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Figure 1. Proportion of offspring sired by n-3LC-enriched and n-3LC-reduced males in each of the (n ¼ 26) families.
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linked to climate change [29]. Any such decline in the n-3 LC-

PUFA content of marine products may further compound

the trend towards reduced n-3 LC-PUFA levels in modern

animal (including human) diets [11], with concomitant

impacts on health and fertility. Our results suggest that

patterns of sexual selection may be similarly impacted by

these changes, which in turn has the potential to influence

population and community dynamics in affected groups

(e.g. [30]). We therefore require further investigation to deter-

mine the generality of these effects in other species, and the
possible implications for patterns of sexual selection in

affected populations.
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