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Static and dynamic mechanical instabilities were previously suggested, and

then rejected, as mediators of aneurysmal development, which leaves open

the question of the underlying mechanism. In this paper, we suggest as a

new paradigm the interpretation of aneurysms as mechanobiological instabil-

ities. For illustrative purposes, we compare analytical calculations with

computational simulations of the growth and remodelling of idealized fusi-

form abdominal aortic aneurysms and experimental and clinical findings.

We show that the concept of mechanobiological stability is consistent with

the impact of risk factors such as age, smoking or diabetes on the initiation

and enlargement of these lesions as well as adaptive processes in the healthy

abdominal aorta such as dilatation during ageing or in hypertension. In gen-

eral, high stiffness, an increased capacity for stress-mediated matrix

production, and slow matrix turnover all improve the mechanobiological

stability of blood vessels. This theoretical understanding may help guide

prognosis and the development of future therapies for aneurysms as it enables

systematic ways to attenuate enlargement.
1. Introduction
Aneurysms are local dilatations of the arterial wall that typically evolve over

years; rupture of these lesions results in significant morbidity and mortality.

Despite advances in cell biology, genetics, medical imaging and surgical tech-

niques, the natural history of aneurysms, especially their initiation, remains

poorly understood. Blowout instabilities were discussed as a potential initiation

mechanism for cerebral aneurysms [1–3], but rejected because of the highly

nonlinear strain energy function for arteries [3–5]. Similarly, dynamic instabil-

ities [6,7] were debated, but ultimately considered unlikely due to the viscous

dissipation in the system [8,9]. Besides the mechanical mechanisms of initiation,

factors governing aneurysmal enlargement similarly remain unclear. Whereas

recent numerical studies provide insights into some parameters that affect the

initiation and enlargement of aortic aneurysms [10,11], there remains a need

for a unifying theory to understand experimental and clinical observations.

Towards this end, we generalized in [12], on the basis of Lyapunov’s stability

theory, concepts of statics and stability for mechanobiology. We also suggested

mechanobiological instability as a potential initiating mechanism for aneurysms

and presented mathematical statements regarding the possible impact of

various parameters on their development.

In this paper, we use illustrative examples for the abdominal aorta and

abdominal aortic aneurysms (AAAs) to show that this mechanobiological stab-

ility theory provides a simple and yet powerful analytical framework to

understand diverse aspects of the natural history of aneurysms as well as prior

findings arising from related computational models. We thus suggest a change

of paradigm: using the theory of mechanobiological stability as a unifying frame-

work, future risk analyses of aneurysms should not focus solely on diameter or

wall stress, but also consider measures of mechanobiological stability.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2014.0680&domain=pdf&date_stamp=2014-09-10
mailto:christian.cyron@yale.edu
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2. Mathematical model of growth and
remodelling

The following section summarizes the mechanobiological

stability theory presented in [12], to which the reader is

referred for details. Regarding the notation, vectors and

higher order tensors and also linear operators, which are

equivalent to such in finite dimensional systems, are written

in bold print, and single contraction products, such as

vector–vector or matrix–vector products, without operator.
J.R.Soc.Interface
11:20140680
2.1. Mechanics and mechanobiology
As a first approximation, we model the macroscopic behav-

iour of blood vessels as membranes subject to an internal

mean pressure p. They consist of n incompressible material

species, which allows the effective mechanical behaviour to

be modelled using a rule of constrained mixtures, that is,

each species may possess unique material properties and

reference configurations but must deform with the tissue as

a whole. In practice, the primary species are elastin, circum-

ferentially oriented smooth muscle, and multiple families of

parallel collagen fibres. Let x(X, t) be the spatial position

of each material point X of the membrane at time t and Mi(x, t)
the (reference) areal mass density of the ith species there. In

general, an upper index i will denote quantities referring to

the ith species. The areal mass densities of all species are gath-

ered in the vector M having elements Mi, which allows

characterization of the state of the membrane by

y: R� R3 ! R3 � Rn, (t, X) 7! y(t, X) ¼ x(t, X)
M(t, X)

� �
: (2:1)

Vascular growth and remodelling (G&R) typically occurs on the

time scale of weeks to years. Inertia and viscosity are negligible

on this time scale, on which we focus. Therefore, according to

eqns (2.15) and (2.16) in [13], quasi-static mechanical equilibrium

requires at each point in the interior of the domain

rT
�S:T

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

f int

þ f
k
ext

f?ext

� �
|fflfflfflffl{zfflfflfflffl}

f ext

¼ f tot ¼ 0, (2:2)

where fint, fext and ftot are internal, external and total loads,

respectively, T is the Cauchy membrane stress tensor (units of

N m21),rT its divergence and S the shape tensor (or second

fundamental tensor) for the curved surface representing the

membrane. The external in-plane f
k
ext and out-of-plane f?ext

loads may represent, for example, wall shear stress and blood

pressure p, respectively. With J the Jacobi determinant of the

deformation gradient between reference and current configur-

ations and @ the volumetric mass density, the membrane

stress can be related to the mean Cauchy stress s i of each

species (averaged across the mass of this species and having

units of N m22) by

T ¼
Xn

i¼1

Mi

J@
s i: (2:3)

It is well known that G&R of blood vessels is governed in large

part by mechanical stimuli. We thus follow the general modelling

approach outlined in [14], as adopted in [12], and assume that

extant collagen and smooth muscle degrade at the rate _M
i
�

while new material is deposited at the rate _M
i
þ with a prestress

s i
h. The total rate of change of mass density is _M

i ¼ _M
i
þ � _M

i
�.
Assuming degradation according to a Poisson process (i.e. an

exponential survival function of existing material), we have

_M
i
� ¼

1

t i Mi, (2:4)

where ti is the turnover time constant, and

_M
i
þ ¼

1

t i Mi þMiksi
s i � s i

h

s i
h

 !
, (2:5)

where s i is the magnitude of the Cauchy stress of the ith species

in its respective fibre direction—note that turnover is considered

only for collagen and smooth muscle, which are modelled by

uniaxial fibre families—and s i
h is a scalar homeostatic value of

stress at which mass deposition and degradation balance. The

gain factor ki
s weights effects of deviations from the homeostatic

stress state on the mass production, which will vary point-wise in

general. Higher values of ki
s yield higher mass productions if the

current stress exceeds the homeostatic value.

For mathematical convenience, we assume that collagen

and smooth muscle exhibit the same turnover time constant

t and that ki
s and t are uniform throughout the domain. This

is not to say that these constituents necessarily change at the

same rate, but rather that rates of change in their natural con-

figurations could be similar. This assumption is consistent with

the possibility that the turnover of collagen causes integrin or

cadherin re-engagement and thus changes in the natural con-

figuration of the smooth muscle, particularly given the

general loss of elastin in aneurysms. Finally, we disregard elas-

tin production consistent with the common assumption that

functional, load-bearing elastin is not produced in maturity.

Degradation of elastin (during ageing, by localized insults, or

also by pathologic proteolytic activity especially in aneurysms)

is modelled not by (2.5) but separately by time-dependent

mass perturbations (cf. (3.3) and (3.7)).

2.2. Mechanobiological equilibrium, stability and
adaptivity

2.2.1. Theory
In classical solid mechanics, statics simply requires _x ; 0.

Hence, a natural generalization of this notion to mechano-

biology is (cf. [12])

Definition 2.1. A state is said to be mechanobiologically

static, or equivalently to be in mechanobiological equili-

brium, if and only if

_y ¼ _x
_M

� �
; 0, (2:6)

and, additionally, for all species subject to G&R (i.e. with

finite ti) the Cauchy stress in any of its mass increments

at a given point is the same (i.e. equals the average value

s i(t, X) at this point).

That is, both the geometric configuration and mass remain

constant over time (thus, the mass of a species at a given

point exhibits the same Cauchy stress because all of it was

deposited in this persistent configuration). Stability can be

generalized for mechanobiology on the basis of Lyapunov’s

stability theory by

Definition 2.2. A mechanobiologically static state �y of a system

is called mechanobiologically stable if and only if for each
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1 [ Rþ there exists an h [ Rþ so that for all t � 0 we have

y(0)� �yk k2 :¼ dy(0)k k2, h) y(t)� �yk k2, 1: (2:7)

In other words, mechanobiological stability requires that

small perturbations of a mechanobiologically static state

remain forever small or decay to zero. In nonlinear systems,

Lyapunov stability can often be checked by a linearization

around the equilibrium state of interest and a subsequent

eigenvalue analysis of the linear operators governing the

dynamics in this neighbourhood (Lyapunov’s first method).

In the following, all quantities referring to the mechanobiolo-

gically static state of interest will be denoted by an upper bar

and deviations from this state by a prefixed variation d. For

species subjected to G&R (e.g. collagen and smooth

muscle), the displacement part dx of the perturbation dy

can be decomposed into

dx ¼ dxi
el þ dxi

gr, (2:8)

where dxi
el captures any elastic deformation relative to �y and

dxi
gr any inelastic deformation due to changes in the stress-

free reference configuration by mass turnover. Neglecting

the first-order small term due to stress-mediated growth in

(2.5), mass turnover replaces per unit time the mass fraction

Mi/ti at the current stress si by the same amount of mass

at the prestress s i
h and releases this way per unit time the

fraction ds i=t i of the difference between the average current

stress s i of the ith species and its homeostatic stress. As ds i is

in the linear regime of small perturbations directly pro-

portional to the elastic deformation dxi
el, and the rate of

change of dxi
gr equals the release of elastic deformation per

unit time, we have, assuming the same t i ¼ t for all species

subject to G&R (i.e. collagen and smooth muscle herein)

d _xi
gr ¼

1

t
dxi

el : (2:9)

Immediately after the perturbation, no inelastic deformation

by G&R has yet occurred so that dxi
gr(0) ¼ 0 for all species.

Using (2.9) with this identical initial value for all species in

(2.8) reveals that all dxi
gr are identical at each time so that

we can omit the upper index, rewriting (2.8) as

dx ¼ dxel þ dxgr: (2:10)

On the time scale of G&R, mechanical equilibrium (2.2) is

satisfied at each time after an initial perturbation. In the linear

regime, which we consider herein, this can be expressed as

df tot ¼ LIdxel þLIIdxþLIIIdM ¼ 0, (2:11)

where linear operators LI, LII and LIII represent derivatives

of f tot with respect to variations dxel, dx and dM, respectively.

Because we assume that mass production depends only on

the elastic Cauchy stress

d _M ¼ LIVdxel, (2:12)

for linear operator LIV. Using (2.12), (2.10) and (2.9) in the

time derivative of (2.11) and defining

L :¼ (LI þLII)
�1(LIILV þLIIILIV), (2:13)

with LV ¼ 1=t yields

d _xel ¼ �Ldxel: (2:14)

Thus

dxel(t) ¼ exp(�Lt)dxel(t ¼ 0þ): (2:15)
From (2.8), (2.12), (2.9) and (2.15), we conclude that the

system is mechanobiologically stable if and only if the real

parts of all eigenvalues of the linear operator L are strictly

positive. Then the elastic deformation dxel will decay to

zero after a perturbation (i.e. the homeostatic stress will be

restored). Owing to (2.12) and (2.9), this will also stop any

further G&R dynamics, that is, the system will again be in

a mechanobiologically static state. Hence, the necessary and

sufficient condition for mechanobiological stability is

mG&R . 0, (2:16)

where the so-called stability margin mG&R is the smallest real

part of any eigenvalue of L. Note that we focus herein on uni-

form pressure loads with Dirichlet or periodic boundary

conditions, which ensures that L is symmetric and has only

real eigenvalues [12]. In (2.15), dxel(t ¼ 0þ) can be computed

from (2.10) and (2.11), and recalling that dxgr(t ¼ 0þ) ¼ 0, so that

dx(t ¼ 0þ) ¼ dxel(t ¼ 0þ)

¼ �(LI þLII)
�1LIIIdM(t ¼ 0þ):

(2:17)

In a stable system dxel(t! 1) ¼ 0. From (2.9) and (2.10),

however, we see that each perturbation will leave some

inelastic residual displacement perturbation dxgr(t! 1) ¼
dx(t! 1) = 0. That is, the system is only neutrally, not asymp-

totically, stable. This neutral stability can be characterized by the

so-called mechanobiological adaptivity

Ax ¼ max
dx(t¼0þ)

dx(t! 1)k k2

dx(t ¼ 0þ)k k2

, (2:18)

which is shown in [12] to satisfy

Ax ¼
1

tmG&R
, (2:19)

for mG&R . 0. That is, the residual displacement perturbation is

inversely proportional to the stability margin mG&R.

The total tangent stiffness of the system is

Ktot ¼ �
df ext

dx
� df int

dx
, (2:20)

which can be split into a geometric part Kgeo that describes

the change of internal and external loads assuming that the

strain energy remains constant, and its complement, the

elastic stiffness

Kel ¼ Ktot � Kgeo: (2:21)

Ki
el denotes the contribution of the ith species to

Kel ¼
Pn

i¼1 Ki
el and the so-called G&R stiffness

Ki
G&R :¼ tki

sKi
el (2:22)

will be used below to characterize mechanobiological

stability. With the additional stiffness-like operators

Ki
M :¼ � df int

dMi and KM ¼
Xn

i¼1

Ki
M, (2:23)

which characterize the change of internal forces under

variations of the areal mass densities, it was shown in

[12] that

LI ¼
P

i[SG&R

Ki
el, LII ¼Kgeoþ

P
i�SG&R

Ki
el, LIII ¼

Pn
i¼1

Li
III ¼

Pn
i¼1

Ki
M,

LIIILIV ¼
1

t

X
i[SG&R

Ki
G&R and LV ¼

1

t
,

9>>>=
>>>;

(2:24)
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ks = 0.12/t, mG&R = +6.3 × 10–2/t ks = 0.02/t, mG&R = –4.4 × 10–2/t

Figure 1. Phase spaces around a mechanobiologically static state of a stable (a) and unstable (b) cylindrical vessel for uniform deformations: trajectories (thin lines
with arrowheads indicating direction of system evolution), set of stationary points (thick horizontal line), trajectory for evolution after one specific perturbation (thick
kinked line originating from centre). (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140680

4

and

L ¼ 1

t
K�1

tot

X
i[SG&R

(Ki
G&R � Ki

el)þ Ktot

" #
, (2:25)

where SG&R is the set of all indices of species subject to G&R,

that is, collagen fibre families and smooth muscle. In the fol-

lowing, we assume mechanical stability (i.e. strictly positive

real parts of the eigenvalues of K tot) as the vessel could other-

wise not maintain its geometry in the long term. As Ki
el, and

thus Ki
G&R, is typically positive definite, we expect from (2.25)

that the stability margin increases with the gain factor ki
s.

Noting that in (2.25) �Ki
el cancels out with a term of the

opposite sign in K tot, we also expect from (2.22) that the

eigenvalues of L, and thus the stability margin, will increase

with the elastic stiffness. As a prefactor in (2.25), t defines the

natural time scale of G&R dynamics in (2.15); it also appears

in (2.22) in a product with ki
s and thus should stabilize the

system on the normalized time scale t/t. These rules about

parameter impacts on mechanobiological stability were

proven generally in [12].
2.2.2. Example: uniform vessel dilation
An instructive special case is that of a circular cylindrical vessel

of length L and radius R under internal blood pressure p while

axially fixed at its ends such that the in vivo stretch is main-

tained. Consider a uniform change dR along the axis, which

consists of elastic and inelastic parts dRel and dRgr as in (2.10).

In this case, (2.2) reduces to the scalar equilibrium relationship

between blood pressure p and the circumferential membrane

stress Tuu (Laplace’s equation) and with (2.3) becomes

fint þ fext ¼ 0, fint ¼ �
Tuu

R
¼ �

Xn

i¼1

Misi
uu

JR@
, fext ¼ p ,

(2:26)

where we denote by the scalar loads fint and fext, in the context

of a uniform distension, the radial components of fint and fext

(i.e. we disregard axial components in this discussion due to

the Dirichlet boundary conditions in axial direction). The

radial components of second-order tensors are treated below

in the same way (e.g. Ktot for the radial component of K tot).

In this special case, all relevant quantities can be calculated
analytically (cf. appendix A). For example, (2.17) and (2.15)

yield

dR(t ¼ 0þ) ¼ dRel(t ¼ 0þ) ¼ � 1

Ktot

Xn

i¼1

Ki
MdMi(t ¼ 0þ) (2:27)

and

dRel(t) ¼ exp(�mG&Rt)dRel(t ¼ 0þ) (2:28)

with mG&R from (A 9) in appendix A. By (2.9), (2.10) and (2.24),

the total radial deformation

dR(t) ¼ dRel(t)þ dRgr(t)

¼ 1

tmG&R
{1þ [tmG&R � 1]exp(�mG&Rt)}dR(t ¼ 0þ):

(2:29)

As a result, dR(t) starts at the initial value dR(t¼ 0þ) and

evolves exponentially towards the limit dR(t ¼ 0þ)=(tmG&R)

in accordance with (2.19).

It is instructive to note that (2.29) mathematically charac-

terizes motions following a uniform perturbation in either

mass or blood pressure. In the latter case,

dR(t ¼ 0þ) ¼ 1

Ktot
dp: (2:30)

To see this, we note that dR(t ¼ 0þ) in (2.30) can be under-

stood as the deformation of a hypothetical vessel with

reference radius �R, blood pressure �pþ dp, and some areal

mass densities �Mi þ dMi directly after a uniform mass pertur-

bation �dMi. The reference configuration of this hypothetical

vessel differs from the original only by infinitesimal vari-

ations dp and dMi. Thus, its linearized dynamics following

the perturbation 2dMi is described by the same operators

(neglecting higher order terms) and (2.29) is applicable

with dR(t ¼ 0þ) from (2.30). The phase space of this system

is illustrated in figure 1 around a mechanobiologically static

state for positive and negative mG&R. After an initial uniform

perturbation of the homeostatic stress by a loss of mass or

increase in blood pressure, the stress level is restored in

stable systems with positive mG&R leaving, however, a

residual deformation dRgr . 0 due to the adaptivity of

the system. By contrast, in an unstable system with negative

mG&R an initial small perturbation results in continuing

enlargement.
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3. Mechanobiological stability and clinical
observations

3.1. General
Mechanobiologically stable vessels compensate for sufficien-

tly small perturbations in wall mass or blood pressure by

protective G&R and return close to their initial state soon

thereafter (cf. (2.29) and figure 1). Such stability is a necessary

requirement to maintain the geometry and properties of

the vasculature nearly the same over decades as observed

in healthy individuals. Conversely, in mechanobiologically

unstable vessels even small perturbations initiate potentially

progressive changes. In certain cases, the vessels may restabi-

lize in another homeostatic equilibrium state after a period

of finite G&R. Otherwise, as can be seen from (2.15), wall

stress and diameter could keep increasing until failure.

Herein, we hypothesize as a possible initiation mechanism of

aneurysms a change in wall parameters by which the positive

stability margin in the initially healthy vessel drops close to or

below zero, thus giving rise to large or even unbounded

changes in geometry subsequent to perturbations in mass

turnover or blood pressure as is common in the vasculature.

To test this hypothesis, we first demonstrate in §§3.2

and 3.3 that the response of healthy vessels to perturbations,

such as an increased blood pressure or slow uniform degra-

dation of elastin during ageing, can be understood via

the adaptivity of mechanobiologically stable vessels.

Subsequently, we show in §3.4 that clinically observed posi-

tive risk factors for aneurysms correspond to parameter

changes that decrease the stability margin, which sup-

ports the idea that aneurysms are a consequence of failed

mechanobiological stability.

In the following, consider an idealized axisymmetric

segment of human aorta of length �L ¼ 18 cm (to lessen end

effects) with initial radius �R ¼ 1 cm, blood pressure p ¼
100 mm Hg, and parameters for mass fractions, half-life

times, constitutive functions, deposition stretch and mass

density as listed in §2(c) and table 1 of Wilson et al. [11]

(unless otherwise specified). Collagen is modelled by four

fibre families in axial, circumferential and symmetric diagonal

(�wi ¼+p=4) directions, while smooth muscle is modelled as a

single fibre family in the circumferential direction and elastin

as a homogenized isotropic two-dimensional sheet. Periodic

boundary conditions are employed in §§3.2 and 3.3, and

Dirichlet boundary conditions in axial and radial directions

in §§3.4.1 and 3.4.3. Wall properties are modelled according

to Wilson et al. [11], that is, elastin is modelled as a relatively

compliant, isotropic material having a nearly linear stress

response and thus characterized by a neo-Hookean strain

energy function

Ce ¼ ce

2
Ce

11 þ Ce
22 þ

1

Ce
11Ce

22 � (Ce
12)2
� 3

 !
, (3:1)

where Ce
ij are the elements of the in-plane right Cauchy–Green

tensor and ce is a material parameter. Superscript e denotes

elastin rather than a summation index. To capture the signifi-

cant strain-stiffening in collagen and, though less marked,

passive smooth muscle, we model both with Fung exponential

functions

C ¼ c1

4c2
(exp[c2(l2 � 1)2]� 1), (3:2)
with stretch l and unique material parameters c1 and c2 for

each type of constituent. For simplicity, we assume the same

gain factor ks for smooth muscle and collagen.

3.2. Age-related dilatation
Production of functional elastin nearly ceases after early child-

hood [15] and thereafter it degrades slowly with a half-life time

of approximately 74 years [16]. This continuous degradation

can be modelled as a monotonically decreasing perturbation in

elastin mass dMe(t) with d _Me(t) ¼ �Me(t)=t e and mean lifetime

t e ¼ 74 years/ln (2). With t e � t ¼ 70=ln (2) days [17], the

mean lifetime of collagen, the vessel will slowly evolve its

homeostatic state, responding to the loss Medt=t e during each

short time interval dt within a few t. According to (2.17)–

(2.19) and (2.24), the residual radial dilatation is

d(dR1
gr) ¼ �

1

tmG&R
K�1

tot Ke
MMe dt

t e
, (3:3)

where the uniformity of the elastin degradation allows us to use

equations from §2.2.2. Using (A 9) and dividing (3.3) by dt leads

to an expansion rate

d _R
1

gr ¼
d(dR1

gr)

dt

¼ �
X
i�S0

(Ki
G&R � Ki

el)þ Ktot

 !�1

Ke
M

�Me

te
: (3:4)

With (A 6)–(A 8), the dilatation rate d _R
1

gr in (3.4) depends on the

gain factor ks, which is the only parameter in this equation that

cannot be determined by independent experiments unrelated

to G&R (such as biaxial mechanical testing of tissue patches).

In figure 2a, d _R
1

gr is plotted versus ks. Age-related dilatation of

elastic arteries is well known. Averaging data from [18–20],

one can estimate an expansion rate of d _R
1

gr ¼ 0:04 mm yr�1 for

the radius of the adult abdominal aorta, which according to

(3.4) is equivalent to ks¼ 0.12/t as seen in figure 2a. Thus via

(3.4), the mechanobiological stability theory can not only be

used to understand age-related vessel dilatation in general

(hypothesizing it to be primarily a consequence of slow elastin

degradation and adaptivity), it can also estimate for the first

time a realistic value for ks in healthy individuals.

Since (3.4) is but a linear approximation, a fully nonlinear

finite-element simulation with time-step size Dt ¼ 5d and ks ¼
0.12/t was performed to confirm the result. Assuming the

system to be homeostatic at t ¼ 0, the first 10–15 years were

dominated by transient effects governing the transition to a

steady state of continued elastin degradation and compensatory

collagen production and can thus be considered a numerical

artefact due to the initial conditions. During the final 25 years,

an expansion rate of approximately 0.036 mm yr21 was

observed (cf. figure 2b), which agreed well with the

0.04 mm yr21 expected from the linearized calculation (3.4).

Patients with AAAs exhibit, on average, a 30% larger

thoracic aortic diameter distant from the aneurysm when

compared with healthy matched controls [21]. Moreover,

the diameter of the descending thoracic aorta generally corre-

lates positively with well-known risk factors for aortic

aneurysms such as smoking, male gender and age. Although

the precise mechanisms underlying this observation remain

unclear, it is interesting that the theory of mechanobiological

stability predicts by (3.3) an increased age-related dilatation

for a lower mechanobiological stability margin, which

could also increase the risk of aneurysmal formation.
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In summary, the stability theory introduced in [12] may

provide a theoretical basis to understand not only age-related

vessel dilatation in general, but even its positive correlation

with the appearance of aneurysms. The comparison between

clinically observed dilatation rates on the one hand and

analytical calculations based on the stability theory on the
other hand suggests ks ¼ 0.12/t as a physiologically reason-

able value for the gain parameter in our G&R model in

healthy patients. Note that using another value t * as a

mean lifetime instead of the above t ¼ 70/ln (2) days, all

results reported herein still hold except that the time axes in

figures 2c, 3 and 4 have to be rescaled by t */t.
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3.3. Dilatation of elastic arteries under hypertension
Arteries respond to increased blood pressure by thickening

their walls, presumably to maintain/restore a homeostatic

level of circumferential Cauchy stress [22]. In elastic arteries,

this thickening is typically accompanied by a minor nearly

uniform dilatation of the whole vessel, which can be under-

stood as a natural consequence of the immediate distension

due to the increased pressure described in (2.30) and a sub-

sequent G&R process resulting in a residual dilatation due

to adaptivity (cf. (2.18) and (2.19)). The residual dilation

after a (small) pressure increase dp is

dR(t! 1) ¼ 1

tmG&R

1

Ktot
dp: (3:5)

For rat aortas, for example, it has been reported (fig. 2 in [22])

that dR(t! 1)=�R ¼ bpsysd psys=�psys with �psys the systolic blood

pressure and parameter bpsys � 0:214. Assuming the same

bpsys in human aortas and considering for simplicity a

change in mean blood pressure, not pulse pressure, so that

dpsys ¼ dp, we infer for �psys � 120 mm Hg, �p � 100 mm Hg

and bp :¼ bpsys�psys= �p from (3.5)

tmG&R ¼
1

bpKtot

�p
�R
� 0:38 ) ks ¼ 0:42=t , (3:6)

where mG&R was converted into an equivalent ks using (A 9)

and (A 7).

Figure 2c shows results of finite-element simulations

for an initially normotensive aorta subjected to an increase

in blood pressure dp ¼ 20 mm Hg over 1 year. An initially

predominantly elastic distension resulted in a residual

G&R-induced dilatation according to adaptivity. During the

simulation, elastin mass was assumed constant to eliminate

confounding factors and make the results comparable with

the study of Matsumoto & Hayashi [22]. In addition, we com-

pared the (modest) pressure jump over 1 year with one over

36 days and another one over 4 years and found a difference

in residual dilatation (and wall thickening) of less than 1%,

which suggests a negligible influence of the rate by which a

certain level of hypertension is built up (provided the

vessel is mechanobiologically stable). This result agrees well

with previous numerical studies (cf. fig. 10 in [23]). Owing

to the nonlinear response to the imposed (finite) change in

pressure, the dilatation expected from the data in [22] was

not observed exactly at ks ¼ 0.42/t as predicted in (3.6), but

rather at ks ¼ 0.36/t. The difference compared to the value

of ks ¼ 0.12/t determined from the age-related dilatation

in §3.2 may be explained by several simplifications in our

model and calculations. For example, the age-related increase

in blood pressure of approximately 0.34 mm Hg yr21 [24]

was neglected in §3.2 and would, according to (3.5), make

up for about 20% of the age-related dilatation and would

thus increase ks by about this factor if incorporated.

Moreover, we simply applied rat data [22] to enable a calcu-

lation for humans, and finally simple relation (2.5) may be

considered but a linear approximation to vascular G&R.

That two different clinical observations can be under-

stood and reproduced with fairly similar values for ks is a

promising result both for the G&R model from Figueroa

et al. [14] in general and for the stability theory from

Cyron & Humphrey [12] in particular. This finding empha-

sizes its applicability to age-related vessel dilatation and

changing pressures and suggests that a gain parameter
ks e [0:12=t; 0:42=t] ¼ [0:63 yr�1; 2:19 yr�1], assuming t ¼

70 days, is a reasonable choice for collagen production in

healthy individuals.
3.4. Mechanobiological stability and aneurysms
Although §§3.2 and 3.3 considered adaptations after a uni-

form perturbation of pressure or loss of elastin, we now

consider a focal loss of elastin as often associated with the for-

mation of aneurysms. For large positive values of mG&R, we

expect this perturbation to be compensated by protective

G&R of collagen and smooth muscle. As mG&R becomes

smaller, however, we expect an increasing residual dilatation.

For mG&R � 0, we expect unbounded expansion of the vessel.

According to Cyron & Humphrey [12], the stability margin

should increase with an increasing gain factor ks, which

means that an increase in ks should attenuate aneurysmal

progression after focal damage to the elastin layer.

To test these expectations, we subjected our model aorta

to a focal loss of elastin according to the damage function

(cf. [11])

D ¼ Dmaxexp � 1

2

Z� 0:5�L
Ldam

� �2
" #

1� exp
�t
tdam

� �� �
, (3:7)

where D e [0, 1] is the fraction of initial elastin mass

degraded by an insult at time t at the axial reference coordi-

nate Z [ [� L=2, L=2]. Dmax ¼ 0.7, Ldam ¼ 1 cm and tdam ¼

40 days allowed the time-dependent part in (3.7) to saturate

within around 120 days, resulting in a Gaussian damage dis-

tribution with a peak of Dmax ¼ 70% in the centre and a

spread of Ldam ¼ 1 cm.

In a parametric study, we examined the impact of differ-

ent values on G&R after the elastin damage according to (3.7)

at time t ¼ 0. To this end, we performed nonlinear finite-

element simulations similar to Wilson et al. [11] (and with

consistent results) with 180 axisymmetric membrane

elements along the Z-axis of the domain over a period of

15 years. The same discretization was used to compute a

finite dimensional approximation of L and by an eigenvalue

analysis the respective stability margin mG&R.
3.4.1. Gain factor
Varying ks confirmed its inverse relationship with aneurys-

mal expansion rate, as reported in [11]. Figure 3 confirms

the proportionality between the gain factor and stability

margin predicted in [12]. For negative mG&R (i.e. small ks),

an unstable exponential dilatation of the vessel ensued,

whereas for positive mG&R (i.e. large ks) the vessel stabilized

after an initial period of enlargement in a slightly dilated geo-

metry, which further confirms the concept of adaptivity,

namely, even mechanobiologically stable vessels will not

restore their initial configuration after a perturbation; rather,

they stabilize in a nearby configuration. For stability margins

close to zero, such as mG&R ¼ �1:9� 10�3t in figure 3, we

expected from (2.14) a nearly constant supra-homeostatic

wall stress after the initial lesion and thus a dilatation at

a nearly constant rate, which was observed. Although

mG&R ¼ 0 mathematically marks the threshold between

stable and unstable G&R, it is emphasized that as mG&R

approaches zero, the adaptivity approaches infinity so that

for positive but very small mG&R a perturbation can still

result in dilatation large enough to be considered an
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aneurysm (i.e. greater than or equal to 50% increase in

diameter). Conversely, even for slightly negative mG&R a sig-

nificant dilatation may occur only after a period too long to be

relevant for aged patients. Although mG&R correlates with

expansion rate in general, clinical decisions should therefore

not be made only on the basis of the sign of mG&R.

The mechanobiological stability theory provides a theor-

etical basis not only to understand outcomes of nonlinear

finite-element simulations based on the same G&R model

but also a number of experimental and clinical observations.

In [25], the microRNA miR-29 was shown to decrease the

production of extracellular matrix, particularly collagen,

which in aneurysms, where typically si . si
h, is equivalent

to a drop of ks and thus the stability margin mG&R in our

model. Increased miR-29 levels have been found in human

thoracic aneurysms. Moreover, enlargement of AAAs in

mouse models is promoted by increased miR-29 levels [25]

and attenuated by inhibition of miR-29 [26]. Age and smok-

ing are important risk factors for aneurysms, and elevated

miR-29 levels are observed in older individuals [27–29] and

after exposure to nicotine [30]. These observations can be

understood from the negative impact of a reduced capacity

for stress-mediated collagen production (i.e. reduced ks) on

the stability margin. By contrast, increasing extracellular

matrix production in aneurysms can, in the spirit of

Cyron & Humphrey [12], be understood as strengthening

neighbouring Lyapunov attractors, which helps drive vessels

with pathological G&R processes into nearby homeostatic

equilibrium states.

3.4.2. Turnover time
Given (2.25), the turnover time t affects the system dynamics

via the prefactor 1/t in L by setting a characteristic time

scale for G&R that allows the definition of a non-dimensional

time t/t. On this non-dimensionalized time scale, t affects

G&R via Ki
G&R exactly as does ki

s since ki
s appears in L

only via Ki
G&R :¼ tki

s Ki
el. As normalization of time does not

change the mechanobiological stability properties, but only

defines the time scale on which the system evolves, the

general statements about the impact of ks on the mechano-

biological stability in §3.4.1 hold equally for t, namely, a

longer turnover time always stabilizes the system. An

increased concentration of type I collagen carboxyterminal

telopeptide fragments (a collagen I degradation product)

[31] and of PIIINP (a propeptide indicative of increased col-

lagen III turnover) [32] has been reported for AAAs. This

suggests either a generally accelerated turnover of collagen

or at least an increased degradation rate that correspond in

our model to a smaller t or ks and thus to a decreased

mechanobiological stability.

3.4.3. Elastic stiffness
It was shown mathematically in [12] that a sufficient increase

in wall stiffness can always ensure a positive-definite operator

L in (2.25) and thus stabilize the system. The plausibility of

this statement is clear from (2.25) given an infinite elastic

stiffness. In this limit, Ktot equals the sum of all elastic stiff-

nesses and is thus positive definite. The term in the brackets

equals the sum over all Ki
G&R for collagen and smooth

muscle plus the elastic stiffness of elastin, which is for ks . 0

also positive definite. Therefore, mG&R . 0 and the system is

mechanobiologically stable.
In relation to the expansion of aneurysms, this prediction

was evaluated parametrically by varying c1 and c2 in the

strain energy function of collagen (3.2) such that prestrain

and prestress were kept constant in the initial homeo-

static state while the stiffness was changed by a factor

ael e {1:0, 1:4, 1:5, 1:6}. As illustrated in figure 4, the stability

margin mG&R increased as expected with increased elastic

stiffness (i.e. ael). For clearly negative mG&R, the vessel

enlarged exponentially, while for clearly positive mG&R the

vessel stabilized after a period of protective G&R with a

slightly increased diameter. Nearly linear expansion occurred

in between these extremes (mG&R � 0). Again, the stability

margin from the linear mechanobiological stability theory

[12] allows reasonable quantitative estimates when unstable

responses are expected even for significant deformations

(such as a circumferential stretch of up to approx. 1.4 as in

figure 4 for mG&R � 0). This robustness against nonlinear

effects is an important quality for the practical application

of the concept of mechanobiological stability.

It is well known that diabetes decreases the prevalence or

severity of thoracic and AAAs [33,34]. Increased cross-linking

and the resulting higher stiffness of the collagenous tissue

observed in diabetic patients have been proposed as a poss-

ible reason. Pulse wave velocity increases by approximately

20% in diabetic patients [35], which corresponds to an

increase in wall stiffness by a factor of ael � 1.45. This value

is in good accordance with [36] and an increase in stiffness

of 60% found in diabetic rats [37]. The parameter study pre-

sented in this section confirms that the mechanobiological

stability theory [12] captures the significant stabilizing effect

on aneurysms due to increased wall stiffness, as in diabetic

patients. Moreover, this theory explains the decreased diam-

eter of the descending thoracic aorta found diabetic patients

[38] via the inverse relationship between the stability

margin and adaptivity as well as the above discussion of

age-related vessel dilatation (cf. §3.2).

Note that the stabilizing effects of collagen production

capacity, half-life and stiffness shown mathematically in

[12], and related herein to computational as well as clinical

and experimental findings, agree qualitatively with results

reported in [39] for a simple scalar arterial model with a

goal-function based G&R. However, the theory of mechano-

biological stability pursued herein is applicable to arbitrary

vascular geometries and material compositions and does

not experience the probably unphysiological oscillatory

G&R observed partially in [39].
3.4.4. Blood pressure
For vessels with k s [ {0.32/t, 0.36/t, 0.42/t} studied in §3.3,

we observed a change of the stability margin between the

homeostatic states before and in hypertension by less than 5%.

For smaller values of ks, down to 0.05/t, which may be

relevant for aneurysms in practice (cf. §3.4.1), the decay of

the stability margin introduced by hypertension was slightly

higher, but still not dramatic. It thus appears that mechanical

effects due to increased blood pressure do not alone render

healthy (mechanobiologically stable) vessels susceptible to

aneurysms because in healthy vessels increased blood

pressure is compensated by increased wall thickness. The

situation is different, however, if hypertension begins in an

already mechanobiologically unstable vessel. From (2.27)

and (2.30), we infer that a change in blood pressure has
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practically the same effect as a perturbation of areal mass

density with opposite sign. For example, with the parameters

of our aortic model, an increase in blood pressure by 26 mm

Hg excites G&R as strong as the loss of all vascular elastin. In

a mechanobiologically unstable vessel that cannot compen-

sate for such a perturbation by protective G&R, this

excitation is expected to cause a dramatic unstable expansion.

In this sense, the temporal order of the occurrence of hyper-

tension and mechanobiological instability (e.g. aneurysm)

may play a crucial role.

Indeed, decreasing blood pressure after the initiation of an

aneurysm (that is, in potentially mechanobiologically unstable

vessels) has been seen experimentally to attenuate their enlar-

gement [40]. Yet, the question of whether hypertension is in

general a risk factor for aneurysms remains controversial

despite a large number of studies [41]. Our mechanobiological

stability theory suggests that paying more attention to the tem-

poral order of the occurrence of aneurysm and hypertension,

not just the absolute blood pressure, might help resolve this

controversy. Moreover, as suggested in [42,43], and supported

by Shiraya et al. [44], hypertension may be responsible for

other effects that reduce effective extracellular matrix pro-

duction (and thus lower both ks and mG&R) in addition to

its purely mechanical effect (increased load and thicker

walls). These complexities and their effects on aneurysmal

progression require further investigation to understand

relationships between hypertension and aneurysms. Neverthe-

less, the mechanobiological stability theory provides a useful

platform to explore hypotheses and guide future experiments.
4. Conclusion
As introduced in [12], mechanobiological stability can be

understood as the property of a blood vessel to return to a

state close to its initial one following a perturbation, and

mechanobiological adaptivity is a measure of the residual

change in configuration. In this paper, we demonstrated

that these concepts provide a simple conceptual framework

to help understand clinically relevant G&R processes such

as age-related dilatation, adaptations in hypertension and

the development of aneurysms.

We illustrated how this framework can be used to esti-

mate, from experimental and clinical data on age-related

dilatation and hypertensive G&R, the interval [0.63 yr– 1;

2.19 yr– 1] as a reasonable choice in healthy vessels for the

gain parameter ks in [14]. Moreover, we used the inverse

relationship between mechanobiological stability and adap-

tivity to explain the clinically observed correlation between

age-related vessel dilatation and susceptibility for AAAs.

As a change of paradigm, we suggested that aneurysms be

interpreted as a form of mechanobiological instability while

purely mechanical instabilities probably play little to no

role. This interpretation was supported by comparisons of

mathematical statements from Cyron & Humphrey [12], com-

putational parametric studies similar to ones in [11], and

clinical and experimental observations. These comparisons

suggested that common risk factors for AAAs (such as smok-

ing and age) and mitigating factors (such as diabetes) can be

understood from their (patho)physiological impact on the

stability margin mG&R, a simple scalar measure of mechano-

biological stability. We emphasize that the discussion of the

relationship between different physiological conditions and
mechanobiological stability in this paper is meant to be

more illustrative than comprehensive, and that more detailed

studies (e.g. considering also other microRNAs than only

miR-29 as herein) remain a promising avenue of future

research. Finally, the discussion in this paper focused

mainly on AAAs. To examine the applicability of the concept

of mechanobiological stability to other types of aneurysms

will require further study.

We hope that the concepts of mechanobiological stability

and adaptivity can help promote an increasingly rigorous

mathematical understanding of vascular G&R in general and

aneurysms in particular. We also hope that this framework

may drive improved methods of computational prognosis for

aneurysms, taking into account not only the maximal diameter

or wall stress, but also growth and remodelling dynamics.

Finally, it may help in the development of new therapies. The

theory of mechanobiological stability suggests that increases

in stress-mediated collagen production capacity, constituent

half-life, and wall stiffness can attenuate (and potentially

reverse) the enlargement of aneurysms. Some of these factors

can, in principle, be controlled by appropriate drugs, which

may be optimized on the basis of more comprehensive versions

of the theory introduced in Cyron & Humphrey [12].
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Appendix A
For uniaxial (fibre-like) species such as smooth muscle and

collagen fibres, which are assumed to be aligned at one

angle wi relative to the circumferential direction and to

carry only the stress si
k in this direction, the contribution to

the (radial component of the) internal loads is

f i
int ¼ �

Misi
k cos2wi

JR@
: (A 1)

In general, the circumferential engineering strain, relative to

the initial radius �R,

d1 ¼ dR
�R
: (A 2)

Around the initial configuration with �1 ¼ 0 and wi ¼ �wi

@wi

@1

����
1¼0, wi¼�wi

¼ @[tan�1( tan (wi)=(1þ 1))]

@1

����
1¼0, wi¼�wi

¼ � tan �wi

1þ tan2 �wi ¼ �sin �wi cos �wi (A 3)

and

dJ
dR
¼ d[1þ tr(d1)]

dR
¼ d[1þ dR=�R]

dR
¼ 1

�R
: (A 4)

This leads to the geometric stiffness

Ki
geo ¼ �

df i
int

dR

����
dRel¼0

¼
�Mi
si
k

�R2
@

(� 2cos2 �wi þ 2sin2�wicos2�wi), (A 5)

where, due to the constraint dRel ¼ 0, only wi, J and R depend

on dR during the differentiation whereas s i
k is considered
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constant. The elastic stiffness

Ki
el ¼

�Mi �Ci
elcos4�wi

�R2
@

, (A 6)

where �Ci
el is the elastic modulus in direction �wi in the sense of

the theory of small on large [45] and cos4 �wi follows from the

usual transformation rules (cf. [46], eqns (6.31)–(6.33)) for

tensors. With (2.22) and (A 6)

Ki
G&R ¼

tki
s

�Mi �Ci
elcos4 �wi

�R2
@

, (A 7)
and with (2.23) and (A 1)

Ki
M ¼ �

�s i
uu

�R@
: (A 8)

Since dRel is a scalar, also L is and then mG&R ¼ L so that

with (2.25)

mG&R ¼
P

i e SG&R
[Ki

G&R � Ki
el]þ Ktot

tKtot

¼
P

i e SG&R
Ki

G&R þ Ke
el þ Kgeo

tKtot
: (A 9)
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