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The oceanographic drivers of marine vertebrate habitat use are poorly under-

stood yet fundamental to our knowledge of marine ecosystem functioning.

Here, we use composite front mapping and high-resolution GPS tracking to

determine the significance of mesoscale oceanographic fronts as physical dri-

vers of foraging habitat selection in northern gannets Morus bassanus. We

tracked 66 breeding gannets from a Celtic Sea colony over 2 years and used

residence time to identify area-restricted search (ARS) behaviour. Composite

front maps identified thermal and chlorophyll-a mesoscale fronts at two differ-

ent temporal scales—(i) contemporaneous fronts and (ii) seasonally persistent

frontal zones. Using generalized additive models (GAMs), with generalized

estimating equations (GEE-GAMs) to account for serial autocorrelation in

tracking data, we found that gannets do not adjust their behaviour in response

to contemporaneous fronts. However, ARS was more likely to occur within

spatially predictable, seasonally persistent frontal zones (GAMs). Our results

provide proof of concept that composite front mapping is a useful tool for

studying the influence of oceanographic features on animal movements. More-

over, we highlight that frontal persistence is a crucial element of the formation

of pelagic foraging hotspots for mobile marine vertebrates.
1. Introduction
Marine predators, such as seabirds, cetaceans, pinnipeds, turtles and sharks, must

locate sparsely distributed prey in vast, heterogeneous and dynamic oceans.

Although these diverse taxa differ greatly in foraging ecology, shared scale-

dependent foraging strategies have evolved, presumably in response to the

patchy, hierarchical distribution of pelagic prey [1–3]. These strategies enable pre-

dators to locate broad-scale foraging grounds and then adjust the scale of search

effort to find prey aggregations nested within [3,4]. Prey distributions are some-

what predictable at broad (1000s of kilometres) and mesoscales (10s to 100s of

kilometres [5]), but less so at sub-mesoscales (approx. 1 km [1,6]), which may

explain why foraging-site fidelity at broad and mesoscales is common among

marine vertebrates (e.g. seabirds, turtles and seals [5,7–10]).

Oceanographic processes operating over a range of spatial and temporal

scales regulate pelagic prey availability, and predictability, driving patterns of

habitat utilization for highly mobile marine predators. For instance, a taxonomi-

cally diverse range of marine vertebrates are known to associate with meso- and

sub-mesoscale oceanographic features such as fronts and eddies [5,11–17].

Fronts are transitions between water masses, which manifest at the surface as

horizontal gradients in temperature, salinity, density, turbidity or colour

[18,19]. Nutrient retention within fronts can significantly enhance primary pro-

duction [18,20] and bio-physical coupling leads to aggregation and proliferation
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of zooplankton [21,22]. These conditions are suitable for pelagic

fish, which in turn are prey for higher predators, and, hence,

fronts may be foraging hotspots [18,23]. Despite the assumed

significance of fronts as foraging locations, we still have a poor

grasp of their ecological value for higher trophic level predators.

Fronts occur throughout the oceans, yet differ considerably in

strength, persistence, size and spatial variability [19]. This varia-

bility, as well as temporal and spatial lags in bio-aggregative

effects [18,21,24], influences the suitability of fronts for foraging,

particularly for piscivores. Persistent fronts are assumed to pre-

sent more predictable foraging opportunities than small-scale,

ephemeral and/or superficial features [25,26], but direct tests

of the significance of frontal predictability for predator foraging

are lacking.

Recent methodological developments can address this

discrepancy. Bio-logging technology and associated analytical

techniques have enabled remote monitoring of individual

animal distribution and behaviour, enriching our insight into

habitat use by marine predators [27]. However, a key constraint

is the lack of data describing oceanographic processes and pela-

gic prey distributions at matching spatio-temporal scales.

Although in situ studies have yielded valuable insights into

the fine-scale mechanisms underlying animal–oceanography

interactions [28–31], this Eulerian approach cannot provide

information on behaviour throughout a foraging bout, limiting

our understanding of broader-scale oceanographic influence.

Remotely sensed data can supplement bio-logging, identifying

physical conditions that drive habitat selection in virtual real-

time. Sea-surface temperature (SST) and chlorophyll-a (chl-a)

imagery are most widely used [12,32], but it is questionable

whether these metrics are appropriate for defining foraging

habitat, particularly for piscivores [33]. Indeed, the use of

chl-a imagery in shallow shelf seas could be misleading, as

sub-surface chlorophyll maxima in stratified areas can present

more attractive foraging opportunities than mixed waters with

elevated surface chl-a [28]. By contrast, sub-surface processes

occurring along thermal fronts are known to increase prey

accessibility for diving predators. Convergent flow fields and

fine-scale downwelling aggregate plankton in the shallow

thermocline [21,22], attracting higher trophic level consumers,

including foraging seabirds [34,35]. Front mapping is able to

detect the surface profile of these important sub- and near-

surface bio-physical processes and is, therefore, a potentially

powerful tool for identifying pelagic foraging hotspots.

Composite front mapping [36] is a step forward in auto-

mated front detection via remote sensing, addressing the

limitations of precursor methods. To date, the majority of

studies including a measure of frontal activity have either ident-

ified fronts manually or used single-image edge detection (SIED

[37]) on single-day [38] or temporally averaged [16] images.

However, limitations of these methods reduce their utility. For

example, using single-day imagery can result in sacrifice of

tracking data owing to cloud cover. Furthermore, temporally

averaged imagery masks spatio-temporal dynamics of fronts,

which can be highly variable in shelf seas, giving only an

estimated average position of a wandering feature. Using

SST/chl-a gradients, it is not possible to recognize contiguous

curvilinear frontal features and, when using temporally

averaged images, can result in erroneous frontal locations.

Composite front mapping [36] addresses these limitations,

enabling objective, automatic front detection over a sequence

of images, removing cloud influence and allowing for the visu-

alization of frontal dynamics. In addition, high-resolution front
metrics, such as the distance to the closest front or density

of detected fronts, can be derived. These metrics facilitate

objective quantification of the strength of predator–frontal

associations and exploration of the effects of spatial scale, per-

sistence and magnitude of cross-frontal gradient, not always

possible previously.

Here, we use composite front mapping and high-resolution

GPS tracking to investigate oceanographic drivers of habitat use

in a piscivorous marine predator, the northern gannet Morus
bassanus (hereafter, ‘gannet’). Gannets are large, medium-

ranging marine predators, which feed on a wide variety of pis-

civorous prey [7,39–41]. Foraging plasticity in gannets has been

linked to oceanographic variability over a range of scales

[40,42–44]. We here assess the influence of mesoscale frontal

activity on gannet foraging behaviour and evaluate the utility

of composite front mapping for elucidating oceanographic

controls of habitat selection. Moreover, we explicitly assess the

importance of frontal persistence by investigating gannets’ be-

havioural responses to both contemporaneous and seasonally

persistent thermal and chl-a fronts.
2. Material and methods
2.1. Device deployment
Chick-rearing gannets (n ¼ 66) were tracked from a large breed-

ing colony (approx. 40 000 breeding pairs) on Grassholm, UK

(518430 N, 058280 W) over two breeding seasons (n ¼ 17, July

2010; n ¼ 49, June–July 2011; figure 1). All birds were equipped

with 30 g GPS loggers (i-gotU; MobileAction Technology;

http://www.i-gotu.com), TESA-taped to feathers at the centre

of the back. Previous studies indicate that these devices have

no deleterious effects on foraging gannets [7]. All birds were

caught during changeover at the nest, to minimize time chicks

spent alone and to ensure foraging trips began immediately fol-

lowing release. Handling time did not exceed 15 min. Devices

were programmed to record location fixes at 1 or 2 min intervals

and recovered after at least one complete foraging trip.

2.2. Behavioural classification
Area-restricted search (ARS) behaviour is characterized by low

flight speed and frequent turning [45] and can thus be distin-

guished from direct and fast transit to and from the colony.

Previous work has revealed that ARS is triggered by the detec-

tion and pursuit of prey in gannets [44]. The pelagic prey field

is patchy and hierarchically organized, with dense prey patches

nested within broader-scale aggregation zones, and resultantly

ARS is often observed at multiple nested scales [4,6,46,47].

We used residence time (RT [48]) to identify ARS bouts in all

foraging tracks (adehabitatLT R package [49]). To avoid artificial

inflation of RTs, we excluded tracking locations recorded during

hours of darkness (because gannets are diurnal foragers) and all

locations within a radius of 1 km of the colony (because gannets

do not forage here but do frequently rest on the water). We then

interpolated each daylight movement bout to 60 s intervals and cal-

culated RT at each of these locations, using three radii (1, 5 and

10 km; 2 h allowed outside circle before re-entering) to detect the

scale at which birds performed ARS. These radii were chosen to

cover the range of ARS observed previously in gannets (e.g. [44];

average scale of search 9.1+1.9 km, with nested finer-scale

search at 1.5+0.8 km). We used RT at each interpolated location

to distinguish ARS from transit using an approach based on Lavielle

segmentation [48], using both the mean and variance of each series

with an ‘Lmin’ value of 3 (minimum number of observations in each

segment) and a ‘Kmax’ value of 10 (maximum number of segments

http://www.i-gotu.com
http://www.i-gotu.com
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Figure 1. GPS tracking. (a) All foraging trips of gannets GPS-tracked during 2010 (n ¼ 17) and (b) 2011 breeding seasons (n¼ 49). Grassholm colony shown as grey star.
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Figure 2. Composite front mapping. Preparation of thermal composite front maps, and front metrics rasters, from advanced very-high resolution radiometer (AVHRR)
and sea-surface temperature (SST) images. Several satellite passes per day are mapped to the study area (e.g. a,b). Single-image edge detection (SIED) detects fronts
in each of these swaths, using a given threshold for front definition, here 0.48C (c,d). Composite front maps are created from all fronts detected in imagery over a
7 day period (e [36]), and spatially smoothed to generate a frontal density ( fdens) metric ( f ) or simplified to generate a distance to closest front ( fdist) metric (g).
(Online version in colour.)
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in movement burst; electronic supplementary material, figure S1). We

classified segments as periods of ARS or transit using a custom-writ-

ten R function that identifies each segment as either above or below a

threshold of RT (seconds), with thresholds specified as mean values

across all trips at each radius, resulting in a binary response variable

(i.e. ARS or transit) for each radius (electronic supplementary

material, figure S2). We then used these multi-radii ARS classifications

in subsequent analysis, investigating levels of scale dependence in the

influence of fronts on habitat selection at meso- (10s to 100s of

kilometres) and sub-mesoscales (approx. 1 km).

2.3. Composite front mapping
Thermal composite front maps were created for the area enclosing

accessible habitat (see [50]; figure 2), using a radius of whole-

dataset maximum displacement from colony (432 km). Firstly,

raw (level 0) advanced very high-resolution radiometer (AVHRR)

infrared data were converted to an index of SST (level 2). SST

data were then mapped on to the United Kingdom Continental

Shelf region in Mercator projection, with a spatial resolution of

approximately 1.1 km/pixel. Thermal fronts were detected in
each scene using SIED [37]. Thresholds used for SIED front defi-

nition are often selected arbitrarily and yet are central to findings.

We therefore actively varied the threshold for thermal front defi-

nition, enabling us to objectively assess the effects on model

predictions. To investigate the influence of the magnitude of

cross-frontal temperature gradient, we created separate thermal

composite sets using 0.48C and 1.08C thresholds. All fronts detec-

ted over 7 day windows were included in composite front maps,

rolling by 1 day and covering the entire tracking duration. We

also produced composite chlorophyll-a (hereafter; chl-a) front

maps from MODIS data using a similar protocol. However, we

only used a single front detection threshold for chl-a owing to the

log-space scale of chl-a imagery (0.06 log mg chl-a m23). Resultant

composite maps (figure 2) quantify frontal activity using arbitrary

units (fcomp [36]), which are a combination of thermal gradient,

persistence (ratio of front observations to cloud-free views) and

proximity of neighbouring fronts.

Composites were used to create a suite of metrics quantifying

frontal activity designed for use with tracking data (figure 2).

We simplified the composite maps to determine contiguous

contours through the strongest front observations, using a novel
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clustering algorithm (PI Miller 2014, unpublished data) which first

involves smoothing the front map with a Gaussian filter of five

pixels width. From these, we generated smoothed rasters describ-

ing distance to the closest front and frontal density, for use with

tracking data. Frontal distance ( fdist) describes distance from any

point to the closest simplified front (figure 3). Frontal density
( fdens) quantifies the relative strength of detected fronts, spatially

smoothed to give a continuous distribution of frontal activity

(figure 3). We selected a smoothing parameter based on the level

of detail in resultant products, choosing a value that did not over-

smooth small-scale, ephemeral fronts. Thermal and chl-a front

metrics were extracted for each location along each track using
custom software. In addition, we extracted surface chl-a
(mg m23; 7 day composite) for each location, as an indicator of

levels of primary production in relation to frontal propagation.

Seasonal thermal front climatologies were also generated for

each year (June–August; 2010–2011), at 1.2 km/pixel resolution.

These frequent front ( ffreq) maps (figure 4) identify seasonally

persistent frontal zones by highlighting regions in which

strong, persistent or frequently occurring fronts manifest. We

used a custom algorithm that estimates the percentage time in

which a ‘strong’ front (here, Fcomp � 0.015) is detected within

each grid cell over a specified time period [51]. This Fcomp unit

combines strength, persistence and proximity to other fronts
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[36], and this threshold is used to exclude numerous weak

and variable fronts that could confuse the seasonal frequency.

Seasonal chl-a (median) composites were created at the same

temporal and spatial resolution, to highlight areas of enhanced

productivity in relation to persistent frontal zones.
2.4. Modelling gannet foraging behaviour
2.4.1. Contemporaneous thermal and chlorophyll-a fronts
First, we tested the influence of contemporaneous thermal and

chl-a fronts on the probability of observing ARS in gannets. Metrics

describing frontal density ( fdens), distance to closest simplified front

( fdist) and chl-a concentration were extracted from rolling 7 day

composites centred at the time of animal presence (figure 3). To

account for the fact that gannet foraging range is influenced by

intra-specific interactions and travelling costs [52], we also included

distance to the colony of each GPS fix as a proportion of maximum

displacement as a covariate in our models [50]. All explanatory co-

variates were standardized before inclusion by subtracting the

mean and dividing by the standard deviation [53]. We checked

for multi-collinearity using generalized variance inflation factors

(GVIFs) and pairwise plots. Owing to observed collinearity, the
fdens and fdist metrics were investigated using separate models

for both thermal and chl-a fronts.

To account for strong intra-individual temporal autocorrela-

tion, we used generalized estimating equations (GEEs [54]), with

each daylight movement bout as the blocking variable (see also

[30,55,56]). We constructed generalized additive models (GAMs)

with GEEs (GEE-GAMs) with a binomial error structure and logis-

tic (‘logit’) link function (‘geepack’ and ’splines’ R packages [57]).

Quasi-likelihood under the model independence criterion (QIC

[58]) was used to select between a working independence corre-

lation structure and an autoregressive, AR1, correlation structure.

An approximated version of the QIC (QICu [58]) was used to

select the most parsimonious set of explanatory variables from

a priori candidate models. In order to ascertain the most appro-

priate form of each explanatory covariate, we compared the

QICu of models with each term in its linear form, and as a

B-spline with 4 d.f. and a knot positioned at the mean. QICu

can be over-conservative [59], so we used repeated Wald’s tests

to determine the significance of retained explanatory covariates.

Goodness of fit of final models was evaluated using a con-

fusion matrix comparing binary predictions with the observed

incidence of ARS in the original dataset. The probability cut-off

above which a prediction was classified as an ARS point was

selected using a receiver operating characteristic (ROC) curve
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[60]. We computed the area under the ROC curve (AUC) as a

further measure of model performance (closer to 1, better per-

formance [60]). To obtain response curves, we predicted from

the final model for each of the explanatory terms, holding all

other terms constant. Terms retained by QICu model selection

but found to be non-significant under more stringent Wald’s

tests were not removed from the model [55], and only significant

relationships were plotted.

2.4.2. Seasonally persistent thermal and chlorophyll-a
frontal zones

Second, we tested the influence of seasonally persistent thermal

and chl-a frontal zones (figure 4) on gannet foraging habitat prefer-

ence. As no intra-individual temporal autocorrelation existed in

this time-aggregated dataset, we used a binomial GAM with a

logistic (‘logit’) link function to model presence/absence of ARS

against front frequency for the 2011 breeding season (‘mgcv’ R

package [61]). To achieve this, we created a grid at a matching

spatial resolution to the seasonal frequent front maps (1.2 km;

‘raster’ R package [62]), and then determined the presence/

absence of ARS in each cell across all tracks. We were unable to

do the same for 2010 because of low sample size. Environmental

covariates were standardized before inclusion as explanatory

terms, and multi-collinearity was checked using GVIF and pair-

wise plots. Collinearity between the seasonal frequent front and

chl-a metrics prevented simultaneous inclusion in the same

model, so the terms were applied separately. An index of habitat

accessibility, derived using the distance of each grid cell to the

colony as a proportion of whole-dataset maximum displacement,

was also included to control for greater accessibility of fronts

close to the colony than in fringes of the foraging range [50].

In order to ascertain the best form for each explanatory

covariate, we fitted separate models with both linear and smoothed

forms of each term, visualized the shape of smoothers and deter-

mined the effect of the inclusion of each form on Akaike

information criteria (AICs). Smoothers were only included in

final models where deemed biologically reasonable. For example,

although the smoothed forms of the front frequency metrics

(mfreq; cfreq) were associated with lower AICs, linear forms were

preferred following visualization of the smoother, as a conservative

approach to prevent over-fitting. Forwards and backwards step-

wise model selection using AICs identified the final model,

which was then checked for overdispersion. Model residuals

were checked for spatial autocorrelation [53].
3. Results
3.1. Gannet foraging trips
For the 66 birds tracked over the two breeding seasons, the

mean number of foraging trips was 3.8+2.8 (range 1–12),

with an average duration of 24.8+22.7 h (range 2–168 h).

The majority (76%) involved one or more nights spent away

from the colony (mode 1; range 0–7). Maximum foraging

range per trip ranged between 22.2 and 432.0 km from the

colony, with an average of 178.3+87.2 km. All foraging trips

included at least one ARS zone.

3.2. Contemporaneous thermal and chlorophyll-a fronts
We found no evidence that gannet ARS was associated with

contemporaneous thermal or chlorophyll-a fronts, even when

varying the threshold used for thermal front definition and

the radius used to define ARS through the RT analysis.

Although QICu model selection retained contemporaneous

front metrics in some model runs (electronic supplementary
material, table S1), post hoc repeated Wald’s tests confirmed

that only distance to colony explained a significant pro-

portion of deviance in each of these model runs (electronic

supplementary material, figure S3).

Model validation confirmed goodness of fit of final models.

True positive rates of model predictions, obtained from con-

fusion matrices, are given in the electronic supplementary

material, table S1. ROC curves confirmed models performed

acceptably well. High levels of temporal autocorrelation

(within-block correlation, e.g. thermal 0.48C threshold, 5 km

RT radius fdens ¼ 0.97+0.04) justified the use of GEEs. QIC

comparison confirmed an AR1 autoregressive correlation

structure as best fit for the data for all models.

3.3. Seasonally persistent thermal and chlorophyll-a
frontal zones

Seasonal thermal front frequency (mfreq; figure 4a) was retained

by model selection (x2
1 ¼ 322:5, p , 0.001; figure 4c; electronic

supplementary material, table S2), with the probability of ARS

twice as likely at high front frequency compared with low

(figure 4c). A smoothed relationship with habitat accessibility

was also retained (HabAccess, d.f. ¼ 8, p , 0.001; electronic

supplementary material, figure S4 and table S2). The model

explained 33% of deviance and was not over-dispersed (dis-

persion statistic ¼ 0.83). Collinearity between thermal front

frequency (figure 4a) and seasonal average surface chl-a concen-

tration also confirms that persistent frontal zones are areas of

increased primary productivity.

The seasonal front frequency index for chl-a fronts

(cfreq; figure 4b) was also significant in explaining the

spatial distribution of ARS over the breeding season

(x2
1 ¼ 3108, p , 0.001; figure 4d; electronic supplementary

material, table S2), alongside smoothed habitat accessibility

( p , 0.001; electronic supplementary material, figure S4 and

table S2). The model explained 32% of deviance and was

not over-dispersed (dispersion statistic ¼ 0.88).
4. Discussion
Combining composite front mapping with high-resolution

GPS tracking, this work has revealed that gannets are more

likely to perform ARS within persistent mesoscale frontal

zones than in other regions of accessible habitat. This is of par-

ticular significance because it shows not only that mesoscale

fronts influence habitat selection, but also that remote sensing

methods are able to identify features relevant to piscivorous

marine vertebrates. Moreover, this work also illustrates that

temporal scale is crucial—gannets do not tend to forage at

ephemeral contemporaneous fronts, instead relying on

spatially predictable, seasonally persistent zones of frequent

frontal activity.

4.1. Mesoscale fronts and top predator foraging
Predictability of foraging grounds is known to strongly influ-

ence seabird habitat selection and may partially explain our

observed differences in front use [5]. Many marine predators,

including seabirds, are known to repeatedly return to the

same foraging areas [5,7,40,63], which is generally attributed

to the presence of oceanographic features that are predictable

in time and space. In the Celtic Sea, these predictable foraging

areas are associated with persistent mesoscale thermal and
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chl-a frontal zones. The ultimate mechanisms by which these

features are located are not known, although a combination

of memory effects, local enhancement [64] and colonies

acting as information centres strongly influence observed fora-

ging distributions in this species [52]. Proximate environmental

factors enabling front detection include visual cues associated

with the accumulation of foam and detritus [18,22]; flow pat-

terns, including surface convergence [22] and cross-frontal

jets [34], or olfactory cues such as dimethyl sulfide [65]. Persist-

ent fronts probably produce a stronger surface signal than

ephemeral features, increasing detectability.

Alongside greater spatial predictability and detectabi-

lity, persistent mesoscale frontal zones also present more

attractive foraging opportunities than ephemeral fronts. The

bio-aggregative effects of fronts vary with temporal persistence,

spatial scale, temperature gradient, strength of convergent flow

and the properties of surrounding water masses, influencing

their attractiveness as top predator foraging habitat. Ephemeral,

weak or spatially variable features may not propagate for suffi-

cient time for biological enhancement to attract mid-trophic

level consumers such as pelagic fish. By contrast, persistent fron-

tal zones are associated with sustained primary productivity,

and therefore are more likely to attract the pelagic fish preyed

upon by seabirds and other large marine vertebrates.

In contrast to our findings, the closely related Cape gannet

Morus capensis is known to initiate ARS-type behaviours at

contemporaneous chl-a fronts in the Benguela [16]. The reasons

for these differences are not clear but are likely to be related to

differences in regional oceanography. Small-scale, superficial

and ephemeral thermal fronts develop frequently in the Celtic

Sea through tidal effects and cycles of stratification and

mixing [30] but are not always associated with chl-a enrichment

[28,66]. By contrast, the Benguela is a major upwelling zone, in

which upwelling filaments, eddies and strong vertically struc-

tured fronts manifest. Although varying in seasonal intensity

and position, upwelling fronts in the Benguela are less spatio-

temporally variable than tidal fronts in the Celtic Sea over

time scales of days to weeks, and so may be more predictable

foraging habitats for seabirds using learning and memory

effects to locate prey [5]. In addition, Cape gannets prey upon

the mega-abundant sardines (Sardina pilchardus) and anchovies

(Engraulis encrasicolus) in the Benguela [16]. These fish are

zooplanktivorous, and therefore are more closely tied to

oceanographic drivers than the piscivorous fish (e.g mackerel

(Scomber scombrus), garfish (Belone belone)) targeted by northern

gannets in the Celtic Sea [39]. Differences in the bio-physical

nature of fronts encountered by prospecting birds within

these two contrasting oceanographic regions elicit different

responses from these two closely related species. These differ-

ences highlight the need for a comprehensive understanding

of regional oceanography when investigating the drivers of

habitat selection for mobile marine vertebrates.

Gannets in the Celtic Sea forage extensively at fishing

vessels [39,67,68], so fisheries activity could also influence

the association between fronts and gannets reported here.

Nevertheless, we believe that gannets are using persistent fron-

tal zones as natural foraging sites for the following reasons.

First, gannets switch between natural foraging and scavenging

both within and among trips [39]. Second, analysis of a subset

of 10 gannets in 2011 equipped with bird-borne cameras

enabled us to determine frontal activity in the presence and

absence of fishing vessels. This revealed little difference

between vessel-associated ARS instances, those associated
with natural foraging and conditions experienced during transit

(see the electronic supplementary material, figure S5). Third,

the majority of trawlers that gannets follow in the Celtic Sea

target demersal fish [39], and would presumably not benefit

from fishing in frontal regions.
4.2. Composite front mapping and marine predator
foraging habitat

We have used multi-threshold objective front detection to

produce composite thermal and chl-a front maps at 1 km resol-

ution, enabling us to quantify the influence of fronts on foraging

habitat selection in gannets. Using this technique has negated

sacrifice of tracking data as a result of cloud cover. Furthermore,

using both temporally matched 7 day front composites and

seasonal front indices has revealed the importance of consider-

ing frontal persistence. However, composite front mapping

does have limitations with implications for defining marine

predator foraging habitats. In common with all remotely

sensed products, only the surface signature of complex three-

dimensional oceanographic processes is visible. Resolution of

imagery is also limited by sensor technology, restricting our

ability to detect sub-mesoscale near-shore tidal fronts,

potentially significant features in shallow shelf seas [69].

Furthermore, using 7 day composites could mask real-time,

fine-scale responses to environmental cues. Recent in situ
studies of fine-scale oceanographic influence on seabird fora-

ging have identified tidal state, thermal stratification index

and sub-surface processes, such as tidal shear at the thermo-

cline, as significant influences on foraging decisions [55,70].

These fine-scale processes cannot be detected using contempor-

ary remote sensing techniques. However, remote sensing can

provide oceanographic context for the movements of known

individuals over broader spatial and temporal scales, generat-

ing insights of direct relevance to predictive habitat modelling

[71] and marine spatial planning [51].
5. Conclusion
We here present proof of concept that composite front mapping

[36] can enhance the value of predator tracking data for

habitat utilization studies, and can improve understanding of

mechanistic links between oceanographic processes and

marine vertebrate foraging ecology. Novel front metrics used

here provide capacity for quantification of the strength of pred-

ator–frontal relationships without neglecting the significance of

frontal strength, persistence and scale. We have found that per-

sistent frontal zones are preferred foraging habitats of a

piscivorous top predator inhabiting a shallow shelf sea, but

that responses to contemporaneous thermal and chl-a fronts

vary. Persistent frontal zones are likely to represent predictably

profitable foraging grounds for predators that use learning and

memory effects to locate prey. By contrast, ephemeral, superficial

fronts may not present attractive foraging opportunities owing

to the spatial and temporal lags inherent in bio-aggregation.

Furthermore, persistent fronts are more likely to generate

environmental cues discernable to overflying gannets, and so

are more likely to become sites of local enhancement for these

network foragers. These findings provide direct evidence that

the temporal persistence of mesoscale fronts fundamentally

regulates their value as foraging habitats for marine predators.
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Although considerable advances have been made in our

understanding of the oceanographic drivers of marine ver-

tebrate habitat use in recent years, questions remain regarding

the strength and nature of predator–frontal associations. Our

methods have considerable scope for further application,

providing opportunity for environmental contextualization of

habitat use, across foraging guild, trophic level and oceano-

graphic region. Composite front mapping allows us to

objectively detect thermal and chl-a fronts anywhere in the

global ocean at high resolution, which could help in locating

critical at-sea habitats for mobile marine vertebrates, many

of which are of immediate conservation concern [72,73].

Furthermore, continuous near-real-time global satellite moni-

toring of environmental conditions, together with animal
 I
tracking and bio-logging, provides capacity for investigation

of responses to global change.
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