
rsif.royalsocietypublishing.org
Research
Cite this article: Hashemi SM, Sens P,

Mohammad-Rafiee F. 2014 Regulation of the

membrane wrapping transition of a cylindrical

target by cytoskeleton adhesion. J. R. Soc.

Interface 11: 20140769.

http://dx.doi.org/10.1098/rsif.2014.0769
Received: 15 July 2014

Accepted: 22 August 2014
Subject Areas:
biophysics, biomechanics, biomathematics

Keywords:
membrane deformation, phagocytosis,

membrane – particle adhesion
Author for correspondence:
Farshid Mohammad-Rafiee

e-mail: farshid@iasbs.ac.ir
& 2014 The Author(s) Published by the Royal Society. All rights reserved.
Regulation of the membrane wrapping
transition of a cylindrical target by
cytoskeleton adhesion

Seyed Mahmoud Hashemi1, Pierre Sens2 and Farshid Mohammad-Rafiee1

1Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
2Gulliver UMR 7083, CNRS-ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France

The adsorption of external objects to the cell membrane often triggers cellu-

lar responses involving large deformations. In phagocytosis, upon contact

with the target, the cell creates large extensions that wrap around the

target and ultimately lead to its engulfment. Although active force gener-

ation, in particular by actin polymerization, is required for completion of

this process, the elastic deformation of the cell membrane upon adhesion

to an external object might play an important part in its initiation. In this

paper, the elastic deformation of a bilayer owing to the binding of a cylind-

rical object is studied, taking into account the membrane bending rigidity

and the surface tension, the membrane adhesion to both the external

target and inner cytoskeleton. The problem is studied within the framework

of the Helfrich–Hamiltonian and using force balance relations and the

proper boundary conditions that are related to the adhesion energy coeffi-

cients. It is shown that membrane wrapping around the target may be a

continuous or abrupt transition upon increasing the target binding energy,

depending on the value of the parameter. The degree of wrapping and the

shape of the membrane in the vicinity of the object are computed numeri-

cally, and analytical expressions are given for the boundaries separating

the different wrapping regimes in the parameter space.
1. Introduction
One of the essential features of living cells is the presence of a soft, thin, flexible

structure called the membrane that separates the cell from its surroundings and

its components from each other [1]. The membrane can be deformed signifi-

cantly owing to its interaction with external objects. The deformability of a

biological membrane is of vital importance to many essential life processes

such as endocytosis, exocytosis and cell crawling. The mechanical properties

of membranes play a crucial role in active and passive deformations [2].

While understanding some aspects of deformability of a biological membrane

requires the details of its chemical components, there are quite a number of pro-

cesses that involve significant conformational changes in the membrane [3]. For

example, consider the phagocytosis process in which eukaryotic cells such as

macrophages and neutrophils bind and engulf external materials about 1 mm

in diameter [4]. Furthermore, normally, biological membranes are attached

tightly to the cytoskeleton of cells. The local cortex dynamics has an important

effect on the local deformability of the membrane [5].

The elastic description of the membrane response to mechanical stresses has

been developed over the past decades. Because the thickness of the biological

membrane (a few nanometres) is much smaller than the typical lengthscale of

the membrane, the shell elastic theory [6] has been used widely for describing

the shape of a membrane [7,8]. In this limit, it is possible to define a stress tensor

in order to study the deformation of the system [9]. It is convenient to interpret

the stress tensor in terms of the phenological Helfrich–Hamiltonian that is

firstly introduced in [10]. This description of membrane deformations is suitable

when the radius of the membrane curvature is much larger than the
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Figure 1. The schematic picture of the cylindrical object adhered to the
membrane, which is attached to the cytoskeleton. (Online version in colour.)
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characteristic length of the system which is set by the mem-

brane thickness [11]. In this framework, the adsorption of a

single or multiple cylindrical object(s) to a flat membrane

has been studied [12,13]. In addition, it is well known that

the cytoskeletal networks have an important effect on the

adhesion of a membrane to a substrate and/or to other

cells [1,14,15].

Motivated by aforementioned problems, here we set out

to consider a biological membrane, which was originally

flat, to which a cylindrical object is adhered. Naturally, the

cytoskeleton of the cell is attached to the membrane and

makes its deformation more difficult. The aim of this paper

was to show the effect of the cytoskeleton on the deformation

of the flat membrane owing to the adsorption of a cylindrical

colloid. The rest of paper is organized as follows: §2 describes

the model. After a general introduction of the model, we

derive the shape equations of the membrane, the relation

between the adhesion and the membrane shape, and the

proper boundary conditions of the problem. In §3, we present

the results, and finally in §4, we conclude the paper.
9

2. The model
Owing to the adhesion of the particle to the membrane, one

expects to see a deformation on the membrane. One further

expects that the deformation should vanish at a finite dis-

tance from the particle (called rs) owing to membrane/

cytoskeleton adhesion. In figure 1, the geometry of the pro-

blem is shown schematically. As can be seen in figure 1,

one can distinguish three parts in the membrane, the cap in

which the membrane engulfs the object, the free part, where

the membrane does not have interaction with neither the

object nor the cytoskeleton and the tail part in which

the membrane is adhered to the cytoskeleton.

The total energy of the problem has the following contri-

butions: (i) the total adhesion energy, (ii) the total elastic

deformation energy of the adhered membrane to the object

and (iii) the total elastic deformation energy of the free mem-

brane. We assume that the equilibrium shape of the

membrane can be obtained as a balance of the mentioned

energy contributions. The total adhesion energy per unit

length of the cylinder, Ead, is written as

Ead ¼ �2waaþ 2wsrs, (2:1)

where a is the radius of the cylinder, w and ws denote the

cylinder–membrane and the cytoskeleton–membrane

adhesion energy, respectively, and a shows the amount of

engulfment of the particle (figure 1). The elastic energy per

unit length of the membrane in the cap part can be calculated

using the Helfrich energy [10] as

Ecap ¼ k
a

a
þ 2saa 1� sina

a

� �
, (2:2)

where k and s are the bending moduli and the surface ten-

sion of the membrane, respectively. In our notation, k has

units of energy, and s is represented in units of energy per

area. The free part of the membrane is parametrized by the

arclength s. Using the Helfrich energy, one can find the elastic

energy per unit length of the free part as [10]

Efree ¼ 2�
ðS

0

ds
k

2
_c

2þs(1� cosc)
h i

, (2:3)
where the angle c(s) represents the angle between the tangent

vector of the membrane at point s with respect to the horizon-

tal line, S denotes the total contour length of the free part and

the ‘dot’ indicates a derivative with respect to the arclength s.

The integral term has been multiplied by 2 for considering

the whole free part of the membrane, say in the left and

right of the cylinder. Note that Efree in equation (2.3) is an

energy difference wherein energy of the flat membrane

(c ¼ 0) has been subtracted.

For further calculations, it is convenient to write the

energy contributions in the dimensionless manner using the

bending constant k and the radius of the cylinder a. First,

we define the following dimensionless variables

�w ;
2wa2

k
; �ws ;

2wsa2

k
; �s ;

2sa2

k

and �Efree ;
Efreea
k

:

(2:4)

Using the mentioned variables, the dimensionless total

energy of the problem, �E ; Ea=k, can be written as

�E ¼ ��waþ �ws
rs

a
þ aþ �sa 1� sina

a

� �
þ �Efree : (2:5)

Minimizing the equation (2.5) with respect to a gives the

equilibrium shape of the colloid–membrane system. The

minimization of the integral term, �Efree, can be done using

the Hamiltonian equations, as is seen below.
2.1. Shape equations of the free membrane
The energy functional of the free part of the membrane can be

written as

�Efree ¼
ðs

0

dsL(c, _c, _h, _r, lh, lr), (2:6)

where L denotes the Lagrangian of the problem and is given

[3,13,16]

L ¼ a
2

_c
2þ �s

2a
(1� cosc)� lr(_r� cosc)� lh( _h� sinc):

(2:7)

The two first terms include the bending and tension energy of

the membrane, whereas lr(s) and lh(s) are the Lagrange multi-

plier functions to guarantee the geometrical relations of

_r ¼ cosc and _h ¼ sinc, respectively. It is convenient to use

the Hamiltonian formalism to determine the shape of the mem-

brane. We use the same procedure discussed in reference [13]

and obtained the following Hamiltonian

H ¼
p2
c

2a
� �s

2a
(1� cosc)þ prcoscþ phsinc, (2:8)

where pq denotes the momentum conjugate of the generalized

coordinate q. Now, one can use the Hamiltonian equations in
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Figure 2. The schematic picture of the deformed membrane. The position of
the membrane is given by the vector r(s) at point s, whereas the deformation
vector is denoted by dr(s) at point s. In general, the length of a deformed
part can be changed, e.g. ds is changed to ds0. (Online version in colour.)
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order to find the shape equations as

_h ¼ sinc, (2:9a)

_r ¼ cosc, (2:9b)

_c ¼ pc
a

, (2:9c)

_pc ¼
�s

2a
þ pr

� �
sinc� phcosc, (2:9d)

_pr ¼ 0 (2:9e)

and _ph ¼ 0: (2:9f)

According to equations (2.9e) and (2.9f ), ph and pr are indepen-

dent of s and thus are constant. We show that the vertical and

horizontal components of the force acting on the membrane are

proportional to ph and pr, respectively. The constant values of

mentioned generalized momentum imply the equilibrium con-

dition for the free part of the membrane. These equations can

be solved numerically using proper boundary conditions,

which is discussed in §3.
 20140769
2.2. Derivation of the force
In order to find the force acting on the deformed membrane,

we consider a membrane in such a way that its shape has

been changed through the application of the force. Figure 2

shows the schematic picture of the deformed membrane.

We assume a very long cylinder and invariance by trans-

lation along the cylinder axis. It is thus sufficient to define

one tangent vector at each point as t̂(s) ; @sr(s), where @s

denotes the derivative with respect to s and r(s) parametrizes

the position on the surface of the membrane. Furthermore,

we have

@st̂(s) ¼ �C(s)n̂(s) ; C, (2:10)

where C(s) and n̂(s) are the local curvature and the normal

vector of the surface, respectively. For example for the

bound membrane, if the normal vector of the surface is point-

ing outwards, the curvature C is defined negative. Owing to

the deformation, the tangent vector, t̂(s) and the local curva-

ture, C(s), are changed to t̂þ d̂t and C þ dC. After some

manipulation, one finds

d̂t ¼ [@s(dr) � n̂]n̂, (2:11)

and

dC ¼ 2C[@s(dr) � t̂]n̂þ C[@s(dr) � n̂]̂tþ [@s,s(dr) � n̂]n̂, (2:12)

where @s,s; @2/@s2.

The energy difference of the free part of a membrane with

respect to a flat membrane in a general form can be written as

E ¼
ð

ds
1

2
kC2 þ s(1� t̂ � r̂)

� �
, (2:13)

and

Eþ dE ¼
ð

ds0
1

2
k(C þ dC)2 þ s[1� (̂tþ d̂t) � r̂]

� �
,

(2:14)

where we have ds0 ¼ ds[1þ t̂ � @s(dr)]. It is worth mentioning

that using C ¼ � _c and t̂ � r̂ ¼ cosc, equations (2.13) and

(2.14) recover the equation (2.3). After some calculations, the

variation of the energy of the free part of the membrane gives

dE ¼ �dsF � @s(dr), (2:15)

where F is the force (per unit cylinder length) acting on the

membrane that is associated with the deformation dr. After a
few calculations, F can be determined as

F(s) ¼ 1

2
k[C(s)]2 � s(1� cosc)

� �̂
t(s)

� [k[@sC(s)]þ s sinc]n̂(s): (2:16)

We note that because we have subtracted the energy of the

flat membrane (only tension energy) from the membrane Hel-

frich energy, the resulting force would be the ‘force difference’.

This relation in terms of the angle c(s) is written as

F(s) ¼ 1

2
k _c

2�s(1� cosc)

� �̂
t(s)

þ [k€c� s sin c] n̂(s): (2:17)

Let us say a few words about the force acting on the membrane.

One can consider a line parallel to the axis of the cylinder on the

membrane. This hypothetical line divides the membrane into

two sections, say left and right sections. The force acting on

the left section from the right section of the membrane is

denoted by F. At equilibrium, the total force acting on each

element of the membrane should be zero which means that

@sF ¼ 0. It implies that the force per unit length, F, should

not depend on s and is constant. Let us denote the components

of the force along the coordinates as Fr ; F � r̂ and

Fh ; F � ẑ. Using these components, one can easily see that

k

2
_c

2�s(1� cosc) ¼FrcoscþFhsinc: (2:18)

After defining pr ; �Fra=k, ph ; �Fha=k, and obtaining

derivative equation (2.18) respect to s, we can find the shape

equation of the membrane. Therefore, the Lagrange multipliers

of ph and pr, associated with the constraints of equations (2.9a)

and (2.9b), are proportional to the vertical and horizontal force

acting on the membrane [17].
2.3. The adhesion and the membrane contact curvature
Membrane binding to an external object imposes constraints

on the free membrane shape. It can be shown that [13,18]

_ci ¼ Cob �
1

a

ffiffiffiffi
�w
p

and _ce ¼
1

a
ffiffiffiffiffiffi
�ws
p

, (2:19)

where the indices ‘i’ and ‘e’ refer to the initial and endpoints

of the free membrane (figure 1), and where Cob denotes the

curvature of the object.

It is worth mentioning that the equations (2.19) are found

using the proper variational method and in principle are
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independent. Therefore, one can consider them separately in

determination of the shape of the membrane in the problem.

2.4. Boundary conditions
In order to find the shape of the membrane and the amount

of engulfment of the object by the membrane, we need to

know the proper boundary conditions of the system. In our

problem, the membrane engulfs the cylindrical object by

the amount of a. Therefore, according to figure 1, one has

ri ¼ a sina, (2:20a)

hi ¼ a(1� cosa) (2:20b)

and ci ¼ a, (2:20c)

At the endpoint of the free membrane, we have two more

boundary conditions as

ce ¼ 0 (2:21)

and

he ¼ 0: (2:22)

There is another boundary condition that we should con-

sider. Because we are dealing with the equilibrium, the

final boundary condition should involve the force balance.

This very important condition, which fulfills the force balance

requirement of the free membrane in the equilibrium, can be

found using (2.18) to find the pci
as

pci
¼ �[�s(1� cosa)� 2a( prcosaþ phsina)]1=2, (2:23)

where we have used this fact that through the free membrane

pr and ph are constants, as can be seen in equations (2.9e) and

(2.9f). Because at the point where the membrane leaves the

cylindrical object, _ci and hence pci
are negative, the minus

sign has been used in the above relation to ensure this

requirement.

2.5. Adhesion forces
As we discussed above, one can find the force acting on the

membrane using equation (2.17) or equation (2.18). Because

the force is constant through the deformed membrane, it is

convenient to find the force components at the end of the

free membrane. At rs, we have ce¼ 0 and using the equation

(2.18) at this point gives

Fr

F0
¼ �ws , (2:24)

where F0 ; k=(2a2). According to equation (2.24), the hori-

zontal component of the force is given by �ws�F0 ¼ ws and

it does not explicitly depend on the other physical parameters

of the problem.

The vertical component of the force on the object can be

obtained using the force equation (2.18) with the boundary

conditions, equations (2.19) and (2.20c)

Fh

F0
¼ 1

sina
(1�

ffiffiffiffi
�w
p

)2 � �s(1� cosa)� �ws cosa
h i

: (2:25)
3. Results
As mentioned above, the shape equations of the membrane

are nonlinear differential equations. To study the effect of

various parameters, namely the membrane bending rigidity

and the surface tension, the radius of the object, the
membrane–object and the membrane–substrate adhesion

energy, we choose to work with the dimensionless

parameters �s, �w and �ws, as defined in equation (2.4).

In the following sections, we solve the set of coupled non-

linear equations of (2.9a– f) numerically for the different

values of contour length of the free membrane, S, and the

proper boundary conditions as discussed before. We calculate

the phase diagram of membrane wrapping in the parameter

space {�w, �ws}, which contains unwrapped, partially wrapped

and fully wrapped regions. We then discuss the value of the

wrapping angle, the extent of the membrane region detached

from the cytoskeleton and the normal force on the target for

different values of the parameters. Finally, we give analytical

results for small and large wrapping angles that yield

analytical expressions for the unwrapping and full wrapping

boundaries of the phase diagram.
3.1. Numerical results
To study the effect of the membrane–object and the membrane–

substrate adhesion energies on the engulfment angle, we solve

the problem numerically with different parameters. The results

are summarized in figure 3a, where a diagram in the parameter

space of �w and �ws shows the different wrapping regimes. Gener-

ally, there are three distinct regions. For small values of the

membrane–cylinder adhesion �w, the engulfment angle is zero,

which means that the membrane–substrate adhesion comple-

tely abolishes membrane wrapping around the cylinder. This

region called U. Beyond a finite value of �w, the membrane

deforms and partially unglues the target. This partially wrapped

region is denoted by P. For sufficiently large values of �w, the

membrane is fully wrapped around the cylinder (region F).

Figure 3b shows the variation of the wrapping angle with the

target binding energy, which clearly shows the existence of an

abrupt transition to full wrapping for a finite binding energy.

The shape of the free membrane is shown in figure 3c. For

strong wrapping, the membrane away from both the target

and the cytoskeleton shows a curvature-free straight shape

characteristic of a cylindrical symmetry.

In figure 4, the dependence of the engulfment angle a, the

distance rs/a over which the membrane is detached from

the cytoskeleton, and the vertical force Fh are shown as a func-

tion of �ws for different values of �s (for �w ¼ 200). As expected,

the binding energy between the membrane and the cortex can

regulate the extent of wrapping. Increasing ws decreases both

the wrapping angle a and the detached length rs. On the

other hand, the normal force exerted by the target on the cell

is a monotonously increasing function of ws.
3.2. Analytical derivation of the phase boundaries
For sufficiently small values of the cytoskeleton binding

energy ws, the transition between the unwrapped and

wrapped membrane states is continuous and can be derived

analytically by performing a small angle expansion of the

equations. It is shown in the appendix that for small a, the

energy of the system given by equation (2.5) takes the form

�E ¼ A1(�w, �ws )a� A2(�w, �ws , �s)a3: (3:1)

predicting an equilibrium wrapping anglea ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(A1)=(3A2)

p
,

and a wrapping transition for a value wu of the target binding
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energy satisfying A1( �wu , �ws ) ¼ 0, which implies

�wu ¼ 1þ
ffiffiffiffiffiffi
�ws
p	 
2þ 4

9
1þ 3

ffiffiffiffiffiffi
�ws
p	 
3=2�1

h i
: (3:2)

This relation corresponds to the dashed line that separates the

unwrapping region from the partially wrapping region in

figure 3a. In the limit �ws � 1, one finds �wu ≃ �ws.

The transition to full wrapping that occurs for large values

of the target binding energy can be understood by looking at

the variation of the wrapping angle a with �w and the behav-

iour of the horizontal component of force, Fh, in terms of a.

As can be seen in figure 3b, a increases with w and at some

point it diverges, which means @ �w=@a ¼ 0 at the divergence

point. Furthermore, as figure 5a shows, jFhj decreases with

a and becomes constant for large enough wrapping angle,

that implies @Fh=@a ¼ 0 for large values of a. Using these

two criteria and after taking a derivative of equation (2.25)

with respect to a at constant values of �s and �ws, one finds

F�
h

F0
¼ ( �ws��s) tana, (3:3)
where F�h denotes the value that the vertical force converges to

that at large a (figure 5a).

In addition as discussed in the §2.2, at the equilibrium, the

force is constant through the contour length of the membrane.

In figure 5b, the behaviour of c is shown in terms of the con-

tour length. As can be seen in figure 5b, there is an area in

which the angle c is constant, say c0, that implies _cjc0
¼ 0

and €cjc0
¼ 0. Therefore, the force components can be written

in terms of c0 as Fh ¼ �ssinc0 and Fr ¼ s(1� cosc0).

Because sin2c0þ cos2c0¼ 1, we can find the relation between

the components of the force as F2
h ¼ s2 � (Fr � s)2. Using

equation (2.24) and after a few manipulations, we have

Fh

F0

� �2

¼ �ws (2�s� �ws ): (3:4)

This relation is also valid for large values of wrapping angle.

After using equations (3.3) and (3.4), one can find the following

relation for angle af at the fully wrapped transition

cosaf ¼
�ws��s

�s
: (3:5)
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After using the above relation, equations (2.25) and (3.3), we find

the relation for the transition to full wrapping that occurs beyond

a threshold for the membrane–target binding energy, �wf as

�wf ¼ 1þ
ffiffiffiffiffiffi
2�s
p� �2

: (3:6)

This criterion is shown infigure 3 to give an accurate predictionof

the critical target binding energy beyond which one expects full

wrapping.

One can see in figure 3a that the full wrapping boundary

is by and large independent of �ws. One thus expect �wf / �s,

and considering the deformed membrane contains two mem-

brane sheets (each experiencing a force � �s), but only one of

them experiences the driving force �w, one expects �wf ≃ 2�s.

This criterion is shown in figure 3 to give an accurate predic-

tion of the critical target binding energy beyond which one

expects full wrapping.

The boundary lines defining the partially wrapped state

intersect when �ws ¼ 2�s. The boundary lines defining the par-

tially wrapped state are of interest when �wf (equation (3.6))

equals �wu (equation (3.2)). In the limit of negligible bending

rigidity, this corresponds to �ws ≃ 2�s. For larger binding ener-

gies, the partially wrapped state does not exist. One then

expects to observe an abrupt transition from an unwrapped

to a fully wrapped state when �w becomes larger than �ws.
4. Discussion and conclusion
In this paper, we have studied the engulfment of a cylindrical

object by a bilayer adhering on a rigid plane. This problem

gives insights into the competition between membrane–

target and membrane–cytoskeleton adhesion in cellular pro-

cesses such as phagocytosis and viral infection. We examined

several physical parameters such as the membrane–object

adhesion, the membrane–surface adhesion, the bending stiff-

ness and the surface tension of the membrane. We have

summarized the effect of all mentioned parameters in the

phase space of the engulfment in figure 3. The most striking

features of the phase space is the existence of three well-

defined regions: unwrapped, partially wrapped and fully

wrapped. In other words, no wrapping is observed for a

target adhesion energy �w , �wu and full wrapping is pre-

dicted for �w . �wf, where �wu and �wf are functions of the

cytoskeleton adhesion energy, the membrane tension and

the bending rigidity, and the radius of the object for which

we give analytical expressions (equations (3.2) and (3.6)).

Although cellular processes such as phagocytosis involve

active force generation by the cytoskeleton in addition to

specific adhesion, the former is often triggered by the later

[19]. The existence of an unwrapping transition of �w , �wu

is thus of strong physiological relevance. The cell is not able

to establish any sort of extended contact with the target if

the cytoskeleton binding energy is above the threshold. Fac-

tors that affect the tightness of the cytoskeleton anchoring

to the plasma membrane might thus serve as crucial regula-

tors of the cell’s ability to recognize external objects. Note

that the value of �wu is influenced by the bending rigidity of

the cell membrane, but not by the cell membrane tension.

One consequence of the abrupt nature of the fully

wrapped transition is that there is a maximum partial wrap-

ping angle af (given by equation (3.5)), which is modulated

by membrane tension. At equilibrium, the wrapping angle
is either below af or equal to p (full wrapping). This result

could help explain the experimental observation that phago-

cytic cups are either stalled at small wrapping angle or they

progress until the target of phagocytosis is fully engulfed

by the cell [20]. It was argued in [20] that the critical angle

must by p/2, based on a crude model of the membrane

deformation energy. We show here that both the mem-

brane–cytoskeleton adhesion energy and the membrane

tension can regulate the critical cup size.

Our results are expressed in terms of reduced parameters,

listed in equation (2.4). These parameters depend on the size

of the object, which plays an important role in defining the

accessible regions of the phase space (figure 3). For typical phys-

iological values of membrane tensions and bending rigidity:

s ≃ 10�6 to 10�3 N m�1 [21] and k ≃ 10� 100, kBT [2], we

find that �s ¼ 10�1 to 103 for a ¼ 100 nm, or �s ¼ 10� 105 for

a ¼ 1 mm. The binding energies w and ws can be expected

to be on the order of several kBT per adhesion site, or on

the order of �w, �ws � 10� 103. This shows that (i) the physio-

logical system can explore the entirety of the phase space, and

(ii) physiological membrane tension can, in principle, regulate

target wrapping. Note that the parameter values above are

typical magnitudes of lipid bilayers without considering effects

of the cell cortex, a thin (,mm) actin layer underlying the

cell membrane.

Possible extensions of this work should include an analysis

of the influence of the target geometry on the degree of wrap-

ping. The local curvature of the object is important to fix the

boundary condition (equation (2.19)), and can potentially con-

trol wrapping locally. Furthermore, as discussed above, the

target size is crucial to fix the energy scales on locate the

system in the phase space of figure 3. Another interesting exten-

sion is to consider the substrate on which the membrane adheres

as a deformable object, such is the cytoskeleton. One could envi-

sion two main alterations of our present model. First, the

effective substrate adhesion energy would probably be reduced,

as an increase of the wrapping angle could be obtained either by

detaching the membrane from the cytoskeleton or by deforming

the cytoskeleton. Second, wrapping could be obtained by

deforming the membrane upwards, or by bringing the target

downwards–upwards. We plan to explore this more complex

situation in the future.
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Appendix A. Small angle expansion
Here, we try to understand the behaviour of the problem for

small angles of engulfment analytically. For small values of

a, let us say for a� 1, _c(s) behaves linearly in terms of s.

We write this relation as

_c(s) ¼ Aþ Bs, (A 1)

where A and B are constants. We know _c at ri and rs as

_ci ¼ _c(0) ¼ 1

a
1�

ffiffiffiffi
�w
p� �

(A 2)

and

_cs ¼ _c(S) ¼ 1

a
ffiffiffiffiffiffi
�ws
p

, (A 3)
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where S denotes the total contour length of the free part. Further-

more, one can find c(s) by integrating equation (A 1). So one has

c(s) ¼ Asþ 1

2
Bs2 þ C: (A 4)

We have more two boundary conditions c(0) ¼ a and

c(S) ¼ 0. Here, the unknown parameters or constants are A,

B, C and S. Using equations (A 2)–(A 4), we have

A ¼ 1

a
1�

ffiffiffiffi
�w
p� �

, (A 5)

B S ¼ 1

a
ffiffiffiffiffiffi
�ws
p

� 1þ
ffiffiffiffi
�w
p� �

, (A 6)

C ¼ a (A 7)

and S ¼ 2aaffiffiffiffi
�w
p
� 1�

ffiffiffiffiffiffi
�ws
p : (A 8)

The total energy is given by

E ¼ Ecap þ Ead þ Efree, (A 9)

Ecap ¼ k
a

a
þ 2saa 1� sina

a

� �
, (A 10)

Ead ¼ �2waaþ 2wsrs (A 11)

and Efree ¼ 2�
ðS

0

ds
k

2
_c

2þs(1� cosc)
h i

, (A 12)

where the factors ‘2’ account for both sides of the cylinder.

Using the dimensionless parameters, we have

�E ¼ ��waþ �ws
rs

a
þ aþ �sa 1� sina

a

� �
þ �Efree : (A 13)

We see that in the energy we need rs. One can find rs

using the relation of _r ¼ cosc as

rs ¼ a sinaþ
ðS

0

coscds: (A 14)
As we are treating the small angle of a, therefore, in prin-

ciple, c should also be small. We expand all the small angles

to the third order. So, we can find rs. Furthermore, we can calcu-

late the energy of the free part, because we have c(s) and _c(s),

and one can calculate the integral of the energy concerning of

the free part. At the end, we find out the energy of the system as

�E ¼ A1(�w, �ws )aþ A2(�w, �ws , �s)a3, (A 15)

where A1(�w, �ws ) and A2(�w, �ws , s) are functions defined as

A1(�w, �ws ) ¼3� 2
ffiffiffiffi
�w
p
� �wþ

8 �1þ
ffiffiffiffi
�w
p	 
2

3 �1þ
ffiffiffiffi
�w
p
�

ffiffiffiffiffiffi
�ws
p	 


� 8
ffiffiffiffiffiffi
�ws
p

3
þ �ws ,

(A 16)

A2(�w, �ws , �s) ¼ �s

6
þ (�s� �ws )� B(�w, �ws )

5 �1þ
ffiffiffiffi
�w
p
�

ffiffiffiffiffiffi
�ws
p	 
 (A 17)

and B(�w, �ws ) ¼ 1þ �w�
ffiffiffiffi
�w
p

2þ 3
ffiffiffiffiffiffi
�ws
p	 


þ 3
ffiffiffiffiffiffi
�ws
p

þ 8

3
�ws :

(A 18)

In order to find a corresponding to the problem, we have to

minimize the above energy with respect to a. We have

@�E
@a
¼ 0 ) a ¼

ffiffiffiffiffiffiffiffiffiffi
�A1

3A2

s
: (A 19)

To obtain the answer to the problem, the parameter

2A1/(3A2) should be positive. Using this criterion, one can

find the boundary that can be seen in the phase diagram

(figure 3a).
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