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It is very important to understand the onset and growth pattern of breast pri-

mary tumours as well as their metastatic dissemination. In most cases, it is the

metastatic disease that ultimately kills the patient. There is increasing evidence

that cancer stem cells are closely linked to the progression of the metastatic

tumour. Here, we investigate stem cell seeding to an avascular tumour site

using an agent-based stochastic model of breast cancer metastatic seeding.

The model includes several important cellular features such as stem cell

symmetric and asymmetric division, migration, cellular quiescence, senes-

cence, apoptosis and cell division cycles. It also includes external features

such as stem cell seeding frequency and location. Using this model, we find

that cell seeding rate and location are important features for tumour growth.

We also define conditions in which the tumour growth exhibits decre-

mented and exponential growth patterns. Overall, we find that seeding,

senescence and division limit affect not only the number of stem cells, but

also their spatial and temporal distribution.
1. Introduction
The stem cell hypothesis that tumours progress owing to a small population of

cells within the tumour that exhibit specific properties such as unlimited self-

renewal, ability to develop tumour spheroids and ability to differentiate is gaining

support [1–4]. Specifically, there is increasing evidence that this is the case in

breast [5,6], colorectal [7–9] and skin cancer [9–11], to name a few. There is

increasing support for the importance of cancer stem cells (CSC) in the process

of metastatic dissemination and colonization [12–14]. It is generally accepted

that different primary cancers have organ-specific sites for metastasis [15]. The

lung is the second most common site for metastasis, partially because it is

highly vascularized [16]. Organ-specific metastasis may be mediated by cyto-

kines, such as CXCR4, which attract certain types of cancer cells to specific

metastatic sites [17]. Thus, we investigate different locations of seeding sites

and their influence on tumour progression.

Norton and Massague proposed the self-seeding hypothesis, which states

that metastasis is a multidirectional process in which cancer cells leave the pri-

mary site, metastasize and that metastatic cells may not only seed the metastatic

sites, but also the primary site, the process termed ‘self-seeding’ [18]. Norton

proposed self-seeding of the primary tumour would result in increased

growth rate and mass size when compared with stem cell self-renewal owing

to the increased ratio of stem cells on the periphery of the tumour [19]. It is

also proposed that seeds may be CSC and contribute to the Gompertzian

growth patterns seen in cancer [20]. In support of this hypothesis, breast, colo-

rectal and melanoma cancer cells were able to seed primary sites in mouse

xenograft models [21], and this effect seems to be mediated by chemoattractants

[22]. Although stem cell seeding has been investigated in regards to primary
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Figure 1. Flowchart of the spatial agent-based lattice model. (Online version in colour.)
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tumour growth, it is unclear what effect it has on the escape

from metastatic dormancy.

Several computational models have been used to study

stem cell growth dynamics, reviewed in [23]. Agur’s laboratory

used a system of ordinary differential equations (ODE) [24] and

a cellular automata model [25] that examines CSC in tumour

growth. Another mathematical model suggested that thera-

pies encouraging CSC differentiation would be effective [26].

Several studies focused on the acquisition of mutations in

the tumour population using an ODE model [27], a cellular

Potts model [28] and a stochastic model [29]. Cancer stem

cell dynamics have also been the focus of several models of

multicellular aggregates [30]. A mathematical model coupled

with tumour spheroids data was used to determine symmetric

division rates for neural and breast cancer cells [31]. Gerlee

and co-workers [32] used mathematical modelling to investi-

gate primary versus secondary seeding in a breast primary

tumour. Sottoriva and co-workers have used modelling to

study stem cell niche dynamics [33], tumour heterogeneity

and invasion [34]. In several studies, Enderling and co-workers

have modelled stem cell originated tumour growth [35–38].

The models focus on the conditions for dormancy [36] as

a function of rate of migration [35], directed migration

tumour immune response [37] and hierarchical growth dyna-

mics [39]. There are many types of computational models

and each has its own strengths and weaknesses [40]. Because

the locations of cells are important, but we are also investi-

gating thousands of cells, we chose the lattice agent-based

modelling to incorporate the most features while still being

computationally feasible.

Multiscale in silico systems biology approaches have been

applied previously in studies of cancer [41,42] and angiogen-

esis [40,43–45] (see [46–48] for reviews), but there has been a

limited number of computational models investigating metas-

tasis. The goal of this study is to examine the effect of stem cell

seeding and location from the primary tumour or metastatic

growth in a three-dimensional environment using a previously

developed agent-based model [35,36,38,49].
2. Methods
We used a spatial lattice agent-based stochastic model of

breast cancer metastasis based on the work of Enderling et al.
[35,36,38,49] to examine the effects of seeding location on

tumour progression and morphology, see the electronic sup-

plementary material data for more information. The simulation

starts with one stem cell metastatic seeding event represented by

a cell ‘agent’. The simulation takes place on a 2000 � 2000 �
2000 mm grid where each voxel is 10 � 10 � 10 mm3 and roughly

fits one spherical cancer cell. Human triple-negative breast

cancer MDA-MB-231 cells have diameters of approximately

10 mm [50], and the cell size assumption can easily be relaxed for

other cancer cells. Each cell is confined to occupy a space in a lat-

tice. The flowchart of the model is illustrated in figure 1: first the

grid is set up, and an initial stem cell is placed on the grid;

the stem cell proliferates to create a progenitor cell. Next, each

cell is checked whether it has adjacent space. Each of its 26 adjacent

neighbours is checked for vacancy; if it does not have space, it

becomes quiescent. Once there is free space in one of its adjacent

neighbours on the grid, it becomes proliferative and can divide.

If the cell can proliferate and is a stem cell, it determines whether

it will divide symmetrically or asymmetrically; if it is a progenitor

cell, it must divide symmetrically. Then, the number of divi-

sions the cell has completed is checked and if it has reached the

division limit, it undergoes senescence or apoptosis and is

removed from the simulation. Afterwards, the cycle repeats.

Because we are modelling the avascular tumour growth, we stop

the simulation at 500 000 cells.

2.1. Set-up
During the set-up phase of the simulation, an initial stem cell is

placed at position (1 100 1) on the grid, representing a stem cell

being placed on, for instance, the surface of a breast tumour,

mammary duct or lung. Each cell follows a set of probabilistic

rules (figure 2).

2.2. Cell proliferation
The cells in the model follow a specific set of proliferative rules

based on whether it is a stem cell or a progenitor cell. Stem
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cells are immortal, have unlimited proliferative potential and can

proliferate into differentiated progenitor cells. Progenitor cells

can proliferate only into progenitor cells and have a limited

number of cell divisions. Each stem cell proliferates at a rate r.

If proliferation occurs, it reproduces symmetrically to produce

two stem daughters (one of which replaces itself ) at a rate rs or

asymmetrically to produce a stem cell daughter (replacing

itself ) and a progenitor cell daughter at a rate 1 2 rs. Stem cells

could have different symmetric division rates, as a result of

specific growth factors and cytokines in the microenvironment,

such as TGF-b, IL-8, CXCL7 [6,51,52]. Each progenitor cell can

only reproduce symmetrically to produce two progenitor daugh-

ter cells at a rate rp. As the tumour growth is avascular, we

assume each cell has enough nutrients to proliferate.

2.3. Apoptosis
Apoptosis, programmed cell death, is also dependent on cell type.

Stem cells are assumed to be immortal and they do not die in the

model. Stem cells have been estimated to live from a range of

10–60 months [53,54] and because our simulations run for

36 months, the assumption that they do not die during the simu-

lation is justified. This is also supported by the fact that stem

cells are considered to be resistant to differentiation signals, resist-

ant to apoptosis and have an unlimited proliferative potential [55].

Progenitor cell death occurs either probabilistically after senes-

cence or after they have exhausted their number of replication

cycles dmax, which is limited owing to telomere shortening. Once

a cell apoptoses, it is removed from the simulation.

2.4. Seeding
Two types of stem cell seeding are included in the model, figure 3,

such that each day with probability ps a stem cell is seeded at a

specific location in the metastatic niche, see the electronic sup-

plementary material data for more information. Case 1: when a

specific place in the vasculature has been breached to make it poss-

ible for successive seeds to extravasate from this location, and case

2: when seeding occurs anywhere on the organ of interest. In the

first scenario, termed ‘site seeding’, the seed is assumed to come

from one direction where there is a break in the vasculature. Once

a ‘seed’ has extravasated through the vasculature, the local vascula-

ture is remodelled [56] and this can lead to a facilitated extravasation

of other cancer cells. Circulating breast tumour cells have been

shown to colonize already established tumours, mediated by

tumour-derived cytokines, e.g. IL-6 and IL-8, and these seeds were

shown to be 5–30% of the tumour mass [21]. A random voxel occu-

pied by the tumour is chosen, and the new seed is placed in the

outermost position on the z-axis at the edge of the tumour.

The second type of seeding, termed ‘volume seeding’, is when

the seeding occurs randomly at any place in the metastatic site,
which in the model is any grid point unoccupied by a cell.

This type of seeding might occur when the vasculature is more

permissive to cancer cell penetration; e.g. metastases to the lung,

which are known to have vascular destabilization and be distributed

throughout the entire lung [57]. Currently, the model examines

growth before the angiogenic switch and does not take into account

the growth of the tumour vasculature as well as the presence of

other stromal cells, which will be investigated in further models.

2.5. Progenitor cell senescence
Cellular senescence is a terminal progression into a non-prolifera-

tive state, compared with quiescence in which cells become non-

proliferative, but can become proliferative when conditions

change. One cause of senescence is when telomeres shorten to

the point where subsequent proliferation would cause chromoso-

mal instability [58]. In the model, this would occur when a cell’s

cycle reaches the division limit. To investigate how this would

influence the cancer dynamics, we included progenitor cell

senescence. Once a cell reaches its division limit, it becomes

senescent. Each iteration the senescent cells have a probability

of death that is varied in the model.

The model is available in .m file format at http://www.jhu.

edu/apopel/software.html.

Parameters: the parameters chosen in the model are based on

values reported in the literature, see the electronic supplementary

material data for more details.
3. Results
3.1. Inhibition of stem cell proliferation leads to

inhibited tumour growth
We find that when progenitor cells have a larger number of div-

isions, resulting in higher numbers of them, they surround the

stem cells leading to spatial inhibition of proliferation. When

the division limit is low, dmax ¼ 6, figure 4a, site seeding had

a small effect on the average total number of cells. When the

division limit is high, dmax ¼ 12, figure 4b, the maximum

average number of cells without seeding was about 500 com-

pared with 2000 when dmax ¼ 6. Thus, when there is no site

seeding the number of cells increases with decreasing division

http://www.jhu.edu/apopel/software.html
http://www.jhu.edu/apopel/software.html
http://www.jhu.edu/apopel/software.html
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limit (and increasing apoptosis) consistent with Enderling’s

results [36].

We find that progenitor cell senescence also leads to inhi-

bition of stem cell proliferation. For both senescent death

rates, figure 5, the total number of cells is lower than the case

without senescence (figure 4). With a death rate of 0.1,

during the first 200 days, there is a decremented exponential
growth with plateauing in the number of cells. This is due to

space inhibition of growth from the senescent cells and cell

death (figure 5a). When the death rate is lower, the growth inhi-

bition continues for all 1080 days (figure 5b). When dmax ¼ 12

with senescence, figure 5c, the numbers of cells increases to

100 000 with a site seeding rate of 0.2. Similar to dmax ¼ 6

with a senescent death of 0.1, at low seeding rates, the numbers
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of cells decreases before iteration 200 owing to cell death and

then slowly increases (figure 5a). In both cases of senescent

death rate, the overall trends are similar (figure 5d ).
3.2. Exponential tumour growth
While most of the simulations lead to a decremented exponen-

tial growth, where the tumour grew but then the growth

slowed, a few simulations lead to non-decremented growth,

which was close to exponential. This occurred when cells

were allowed to migrate one cell length each iteration. With

migration allowed, the effects of stem cell symmetric division

are more pronounced, figure 6a, compared with when there

is no migration, electronic supplementary material, figure S1.

The mean total number of cells when migration is allowed

was greater than 350 000 cells by 600 days. The slope of the

mean number of cells (on log scale) stays linear for a longer

time before decreasing when the cells are able to migrate.

Next, the effects of changes in the site seeding rate

when cells are allowed to randomly migrate are determined

(figure 6b). Without migration, the mean number of cells maxi-

mally reached 6000 after 1000 days, whereas with migration

the mean number of cells exceed 400 000 by 1000 iterations,
over a 100-fold difference. Thus, migration has a large effect

on the growth of the metastasis under different symmetric

division rates and stem cell seeding rates. Compared with the

case of site seeding, symmetric division rate has an even more

pronounced effect on the growth of the metastasis. It is clear

that migration decreases the restrictions on growth owing to

space limitations. Thus, the cellular movement releases the

cells from the restrictions of quiescence and they are able to

proliferate more frequently.

To determine whether senescence could inhibit the growth

of the tumour when migration is allowed, we examined two

scenarios: (i) where all cells could migrate and (ii) where the

senescent cells migrated four times slower than other cells.

When all cells are allowed to migrate, at all seeding rates, the

numbers of cells reaches 500 000 cells before 700 iterations

(figure 7a). When the senescent cells move slower than the

other cells, the rate of growth is slightly slower, but otherwise

the trends are similar (figure 7b). With all site seeding rates, the

number of cells reaches 500 000 by iteration 800, thus growth is

still uninhibited. When the division rate is raised to 12 how-

ever, the growth of the tumour slows and when the site

seeding rate is 0.002 the tumour does not reach 500 000 cells,

data not shown.
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3.3. Stem cell seeding is important for tumour growth
While we have already addressed the cases where the tumour

grows in an uninhibited fashion, there are also cases in which

stem cell seeding is critical for tumour growth. For instance,

when the division rate is high, site seeding becomes very

important for tumour growth. When dmax ¼ 12 and there is

no site seeding, the growth of the tumour completely plateaus,

figure 4b. By contrast, when there is seeding ( ps ¼ 0.05), the

average number of cells increases 70-fold. The total number

of cells is even greater than when dmax ¼ 6. Thus, site seeding

has a larger effect on tumour growth when the division limit

is increased.

When CSC were randomly seeded anywhere in the empty

grid space, a process termed ‘volume seeding’, the tumour

growth is closer to exponential, figure 8a. When dmax¼ 6,

‘volume seeding’ has a greater number of cells than ‘site seed-

ing’ for the whole range of seeding rates. This is a result of

growth inhibition owing to seeds being placed on the surface

of the existing tumour and thus its growth is limited in direc-

tion. The surrounding tumour cells restrict both progenitor

and stem proliferation leading to lower numbers of cells in

the case of ‘surface seeding’. When dmax is 12, figure 8b,

‘volume seeding’ results in more cells over time. This is due

to the fact that initially each seed is inhibited only by itself

and not by the cells from the previously growing tumour. In

addition, compared with a division rate of 6, there are fewer

tumour cells in the long-term growth of the metastasis. Once

again, this is because the greater number of progenitor cells cre-

ated from each stem cell inhibits the stem cell’s proliferation. As

the volume seeding rate increases, the rate of growth actually

decreases, because, eventually, the newly seeded stem cells

occur close to other growing seeded metastases, and thus

their growth is inhibited.
3.4. Three-dimensional tumours exhibit three different
architectural types

3.4.1. A spherical-like mass in which the stem cells are
distributed throughout

A growing tumour with dmax ¼ 6 and no migration or senes-

cence results in an architecture where the stem cells occupy
the centre of the tumour and are connected in a mass.

Figure 9 shows the resulting tumour after 1080 days with

stem cells in cyan, figure 9a, and the entire tumour in blue,

figure 9b. When there are site seeding events without

migration, it creates bulges of progenitor cells. As shown in

figure 9c, stem cells are distributed throughout the metastasis.

A few stem cells can create large numbers of progenitor cells

when unimpeded by space restrictions. Comparing the distri-

bution of stem cells when there is migration, figure 9a, we see

that the distribution of stem cells is more spherical with iso-

lated stem cells that have migrated from the edge of the

tumour mass, figure 9c. The resulting tumour looks spherical

with a peppering of progenitor cells near the isolated stem

cells, figure 9d. Near the edges of the tumour, the cells are

much more spread out, and the total numbers of stem cells is

quite large (around 40 000).
3.4.2. A tumour with condensed bulges with stem cells
at the centre

The condensed bulges seen in many of the tumours are a result

of stem cells populating small ‘self-metastases’, which are

spatially inhibited. One reason the stem cells become spatially

inhibited is that they produce a large number of progenitor

cells with high division limits. In tumours with a dmax ¼ 12,

the distribution of stem cells is not uniform, and the numbers

of stem cells are quite small (around 200). In figure 10a, the

site seeding events can be seen from the disconnected stem

cell populations. Here, it is clear that there are small separated

clusters of stem cells that could only have been formed from

stem cell seeding events, which were then growth inhibited.

These separated stem cells cause progenitor cell clumps to

form around them leading to bulges projecting from the central

mass of cells as shown in figure 10b.

When senescence is included in the model, the three-

dimensional morphologies of the tumour are quite different

than without senescence. When dmax ¼ 6 and there is no

migration, the stem cells are disconnected, similar to the

case with dmax ¼ 12 without senescence (figure 11a). In this

case, the progenitor cells are less tightly packed, figure 11b.

When dmax ¼ 12 and there is senescence, the distribution of

stem cells looks very similar to when dmax ¼ 6, figure 11c,
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but the progenitor cells are more tightly packed and show the

representative ‘self-metastases’ morphology, figure 11d. This

case looks very similar morphologically to the case of no

senescence with dmax ¼ 12.
3.4.3. A metastatic tumour with cells dispersed over the entire
region

Here, seeded stem cells are placed randomly in the grid, also

called ‘volume seeding’ and mimicking a situation, such as in
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the lung, where the ‘niche’ vasculature is destabilized and

metastases are known to form over the entire region. This

phenomenon can be seen in figure 12 showing the three-

dimensional image for volume seeding rate of ps ¼ 0.05

with dmax ¼ 12. The stem cells are dispersed throughout the

space, figure 12a, but some of the progenitor cell clusters

grow into one another inhibiting each others’ growth,

figure 12b. When dmax ¼ 12, the tumour clusters are actually

much smaller than when dmax ¼ 6, and the bulk of the clus-

ters are made of progenitor cells. This is once again owing

to the space inhibition of stem cell proliferation owing to
the increase in the number of progenitor cells surrounding

each stem cell.
3.5. Stem cell percentages
In addition to the variation in three-dimensional stem cell

distributions, the percentages of stem cells within the tumour

bulk are different when different initial conditions are applied.

In the condition where the dmax ¼ 6 and no migration is

allowed, the percentages remain relatively stable after the

first 400 iterations, figure 13a. Depending on the stem cell
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seeding rate, the percentage of stem cells in the tumour bulk

ranges from 7% to 13%. If dmax ¼ 6 but migration is allowed,

figure 13b, we see that independent of the rate of stem cell

site seeding, the stem cell percentages remains around 5%.

When the division limit is raised to 12, figure 13c, the percen-

tage of stem cells changes drastically. Here, independent of

the site seeding rate, the percentage of stem cells in the

tumour bulk remains about 0.5%. This is logical, because

each progenitor cell can now generate more progenitor cells,

which inhibit stem cell proliferation, so the fraction of stem

cells is substantially reduced.

3.6. Comparison with experimental data
We find that the ratio of stem cells to total cells has a wide

range in the model, in qualitative agreement with experimen-

tal data. Lagadec found using a method they developed and

aldehyde dehydrogenase (ALDHþ), the fraction of stem cells

in breast luminal cell lines ranged from 0.1% to 0.9% stem

cells, whereas in malignant cell lines, it ranged from 0.98%

to 11.1% [59]. Other studies have found pancreatic cancer
stem cell fractions range from 0.2% to 0.8% [60], and colon

CSC vary from 2% all the way to 75% in some cases

[61,62]. In our computational model, we found stem cell

percentages to be between 0.2% and 15% depending on the

simulation parameters in agreement with the literature.

Table 1 compares different doubling times in days for dif-

ferent cancers, primary tumours or metastases, in different

locations (breast or lung). There is a large range of doubling

times, ranging from 27 to 270 days in primary tumours and

from 3 to 360 days in metastases [63–66]. The doubling

times of the model fit within the ranges reported in previous

studies. Examining metastases that stayed below 500 000 cells

within the 1000 days, their doubling times ranged from 120

to 192 days. Tumours that grew past 500 000 cells had



Table 1. Doubling rates (in days) for different cancers.

cancer type
doubling time
(in days) reference

atypical non-malignant 1.25 – 11 [63]

primary 27 – 270 [63 – 66]

primary breast 105 – 270 [64]

primary lung 39 – 269 [64]

metastasis 3 – 360 [64,65]

lung metastasis 3 – 360 [64,65]

lung metastasis from breast 82 – 199 [64]

model: micrometastasis 120 – 192

model: macrometastasis 41 – 83, 303

Table 2. Comparison of the number of cells for each division limit.

division
limit 6

division
limit 12

no migration and no

seeding

increase in

cell number

decrease in

cell number

no migration and seeding decrease increase

migration and no seeding decrease increase

migration and seeding decrease increase
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doubling times mostly ranging from 41 to 83 days. There

were also a few cases in which the tumour size essentially

did not change within 200 days and these were excluded

from consideration. In conclusion, the simulation stem cell

ratios and doubling times are consistent with values reported

in previous studies.
4. Discussion
This model investigates the important relationship between

stem cell seeding frequency, seeding location and cell division

in a primary tumour or a metastatic environment. It uses a

previously developed model by Enderling and co-workers

[35,36,38,49] to specifically investigate stem cell seeding

frequency and location in a three-dimensional environment.

The essential conclusions of the model are the following:

(1) Having a lower division limit reduces the number of times

a cell can proliferate before dying, and thus increases the

frequency of apoptosis. Because cells are dying off faster,

one might expect that this would lead to decreased cell

growth. We find that with site seeding having a lower div-

ision limit actually increases tumour growth. This is due to

the fact that having higher apoptosis creates space for cells

to proliferate, in particular, the stem cells, and decreases

the amount of quiescence, which in turn allows for an

increase in the number of stem cells at the metastatic

site. Faster tumour growth results are in agreement with

previous models [35,36].

(2) Our simulations indicate that seeding becomes very

important in the cases where the division limit of the

cells is high. The higher division limit results in space-

limited quiescence, so the cells (including the stem cells)

do not proliferate as often. Here, cell quiescence becomes

a limiting factor to growth and decreases the number of

stem cells created through symmetric division. Under

these conditions, the growth of the tumour becomes

more dependent on stem cell seeding. Because site seeding

occurs either at the surface of the tumour or randomly in

the niche space, these stem cells are not restricted, so

tumour growth occurs. When there is no site seeding a

large division limit results in a reduction in the number

of total cells, whereas with seeding, an increased division

limit will result in an increased number of cells (table 2).
(3) Our simulations indicate that migration increases tumour

growth under all circumstances. Because cells are allowed

to migrate, they are less restricted by their environment

and thus are less likely to quiesce. Because they remain in

a proliferative state, the metastasis expands more rapidly

leading to an increased number of stem cells and progenitor

cells. This is supported by several experimental studies that

relate stemness to the migratory epithelial–mesenchymal

transition [67–71]. Because migration limits the effects of

quiescence, in all cases having a larger division limit

increases the number of cells (table 2).

(4) Migration also influences the morphology of the resulting

tumour. When cells are migratory, this leads to a more

spherical overall shape of the tumour, with a peppering

of cells near the ‘surface’. Site seeding contributes to the

bulges in the overall shape, because the seeded stem cells

grow as separate ‘self-metastases’ [72]. This is exasperated

by having a high division limit, because each stem cell gen-

erates more progenitors and have inhibited symmetric

divisions owing to space restriction. This will cause fewer

and more isolated stem cells surrounded by progenitors

creating bulges in the tumour.

(5) We find that in the cases where there is a low division limit,

the growth is decremented exponential growth such that

the growth of the tumour slows down after a period

of time (figure 4a). When the division limit is high

and there is no seeding, the growth of the metastasis is

Gompertzian growth [73,74], with exponential growth

followed by a complete plateauing effect where the num-

bers of cells fluctuate around 350 cells (figure 4b). This is

similar to other models of stem cell control with feedback

inhibition, where the cell growth is oscillatory but with pla-

teauing [75]. With site seeding, the growth is decremented

exponential growth, but the complete plateauing effect is

not seen. This may eventually become Gompertzian, but

the simulation was not run long enough to be sure.

When the division limit is larger, the decrement is larger

and closer to a plateau than when the division limit is

smaller. If stem cells have enough space to proliferate,

then the growth of the metastatic tumour will be less inhib-

ited. Having a higher division limit also slows down the

rate of growth once the initial cascade of progenitors

have been created. This is once again owing to the effects

of having limited space for proliferation.

(6) In general, site seeding with a low division rate leads

to a tumour that is filled with stem cells, whereas with

dmax ¼ 12 leads to tumours with dispersed stem cells sur-

rounded by progenitor cells. We find a ‘fingering’

morphology at the edge of the tumour occurs when there
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is migration and dmax ¼ 6. The sphere-like morphology of

the tumour is due to random migration, which leads to a dif-

fusion of the cells, with ‘fingers’ occurring at the edges from

cells migrating away from tumour bulk. A less pronounced

‘fingering’ occurs when dmax¼ 6, whereas when dmax ¼ 12,

the tumour has bulges instead of ‘fingers’. This ‘fingering’

morphology has been seen in experimental breast cancer

models [76–78] and in computational models [34,35,79].

In corroboration with our three-dimensional tumour

morphologies, Tanei et al. have identified using immuno-

histochemistry, human breast tumours with stem cells

located throughout the tissue, such as in figure 9, and

tumours with isolated stem cells, such as in figure 11 [80].

(7) ‘Volume seeding’ leads to an increase in tumour growth.

Initially, this outcome is large but it gradually slows

owing to space limitations. Thus, the higher the frequency

of seeding the larger the growth, but the difference

between the curves becomes smaller. Essentially, when

seeding is less frequent the seeds tend to be spatially sep-

arate from each other and thus there is no inhibition of

one ‘self-metastasis’ to another. As the number of seeds

increases owing to the increased frequency of seeding,

the grid becomes more saturated with seeds and the

stem cell clusters start to inhibit one another’s growth.

This may be one explanation as to why surgery in the pri-

mary site can increase recurrence and metastases [81].

Once the tumour has been removed, the space restrictions

are decreased, and any stem cells left at the site will have

space to symmetrically divide leading to an increase in

stem cells and increase in growth of the tumour leading

to recurrence. There is also evidence that primary tumour

removal might accelerate pre-existing metastases owing

to the suppression of cell-mediated immunity [81,82].

Because quiescent stem cells have a mesenchymal-like

phenotype [83], these newly exposed stem cells may also

be more likely to migrate to a metastatic site.

(8) When senescence is included in the model, the distribution

of stem cells becomes much closer to the example when

the division limit is large. This is due to the fact that the

senescent cells surrounding the stem cells lead to space-

inhibited growth. Therefore, the stem cells are less

proliferative and tumour growth is reduced. This is in

agreement with other models showing that initially senes-

cence yields larger tumours, but over time, senescence

tumours have greatly reduced growth rates [84]. Accord-

ing to the model, increasing cell senescence might be an

effective strategy to limit tumour growth.

Summarizing our results, we can make some predictions

of the best targets for metastatic treatment. Based on our simu-

lation results, we predict that therapies inducing cell apoptosis
will be beneficial only in certain circumstances. Our results also

suggest that reducing the amount of stem cell seeding will be

beneficial especially in cases where the cells have limited

migratory abilities. Therapies specifically targeting stem cell

symmetric division should be very effective at reducing meta-

static tumour growth, which is supported by literature [9,85]. If

seeding at a metastatic site is limited and there is no migration,

the metastasis will likely remain dormant. Increasing cell

senescence should also be an effective way to inhibit stem

cell proliferation.

In conclusion, we have investigated the role of stem cell

seeding using an agent-based spatial model of cancer metasta-

sis. Our analysis predicts that stem cell seeding is an important

factor for metastatic growth when progenitor cells do not have

a short number of replicative cycles. Telomere length is a major

factor responsible for the replicative cycle of a cell [86]. Thus,

we predict that stem cell seeding will greatly accelerate meta-

static growth when they can extend their telomeres, in part,

owing to regulation of telomerase expression by cMyc [3,87].

Inhibitors of CSC have been investigated which have been

shown to reduce the number of stem cells such as salinomycin

and dendritic-cell vaccinations [11,88]. Our results also indicate

that inhibiting cell migration would be effective for inhibiting

metastatic growth.

This model has several simplifications. First, we limit the

model to a pre-angiogenic stage of growth. Angiogenesis is an

important stage in tumour growth in which the tumour releases

growth factors to recruit vasculature to the tumour site and

allows for the expansion of tumour; it is beyond the scope of

this manuscript, but will be included in further research.

Another simplification is that we do not include clonal evolution

of stem and progenitor cells as has been done in other works

[27,28,89,90]. While this is an important aspect of cancer, it is

not the focus of the manuscript. While we examine the three-

dimensional architecture of tumour, we currently do not take

into account the specific architecture of the site. We merely

assume that this is a solid tumour growing within a tissue.

This simplification is made, so that the model could be general-

ized for many tumour types. We intend to adapt it for a specific

tissue type, breast cancer, and then we will take into account the

tissue morphology.
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