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Cancer is a disease regulated by the underlying gene networks. The emergence

of normal and cancer states as well as the transformation between them can be

thought of as a result of the gene network interactions and associated changes.

We developed a global potential landscape and path framework to quantify

cancer and associated processes. We constructed a cancer gene regulatory net-

work based on the experimental evidences and uncovered the underlying

landscape. The resulting tristable landscape characterizes important biological

states: normal, cancer and apoptosis. The landscape topography in terms of

barrier heights between stable state attractors quantifies the global stability

of the cancer network system. We propose two mechanisms of cancerization:

one is by the changes of landscape topography through the changes in regu-

lation strengths of the gene networks. The other is by the fluctuations that

help the system to go over the critical barrier at fixed landscape topography.

The kinetic paths from least action principle quantify the transition processes

among normal state, cancer state and apoptosis state. The kinetic rates provide

the quantification of transition speeds among normal, cancer and apoptosis

attractors. By the global sensitivity analysis of the gene network parameters

on the landscape topography, we uncovered some key gene regulations deter-

mining the transitions between cancer and normal states. This can be used to

guide the design of new anti-cancer tactics, through cocktail strategy of

targeting multiple key regulation links simultaneously, for preventing

cancer occurrence or transforming the early cancer state back to normal state.
1. Introduction
Cancer is a disease involving unregulated cell growth. In 2007, cancer caused about

13% of all human deaths worldwide (7.9 million). Cancer rates are rising as more

people live to older ages and as lifestyle changes occur in the developing world

[1]. The chances of surviving cancer vary greatly by the type, the location

and the extent of the disease when starting treatment. Taking breast cancer

as an example, current therapies can delay tumour progression significantly, but

recurrence is often inevitable, resulting in high mortality rates [2].

Cancer can be defined as a disease in which some abnormal cells ignore the

normal rules of cell division and grow uncontrollably. Normal cells are frequently

controlled by signals dictating whether the cell should divide, differentiate or die,

while cancer cells develop a degree of autonomy from these control signals with

uncontrolled growth and proliferation, which can be fatal. The foundation

of modern cancer biology relies on a simple principle, which is that in fact all

mammalian cells have similar molecular networks that control cell proliferation,

differentiation and cell death. This suggests that the transformation from normal

cells to cancer cells is caused by the changes in these networks at the molecular,

biochemical and cellular levels [3–9].

Great efforts have been devoted to understand the mechanisms of canceri-

zation. However, there are still challenges in many respects. For example, local

probes of cancer by targeting individual genes are not all effective, so how do
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we combat cancer from the global perspectives of the net-

work? How do we quantify the cancer and normal cell

states? What is the quantitative measure for the capability

of transforming from normal to cancer states and from

cancer back to normal states? How do we understand the

underlying mechanism and quantify the transformation pro-

cess between normal and cancer states? How do we come up

with the potential recipes for cancer prevention and treatment

from the network perspective? How do we identify and

quantify the key gene regulatory links for cancer?

Here, we develop a global yet physical landscape-path fra-

mework and try to address the above issues. The epigenetic

landscape concept has been proposed to explain the develop-

ment and differentiation of cells as a metaphor [10], and

provided a quantitative way of understanding the dynamics

of gene regulatory systems driving cell development. This pic-

ture has been quantitatively realized through the exploration

of the global nature of the network in terms of probabilistic

landscape framework [11–17]. The state space of gene regulat-

ory networks contains states with different gene expression

patterns (such as tumour repressor gene P53 and RB) in the

cell, which further determine different cellular phenotypes.

Employing landscape framework, cell types can be rep-

resented by the basins of attraction on the landscape, which

reflect the probability of appearance of different cell types.

States with lower potential or higher probability represent

attractor or biological functional states, forming the basins of

attraction. So, a biological process such as tumour genesis or

apoptosis of cells can be understood as the transition from

an attractor state to another one in the gene expression state

space of the underlying gene regulatory network.

Conventional way for cancer studies has been focused

on local properties of cancer networks (cancer as a disease

of individual mutations). Many recent evidences show that

cancer may be a disease at the network level [3–6], and can

be understood as attractors in gene regulatory network

state space [3,18–23]. However, global characterization and

quantification for cancer attractors remains elusive. In this

paper, from our physical and global landscape framework,

we can quantify the underlying potential landscape of the

cancer network and identify the attractor states in gene

network state space as distinct biological functional states

(normal, cancer and apoptosis states). Through the landscape

topography in terms of barrier heights and kinetic transition

rates between attractors, the global stability and the capability

of the transitions between normal and cancer states can be

quantified. By identifying the kinetic paths connecting the

basins of normal, cancer and apoptosis attractors, we can

uncover the underlying mechanism of the state transition

and quantify the transition process. The kinetic paths from

normal to cancer state and from cancer to normal state can

be used to suggest potential recipes for cancer prevention

and treatment. Furthermore, by global sensitivity analysis

for parameters on the landscape topography, we will be

able to identify and quantify the key regulations and genes

for the function of the cancer network. This may provide

multiple potential targets for curing or attenuating cancer.

Many approaches have been developed to construct

cancer related protein or gene regulatory networks [24–26].

These network construction methods start from a variety of

genomic or proteomic data. However, to model the dynamics

of cancer regulatory systems, we believe that the networks

constructed from mining genomic or proteomic data may
not be able to provide enough accurate information in

terms of regulation directions (activation or repression) and

strengths due to the often insufficient statistics of samples.

Some gene regulatory networks on cell fate decisions were

constructed by directly searching regulation evidences from

the literature [15,27–30]. We will start from some key gene

markers characterizing the hallmarks of cancer [4,5], search

for the connections between these genes and other cancer-

associated genes from experimental evidences and construct

a typical cancer network. In this way, we obtained a typical

cancer gene regulatory network with 32 nodes (genes) and

111 edges (regulations).

Based on the cancer network built, we can explore the

underlying landscape of the cancer network through the cor-

responding network dynamic equations to find out its global

properties, uncover the functional mechanism of transitions

among normal state, cancer state and apoptosis state. The

barrier heights separating the basins of attraction and the

transition rates can serve as the quantitative measures for

global stability and kinetics of cell type transition process

between normal attractor and cancer attractor. We explore

two possible mechanisms of cancerization. One mechanism

is by the change of the landscape topography through the

changes in the genes and regulation strengths of the gene

networks. The change of genes is often regarded as having

genetic origin while the change of the regulations is often

attributed to environmental changes. Upon gene or regu-

lation changes, the cancer state attractor may become more

and more stable and the normal state attractor may become

less and less stable on the landscape, which characterizes

the process of tumour genesis. When a dominant cancer

state attractor forms on the landscape, it represents the for-

mation of a tumour. A steep funnel-shaped cancer attractor

landscape can guarantee the stability of the cancer state. It

implies that at a certain stage the cancer could not be

reversed. This may represent the formation of genome

instability. We also explore another possible mechanism of

cancerization: upon intrinsic or environmental fluctuations,

the state transition from normal attractor to cancer attractor

can occur by going over the barrier in between. In this scen-

ario, landscape is fixed (for example, tristability, normal,

cancer and apoptosis states coexist). A state in the normal

attractor is stable against certain fluctuations. This indicates

that for small fluctuations it is difficult for the system to

escape from the normal state. However, when intrinsic or

environmental fluctuations are large enough, the system

can go over the barrier between normal and cancer basins

and jump to the cancer state attractor. This characterizes the

process of cancerization in another way.

We further quantify the kinetic paths for the transition

process from normal to cancer state and cancer to normal

state, as well as the apoptosis paths for both normal and

cancer cells. The biological paths we acquired can be used

to guide the design of new anti-cancer tactics. We show

that both potential landscape and probabilistic flux are

important to the dynamics of the cancer system. The force

from the curl flux leads the kinetic paths of the system to

deviate from the conventionally expected potential gradient

paths. Consequently, the transition paths between normal

and cancer states are irreversible. By the global sensitivity

analysis of the genes or regulations among genes on the land-

scape topography, we will quantitatively predict which links

(regulations) or nodes (genes) are critical to the transition
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between cancer and normal attractors, which can be directly

tested from the experiments. This suggests a possible strategy

for designing anti-cancer drugs from network perspectives

by targeting multiple key genes and regulations, while tra-

ditional drug searches usually only target one molecule at a

time and not for the regulation strength. Therefore, the results

of our global sensitivity analysis may suggest a cocktail strat-

egy of targeting multiple key genes of the key regulations, to

prevent cancer occurrence or transform the early cancer state

back to the normal state.
J.R.Soc.Interface
11:20140774
2. Results and discussion
2.1. Construction of the cancer network
Cancer is a complex and heterogeneous disease displaying a

degree of complexity at physiological, tissue and cellular

levels. Recent tumour genome sequencing efforts have demon-

strated that there may be thousands of cancer driver-mutating

genes. These genes are diverse and have little overlap between

different tumours. Nevertheless, most cancer driver-mutated

genes reflect cancer hallmarks or functional modules. Each

hallmark or functional module is composed of a set of function-

ally linked pathways. Therefore, it is possible to map the

functional modules and the mutated genes onto a cancer net-

work. By doing so, we can use the network to represent

complexity, compute biological relationships and seek to

uncover the biological principles and insights of cancer [31].

Weinberg et al. put forward the 10 hallmarks of cancer

[4–6]. These hallmarks are characterized by some key cancer

marker genes, such as EGFR for proliferative signal, VEGF

for angiogenesis, HGF for metastasis, hTERT for unlimited

replication, HIF1 for glycolysis, CDK2 and CDk4 for evading

growth suppressors. Starting from these cancer marker genes

and some critical tumour suppressor genes such as P53, RB,

P21 and PTEN, we made an extensive literature search [32]

for the interactions among these key genes as well as the inter-

actions among other cancer-associated genes, and constructed

a cancer gene regulatory network with 32 gene nodes (figure 1)

(see the electronic supplementary material for the key pathway

description of the network). This cancer network includes

32 nodes (genes) and 111 edges (66 activation interactions

and 45 repression interactions). In figure 1, arrows represent

activation and short bars represent repression. The network

mainly includes three kinds of marker genes: apoptosis

marker genes (green nodes, including BAX, BAD, BCL2 and

Caspase), cancer marker genes (magenta nodes, including

AKT, MDM2, CDK2, CDK4, CDK1, NFKB, hTERT, VEGF,

HIF1, HGF and EGFR), and tumour repressor genes (light

blue nodes, including P53, RB, P21, PTEN, ARF and CDH1).

The brown nodes represent other genes. We provide the

order numbers and names of 32 genes, and also the related

functions in the electronic supplementary material, table S1.

We also show the evidences for the connections in constructing

the network in the electronic supplementary material, table S2.

For the 32-node gene regulatory network, we constructed

the corresponding ordinary differential equations describing

dynamics of the underlying system, in terms of Hill func-

tions representing their activation or repression interaction

strengths and cooperativity. The equations have the form

Fi ¼ �k � Xi þ
a � Xai

Sn þ Xai
þ b � Sn

Sn þ Xbi
: (2:1)
In the above equation, i ¼ 1, 2, . . . , 32, so totally there are

32 equations. S represents the threshold (inflection point) of

the explicitly sigmoidal functions, i.e. the strength of the

regulatory interaction, and n is the Hill coefficient which

determines the steepness of the sigmoidal function [33].

Here, parameters for Hill functions are specified as: S ¼ 0.5,

n ¼ 4. In addition, k is self-degradation constant, b is repres-

sion constant and a is activation constant (see the electronic

supplementary material for description of parameters).

Here, Xai and Xbi represent average interaction strength

separately for activation and repression from other nodes

to certain node i. For every node i, Xai is defined

as (Xn
a(1)�M(a(1), i)þ Xn

a(2)�M(a(2), i)þ � � � þ Xn
a(m1)�M(a(m1),

i))=m1, and Xbi is defined as (Xn
b(1) �M(b(1), i)þ Xn

b(2)�
M(b(2), i)þ � � � þ Xn

b(m2) �M(b(m2), i))=m2. Here a(1), a(2), . . . ,

a(m1) is the number list of nodes which have activation inter-

actions to node i, and b(1), b(2), . . . , b(m1) is the number list of

nodes which have repression interactions to node i. M( j, i) (i,
j ¼ 1, 2, . . . , 32) is the element of interaction matrix M charac-

terizing the interaction type and the interaction strength from

node j to node i. M is acquired by multiplying interaction

type matrix Mi (see table S6) with interaction strength

matrix Ms (table S7): M( j, i) ¼Mi( j, i) �Ms( j ), i, j ¼ 1, 2, . . . ,

32. Here, we made an assumption that the regulation from

one individual gene j to the other genes has the same inter-

action strength which is determined by Ms( j ). Therefore, in

equation (2.1), the first term represents self-degradation, the

second term represents activation from other nodes (m1

nodes) to node i, and the last item denotes repression from

other nodes (m2 nodes) to node i.
2.2. Potential landscape of the cancer network
The above 32 ODEs (equation (2.1)) we constructed, as the

driving force of the system, govern the network dynamics.

We can further consider the corresponding stochastic dynamics

[12]. By the self-consistent mean field approximation, we can

obtain the steady-state probability distribution of 32 variables

for the cancer regulatory system. According to U ¼2ln(Pss)

[11–14], we can further acquire the potential landscape of the

system. Here, Pss represents the probability distribution of

the steady state, and U is the dimensionless potential energy.

For a 32-dimensional system, it is hard to visualize the land-

scape. So, we projected the landscape to a two-dimensional

state space by integrating out the other 30 variables and leaving

the two key variables AKT (an oncogene) and RB (a tumour

repressor gene). Figure 2 shows three-dimensional and two-

dimensional landscapes for the system in gene expression

level state space in terms of AKT and RB. In figure 2a, we

can see clearly that there are three stable states or basins of

attraction on the landscape (tristability). Landscape reflects

the steady-state probability distribution. Here, every basin of

attraction (high probability states) represents a cell type in

gene expression level state space, and they are separated by

some barriers, which prevent easy transformation between

different cell types. The bottom attractor represents apoptosis

state, which has higher expression of tumour repressor gene

RB, P21, PTEN, lower expression of oncogene AKT, EGFR,

VEGF, HGF, HIF1, hTERT, MDM2, CDK2, CDK4 and higher

expression level of apoptosis marker gene Caspase. The

middle attractor represents the normal state, which has

higher expression level of tumour repressor gene RB, P21,

PTEN, higher expression level of oncogene AKT, EGFR,
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Figure 1. The diagram for the cancer network including 32 nodes (genes) and 111 edges (66 activation interactions and 45 repression interactions). Red arrows
represent activation and blue filled circles represent repression. The network includes mainly three kinds of marker genes: apoptosis (green nodes), cancer marker
genes (magenta nodes) and tumour repressor genes (light blue nodes). The cancer marker genes include EGFR for proliferative signal, VEGF for angiogenesis, HGF for
metastasis, hTERT for unlimited replication, HIF1 for glycolysis, CDK2 and CDk4 for evading growth suppressors. The solid black links represent the key links found by
the global sensitivity analysis, and the octagon shape nodes represent key genes for the transition between normal and cancer states found by global sensitivity
analysis. The brown nodes represent other genes.
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VEGF, HGF, HIF1, hTERT, MDM2, CDK2, CDK4, and lower

expression level of apoptosis marker gene Caspase. The top

attractor represents the cancer state, which has lower expression

level of tumour repressor gene RB, P21, PTEN, much higher

expression level of oncogene AKT, EGFR, VEGF, HGF, HIF1,

hTERT, MDM2, CDK2, CDK4, and lower expression level of

apoptosis marker gene Caspase (see the electronic supplemen-

tary material, table S3, for detailed relative gene expression

levels of the three stable states). Biologically, this is consistent

with our understanding for normal, cancer and apoptosis

states [4–6], since for apoptosis state the apoptosis marker

gene should be on and for cancer cells the oncogenes should

be more highly expressed than for the normal cells. The three

attractors or stable states are consistent with our biological

understanding to cancer networks. In the following section,

we will continue to investigate the transition paths between

these three stable states. As far as we know, this is the first land-

scape for cancer gene regulatory network which can reflect the

biological details for cancer regulations (such as cancerization

and apoptosis process).

We stress that the tristability appears in some para-

meter range for regulation strength (table S7). The tristable
landscape provides a relatively balanced case for the

three (normal, cancer and apoptosis) state coexistence

so that we can explore the transition among these three

attractors. Changing the regulation strengths mimicking the

non-genetic environmental changes leads to the change of

landscape topography, for example, from single dominant

basin to bistable basin and to tristable basin or vice versa.

This helps to provide a hint and a quantitative basis of how

environmental changes may lead to or prevent the cancer

state formation.

In order to show the landscape of the complete

32-dimensional system, we applied stochastic Langevin

dynamics method to obtain the quantitative information on

the landscape (see the electronic supplementary material for

detailed methods). We can uncover the landscapes using

RMSD coordinates based on Langevin dynamics (see the elec-

tronic supplementary material, figure S1). It gives similar

dynamics to the one using AKT and RB as the coordinates

(figure 2) based on the self-consistent approximation. This

shows that the two-dimensional projection of landscape in

AKT and RB state space can reflect the main dynamics of the

full 32-dimensional gene network, and the three attractor
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landscape is not affected by choosing which gene pairs to

display the results.

2.3. Kinetic paths between normal, cancer and
apoptosis states

Based on our path integral method [13,14,34], we also acquired

the quantitative kinetic paths between the normal cell state and

the cancer cell state as well as the apoptosis paths for both

normal and cancer states. In figure 2, the yellow path rep-

resents the kinetic path from normal to cancer attractor and

the magenta path represents the kinetic path from cancer to

normal attractor. We can see that the kinetic paths between
normal and cancer states are irreversible. In addition, we

also show, respectively, the apoptosis paths for normal and

cancer states (black paths), which separately characterize the

path for the death of normal cells and cancer cells. We also

obtained the probabilistic flux of the cancer system, which is

shown on the landscape (figure 2b). The white and red

arrows, respectively, represent the direction of probabilistic

flux and the negative gradient of the potential energy. We

found that the dynamics of the cancer system is determined

by both the force from the gradient of potential and the

force from the curl flux [11,14]. The force from the curl flux

leads the paths of the system to deviate from the steepest des-

cent path calculated from the gradient of potential; thus, as we
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and paths with higher probability by setting a probability cutoff. The largest blue node (high RB/high AKT/low Caspase) represents the major normal state, the
largest red node (low RB/high AKT/low Caspase) represents the major cancer state, and the largest green node (high RB/low AKT/high Caspase) represents the major
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can see the two kinetic paths of normal to cancer state and

cancer to normal state are irreversible (yellow line and

magenta line are not identical).

The landscape in figure 2 is only a two-dimensional projec-

tion of the whole 32-dimensional state space. In order to

demonstrate the cell states and the transitions between differ-

ent cell types in the complete state space, we projected the

expression level of the 21 major marker genes to binary states

of each gene with high and low expressions (221 cell states

totally). Here, to analyse the dynamics of the system, we

chose the key 21 marker genes (table S3) to explore the under-

lying landscape and transition jumps between two nodes (cell

types) based on Langevin dynamics. The reason for choosing

the 21 marker genes is that the 32-dimensional state space is

huge, and it will have 232 states even in the discrete form,

which cannot be easily handled computationally. We believe

employing key 21 maker genes can capture major regulatory

dynamics or paths without losing the essential information,

since our purpose is to explore the dynamical mechanism of

the cancer system. In this way, the normal state is represented

by the binary number 001011010101110000000 (representing

expression level from gene 1 to gene 21, 1 for high expression,

0 for low expression), and for the cancer state, it is represented

by 100010000101110111100. For the apoptosis state, it is rep-

resented by 001101011010000000001. Figure 3 (see Methods
section for detailed methods) shows the discrete cancer land-

scape represented by 247 cell states (nodes, characterized by

expression patterns of the 21 marker genes) and 334 transition

jumps (edges) between the different cell states (produced by

Cytoscape [35]). The sizes of nodes and edges are, respectively,

proportional to the occurrence probability of the correspond-

ing states and paths. Blue nodes represent cell states closer to

normal cell states, red nodes represent cell states closer

to cancer states and green nodes represent cell states closer to

apoptosis states. The largest blue node (high RB/high AKT/

low Caspase) represents the most significant normal state,

the largest red node (low RB/high AKT/low Caspase) rep-

resents the most significant cancer state and the largest green

node (high RB/low AKT/high Caspase) represents the most

significant apoptosis state.

We also calculated kinetic paths from path integral

methods (see Methods for the details of path integral) in

terms of 21 key marker genes (not only two-dimensional pro-

jection). Figure 2 shows the two-dimensional projection of the

kinetic paths. In particular, we displayed the 21-dimensional

kinetic paths (biological paths), which are shown as green

and magenta paths separately for normal to cancer process

and cancer to normal process, and black paths for apoptosis

paths of normal and cancer states. In tables S8, S9, S10 and

S11, we also provide the detailed 21-dimensional discrete
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kinetic paths. Again, we can see that the path from normal to

cancer attractor and the path from cancer to normal attractor

are irreversible.

From table S8, monitoring the transition process from

normal to cancer state according to certain vital marker genes

RB (column 6), MDM2 (column 16) and CDK2 (column 17),

we can see that the differentiation process experiences a succes-

sive process (also reflected in the green path from normal to

cancer attractor in figure 3) from MDM2 on (from 0 to 1),

CDK2 on (from 0 to 1), RB off (from 1 to 0) and finally to

cancer state. This provides a possible mechanism for the cancer-

ization process as follows. First, the on state of MDM2 represses

the tumour repressor gene P53 and P21, which releases the gene

CDK2 and CDK4 (CDK2 and CDK4 on) in charge of cell growth

due to the inhibition of P21 to CDK. Then RB is off because of

suppression of activated CDK2 and CDK4 to it, and system

gets into cancer state. This indicates the importance of oncogene

MDM2 to induce tumour genesis.

For the reverse transition path of cancerization (from

cancer to normal state) in table S9, we can see that the cell

experiences a process (also reflected in the magenta path

from cancer to normal attractor in figure 3) of RB on, off of

CDK2 and CDK4, and off of MDM2. This indicates that in

the transition process from cancer state to normal state the

cell may first switch on the key tumour repressor genes RB,

then growth genes CDK2 and CDK4 are gradually inacti-

vated due to the repression of RB to them. Finally,

oncogene MDM2 gene is switched off, and the cell goes

back to the normal state. Experimentally, inhibiting expression

of TCTP (encoding translationally controlled tumour protein)

has been suggested as an important mechanism for tumour

reversion, which activates the expression of P53, because

TCTP promotes MDM2-mediated degradation of P53

[36–38]. This confirms the role of oncogene MDM2 as an

important drug target for tumour reversion, and provides

some verification for our predictions. Meanwhile, this also

shows the importance of restoring the function of tumour

repressor gene RB as an anti-cancer tactic. Making compari-

sons between tables S8 and S9, we can also confirm the

irreversibility of paths from normal to cancer state and from

cancer to normal state.

Similarly, observing the apoptosis paths for both normal

cells and cancer cells (table S10 and S11), we can find that

they both experience a process of AKT first being turned

off and then Caspase being switched on, which demonstrates

the vital role of AKT in inducing cell apoptosis. This provides

another possible anti-cancer strategy by repressing AKT to

induce cell apoptosis.

The biological paths for cancerization and reverse process

as well as for the apoptosis of normal and cancer cells

acquired here can be validated by related experiments, and

we expect that they can be used to guide the design of new

anti-cancer strategies.

2.4. Landscape topography quantifies the global
stability of cancer network

Our simulation results showed that the landscape is critically

influenced by the activation regulation strength a or repression

regulation strength b. Figure 4 shows the landscape of the

cancer network in terms of AKT and RB when activation con-

stant a and repression constant b are changed, separately

corresponding to a ¼ 0.4, 0.46, 0.5, 0.52, 0.6 (from left
column to right column), and b ¼ 0.4, 0.5, 0.7, 0.8, 1 (from

top row to bottom row). Landscape comparisons (second

row at b ¼ 0.5) illustrate that with activation a gradually

increasing from 0.4 to 0.6, the landscape of cancer network

experiences a change in topography from monostable state

(apoptosis), to bistable state (apoptosis and normal coexist),

to tristable state (normal, cancer and apoptosis coexist) and

finally to another monostable cancer state (see the electronic

supplementary material, figure S2, for landscape of more

different a). So, by the change of landscape topography, we

found that the process of a increasing characterizes the tran-

sition process from dominant normal state to dominant

cancer state, or cancerization process. We do not have direct

evidences so far that in tumour-genesis process the activation

regulation strength between genes is enhanced. Nevertheless,

we suggest here (the first mechanism we suggested) that can-

cerization process can be understood as the change of cancer

network landscape topography caused by regulation strength

changes among different genes (here represented by the

increase in a). As we can see from above landscape compari-

sons (here we focus on the second row at b ¼ 0.5, other rows

give similar trends), in the tristable landscape the normal

state has the deepest potential well (most stable state among

three states) and it is hard for the system to make a transition

from the normal attractor to the other two attractors (cancer

and apoptosis). This represents normal cells performing

normal cell functions, which are stable against fluctuations.

With a increasing, the normal attractor gradually disappears,

and cancer attractor becomes more and more stable. This rep-

resents the process of cancerization for a normal cell caused by

different kinds of mutations in genes and regulation strengths.

When activation strength a is large enough, the system shows a

landscape with only one dominant cancer attractor, which rep-

resents the formation of stable cancer cells. At this time, a

funnel-shaped landscape guarantees the stability of cancer

state, which means that it is hard for the system to escape

from cancer attractor. This reflects a fact that at a certain

stage, it is very difficult for cancer cells to be reversed to

normal cells. This stage may correspond to the formation of

genome instability. Genome instability refers to a high fre-

quency of mutations within the genome. In our landscape

view, genome instability could mean that the change of net-

work structure (network wiring) caused by mutations leads

to the change of topography of landscape, e.g. the barrier

from normal state to cancer state decreases. This makes the

transition easier from the normal state attractor to the cancer

state attractor, and cancerization is more likely to occur. We

expect our suggestion be tested by further experiments.

We also propose another possible mechanism of canceri-

zation: upon fluctuations, the state transition from normal

attractor to cancer attractor happens by going over the barrier

in between. In this scenario, the underlying landscape is fixed

(tristability, normal, cancer and apoptosis states coexist).

A state in the normal attractor is stable against certain fluctu-

ations. At small fluctuations it is difficult for the system to

escape from normal state attractor. However, when fluctuation

is large enough, the system will be able to go over the barrier

between normal and cancer basins and reach the cancer attractor.

This gives another possibility of realizing cancerization.

Similarly, observing the landscape change for b increasing

(top down direction), we can see that with b increasing the

landscape topography changes from a monostable apoptosis

state (central column at a ¼ 0.5), to a tristable state, and
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finally into a monostable normal state (see the electronic

supplementary material, figure S3, for three-dimensional

landscape of different b) when b is big enough (b ¼ 1).

To quantify the global stability of the cancer network in

terms of landscape topography, we define global barrier

height, representing potential difference between each attractor

minimum and the corresponding saddle point on the land-

scape. We define USN as the potential energy difference

between the normal state and the saddle point, Usaddle 2 UN,

and USC as the potential energy difference between cancer

state and the saddle point, Usaddle 2 UC. Here, UN and UC

denote, respectively, the potential at the minimum for the

normal state attractor and the cancer state attractor and Usaddle

denotes the potential at the saddle point between these two

basins of attraction. The results of barrier heights are from Lan-

gevin dynamics in terms of RMSD coordinates (see the

electronic supplementary material, figure S1). We projected

the whole network landscape to two dimensions (RMSD1

and RMSD2). For this two-variable landscape, we can acquire

saddle points, local minimums and barrier heights.

In this way, USN and USC measure the relative global stab-

ility of the normal state and the cancer state, respectively.
When the system has larger USN and smaller USC, the

normal cell state is more stable and the system is inclined

to stay in the normal state. The transition from normal to

cancer state (cancerization process) is hard to realize, because

the system must go across a large barrier in order to escape

from the normal attractor to cancer attractor. The reverse pro-

cess, the transition from cancer state to normal state is

relatively easy to realize in this case (small USC). In contrast,

if USN is small and USC is larger for the cancer system, it will

be advantageous for the transition process of normal attractor

to cancer attractor and difficult for the process of cancer

attractor to normal attractor, because the system only needs

to overcome a small barrier to go from the normal state to

the cancer state (small USN), but a large barrier from cancer

state to normal state (large USC).

Figure 5a shows the barrier heights for normal attractor

(USN) and cancer attractor (USC) when activation strength

a changes. We can see that with the activation strength a
increasing, relatively USC becomes larger and USN declines

(figure 5b gives the relative change of USN versus USC). This

indicates that the enhancement of activation regulation in the

network leads to a more stable cancer state, making it easier
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for the transition from the normal state to the cancer state.

Meanwhile, when activation links are strengthened, the

normal state becomes less stable relatively, and the system is

not inclined to stay at normal state with a smaller barrier

height USN. This implies that changing the strength of the acti-

vation links in the cancer gene regulatory network provides a

way to modulate the relative stability of normal and cancer

attractors and make the system inclined to stay at the normal

state or inclined to stay at the cancer state. The stability of the

two attractors can be quantified by the landscape topography

(the barrier height). Figure 5c,d shows the barrier heights for

normal attractor (USN) and cancer attractor (USC) when

repression strength b changes. It can be seen that with b
going up relatively USN declines and USC increases, which

means that increasing repression strength makes cancer attrac-

tor more stable and normal attractor less stable. However,

when b is very large (b ¼ 1), the normal attractor becomes

stable again. This shows that repression interaction could

have a complicated influence on the landscape and the

dynamics of the system.
We also show how the fluctuations measured by the diffu-

sion coefficient D influence the barriers and mean first passage

time (MFPT; figure 5e,f and see the electronic supplementary

material, figure S6e,f, for the detailed method of calculating

MFPT). It shows that at a small noise level D, barrier is large

and MFPT (escape time) is slower, which demonstrates that

the landscape of the cancer system is stable against certain fluc-

tuations. We can also see that when D increases, the barriers

decline and the MFPT become faster. This indicates that

larger noise destroys the stability of the system (landscape

becomes flat) and transitions between different attractors

become easy, so barriers and escape time between normal

and cancer attractors both decline. Additionally, we also

found that with noise D changing, the barriers and MFPT do

not change monotonically, which means that the noise has a

complicated influence on the relative stability of normal and

cancer attractors, i.e. we cannot say that the increase in noise

is advantageous to normal or cancer state.

We can find that the global barrier heights and the MFPT

have a similar trend for quantifying the transition between
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normal and cancer states, and both of them can serve as

a quantitative measure of the global stability of the two

attractors and kinetic speeds.

2.5. Global sensitivity analysis finding key regulations
for normal and cancer state transitions

We explored cancer as a network disease. Changes in both

the nodes (the individual genes, local probes) and links

(the connections between genes) can be important to cancer

dynamics. We did a global sensitivity analysis of the par-

ameters for the cancer network in order to uncover the key

parameters or connections in the network affecting the stab-

ility and kinetic transitions of both the normal state and the

cancer state. Giving parameters (the strength of 111 links in

the cancer network) a perturbation level pl, we can explore

the influence of these parameters on the stability of the

system by comparing the change of landscape topography

quantified by the barrier heights.

We first exploited the self-consistent approximation

method [12,14] to obtain those most important parameters—

that is, by finding those parameters affecting barrier heights

of the system significantly. Specifically, we changed the value
of each of the activation and repression strengths Mji, by

giving a percentage change Ds/s (here, s represents parameter

Mji, Ds represents the change of parameter s, the value of Ds/s
is controlled as between 21 and 1) as the degree of change.

Then for perturbation of every parameter we compared the

change of the landscape topography in terms of calculating

the change of barrier heights for both normal state (DUSN)

and cancer state (DUSC). In this way, we acquired 25 most

important parameters or connections (15 of them are activation

links and 10 of the others are repression links; see the electronic

supplementary material, figure S4, for details).

In the following, we employed the stochastic Langevin

dynamics to further obtain the change of barrier heights when

these 25 parameters are changed, because by the Langevin

dynamics the landscape of the system can be acquired directly

by the statistics of the trajectories of the system—not through

approximation. Figure 6 shows the results of the global sensi-

tivity analysis for the 25 parameters or connections (see the

electronic supplementary material for details). Figure 6a
shows the results for 10 repression links, and figure 6b shows

the results for 15 activation links. Blue bars represent the

change of the barrier for normal state (USN) and the magenta

bars represent the change of the barrier for cancer state (USC).
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In figure 6a, x-axis represents 10 repression parameters or

connections. The 10 links, respectively, correspond to: (link

R1, CDK4 s RB), (link R2, CDK2 s RB), (link R3,

hTERT s ARF), (link R4, Wip1 s ARF), (link R5, PTEN s AR),

(link R6, AKT s AR), (link R7, MDM2 s AR), (link R8,

TGFb s MYC), (link R9, PTEN s AKT) and (link R10,

P53 s VEGF). Here, CDK4 s RB represents the repression regu-

lation from gene CDK4 to gene RB (table S4). We can see that

when the repression of CDK4 to RB increases, USN (normal

state barrier) decreases and USC (cancer state barrier) increases

significantly, making it easier to jump from normal state attrac-

tor to cancer state attractor, or easier for tumour genesis. In the

same way, we can find quantitatively from sensitivity analysis

that the regulations promoting cancer state significantly include

(link R1, CDK4 s RB), (link R2, CDK2 s RB), (link R3,

hTERT s ARF), (link R4, Wip1 s ARF), which means that the

strengthening of these links promotes the formation of cancer,

and the regulations attenuating cancer state significantly

include (link R6, AKT s AR), (link R9, PTEN s AKT), (link

R10, P53 s VEGF), which means that the strengthening of

these links inhibits the formation of cancer. By analysing these

repression links, we can find that the results from global sensi-

tivity analysis are reasonable. RB is a famous tumour

repressor gene [4,5], so the repression of RB will promote the for-

mation of cancer (link R1 and R2). ARF serves as a tumour

repressor gene [39] by inhibiting oncogene MDM2, so the

repression of ARF will promote the formation of cancer (link

R3 and R4). In addition, AKT and VEGF are both key oncogenes,

so the repression of AKT and VEGF will inhibit the formation of

cancer state (link R9 and R10). Our results also predict that AKT

and VEGF are valid anti-cancer target genes [40–42].

Moreover, link R6 shows that the increase in the repres-

sion of AKT to AR (androgen receptor) will weaken the

cancer state, which is consistent with some experiments

showing that the inhibition of AR activity may delay prostate

cancer progression [43]. We need to stress that our predic-

tions for parameter changes are thoroughly from the

network topology (connections). However, by looking at

the network links we found that the network topology does

not necessarily reflect clearly the role of AR as oncogene

(due to the limited experimental evidences for regulations

between genes, we cannot guarantee our network contains

all regulations). In this case, our simulations can still obtain

consistent results for gene AR with experiments, which

shows the power of our theoretical framework and the associ-

ated global approach (probabilistic landscape and global

sensitivity analysis).

Figure 6b shows the global sensitivity analysis results for

15 activation regulations, in which the x-axis represents sep-

arately: A1(E2F1! ARF), A2(RB! AR), A3(EGFR!MYC),

A4(HGF!MYC), A5(NFKB!MYC), A6(RAS!MYC),

A7(EGFR! AKT), A8(VEGF! AKT), A9(HGF! AKT),

A10(MYC! VEGF), A11(AKT! VEGF), A12(EGFR! VEGF),

A13(HGF! VEGF), A14(HIF1! VEGF), A15(hTERT! VEGF)

(arrows represent activation regulation, A1, . . . , A15 represents

the name of the activation links; see electronic supplementary

material, table S5 for details).

Analysing the relative change of normal state barrier USN

and cancer state barrier USC, we can uncover the regulations

critically affecting the relative stability of the two attractors.

The key regulations promoting cancer state significantly

(cancer barrier increases and normal barrier decreases, the

transition from normal to cancer attractor becomes easier)
include A7(EGFR! AKT), A8(VEGF! AKT), A9(HGF!
AKT), A11(AKT! VEGF) and A13(HGF! VEGF), which

means that the strengthening of these links will promote the

transition from normal state to cancer state. Among these five

activation links, we can find that the target genes are AKT

and VEGF, which is consistent with our above analysis for

key repression links, demonstrating again that AKT and

VEGF could be valid anti-cancer target genes [40–42]. In the

meantime, we can see that these key regulations are all

involved in the mutual activation process between oncogenes.

This indicates that mutual activations between oncogenes or

self-activations of cancer marker genes play an important role

in the process of cancerization.

Additionally, we also quantified the global sensitivity of

parameters through MFPT, since MFPT reflects the average

transition time from one basin of attraction to another, and

therefore provides another quantitative measure for the stab-

ility of the system. Figure 6c,d shows the influence of

parameter change on the MFPT, respectively, for 10 repres-

sion links and 15 activation links. Comparing figure 6a with

6c, and figure 6b with 6d, we can find that MFPT and barrier

height give consistent results on the global sensitivity

analysis. Larger USN makes the transition from normal state

to cancer state harder, and thus means larger MFPT for

normal to cancer transition. In contrast, larger USC makes

the transition from cancer state to normal state harder,

and thus larger MFPT for cancer to normal transition.

Therefore, USN corresponds to MFPT for normal to cancer

transition, and USC corresponds to MFPT for cancer to

normal transition.

In order to uncover the key factors determining the tran-

sition from cancer attractor to apoptosis attractor (the death of

cancer cells), we also quantified the effects of key regulations

(15 activation strength parameters and 10 repression strength

parameters) on the MFPT from cancer state to apoptosis state

(tCA, characterizing the kinetics of the apoptosis process of

cancer cells) and from normal to apoptosis state (tNA, charac-

terizing the kinetics of the apoptosis process of normal cells)

from stochastic dynamics approach (see the electronic sup-

plementary material, figure S5). The results can provide

some insights for suppressing cancer cells. In the electronic

supplementary material, figure S5, most of the regulations

lead to longer tCA. This means that the cancer attractor

becomes more stable and more time is needed for the

system to escape from cancer attractor to apoptosis attractor.

In the meantime, we find that link R9 (PTEN s AKT) and R10

(P53 s VEGF) can lead to significantly shorter tCA. This

shows that the cancer attractor loses its stability and leads

to cell death. This provides another mechanism that AKT

and VEGF can serve as potential anti-cancer target genes

by inducing cancer cells to death (through suppressing

AKT or VEGF). We also find that link R9 (PTEN s AKT)

and R10 (P53 s VEGF) can lead to significantly shorter tNA.

This indicates that repressing AKT and VEGF can also lead

the normal cells to death.

In summary, the global sensitivity analysis in terms of the

barriers and MFPT provides a way to identify the key factors

determining the process of transition between normal and

cancer state (key regulation connections are highlighted in

black solid links in figure 1). Some of our predictions are con-

sistent with the experimental evidences. More importantly,

we provided certain predictions about which regulation

links in the cancer network are critical to the relative stability
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of normal and cancer states (figure 6), which can be directly

validated from relevant experiments in terms of MFPT.

We need to emphasize that compared with the conventional

sensitivity analysis which is usually local, our sensitivity

analysis is global since it is based on the global landscape

topography quantified by the barrier height or MFPT.

Our results of global sensitivity analysis on the landscape

topography may provide a cocktail strategy of targeting mul-

tiple key regulation links, to prevent cancer occurrence or

transform the early cancer state back to normal state.

Based on the results of global sensitivity analysis, we

picked out some key regulation parameters (activation and

repression parameters, Mji), and visualized the change of

landscape when these regulation strengths are changed

(figure 7). In figure 7, the vertical axis of every sub-figure rep-

resents negative probability (2P corresponding to potential

energy U according to U ¼2ln(P)). The four rows separately

correspond to four specific parameters (here we picked

out two key activation parameters and two key repression

parameters for illustration). Observing the change of land-

scape, we can see that with the increase of activations on
AKT and VEGF (first two rows), the landscape changes

from tristability with dominant normal state gradually to

bistability (cancer and apoptosis coexist), and finally to a

dominant cancer state. This again demonstrates the role of

AKT and VEGF to induce cancer, which is consistent

with the sensitivity analysis. When the repression on RB is

strengthened (the third column), we can see that the landscape

changes from bistability (dominant normal state) gradually

to tristability and finally to a dominant cancer state. This indi-

cates the role of suppressing RB in inducing cancer. From the

fourth row, with the repression on AKT enhanced, we can

see that the landscape changes from a cancer dominant

bistability, to tristability with dominant normal state and

finally to a dominant apoptosis state. This implies that repres-

sing AKT can attenuate cancer by inducing cancer to normal

transition or inducing cell apoptosis.

In the meantime, the changes of landscape with par-

ameters provide a possible explanation for the mechanisms

of cancerization, which is reflected by the change of landscape

topography caused by changing regulation strength among

different genes (such as the increase in activation on AKT in
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the first row). We can see that at small AKT activation, the tri-

stable landscape has a normal state with the deepest potential

basin and it is difficult for the system to make a transition

from the normal attractor to the other two attractors (cancer

and apoptosis). This represents normal cells performing

normal cell functions, which are stable against fluctuations.

With the activation on AKT increasing, the normal attractor

gradually becomes less stable, and the cancer attractor

becomes more and more stable. This represents the process

of cancerization for normal cells caused by the change of

AKT activation strength. Finally, the system displays a land-

scape with only one dominant cancer attractor, which

represents the finish of transformation from normal cells to

cancer cells. At this time, a funnel-shaped landscape guaran-

tees the stability of cancer state, and it is difficult for the

system to escape from the cancer attractor. In the same way,

the landscape topography changes for changing repression

on AKT (the fourth row) providing a strategy for inducing

the death of cancer cells which is reflected by the landscape

topography changes from a dominant cancer state gradually

to a dominant apoptosis state. We need to stress that here

we only show some examples for changing regulation strength

which can induce the landscape topography change of cancer

network. As a matter of fact, there are all kinds of combinations

for changing different regulation strengths in the network

which can lead to the change of landscape topography and

further the change of network function. Owing to the limit-

ation of computational cost, we only did single-factor

sensitivity analysis. Ideally, a multi-factor sensitivity analysis

is expected to find more realistic and interesting anti-cancer

recipes by inducing the transition from cancer state to normal

state or the apoptosis of cancer cells.
3. Conclusion
We uncovered the landscape of a cancer gene regulatory net-

work reconstructed from a literature search. Landscape

shows that the cancer gene regulatory network has three

stable basins of attraction at specific parameter regions,

which represent the normal cell state, cancer cell state and

apoptosis cell state, respectively. In terms of the path integral

approach, we acquired the kinetic paths for the transformation

among normal, cancer and apoptosis states. Both landscape

and curl flux determine the dynamics of the cancer network.

Flux leads the kinetic paths of the system deviating from the

steepest descent path from gradient of potential, and the

transition paths between normal state to cancer state are irre-

versible. Barrier heights based on landscape topography

provide quantitative measures for the global stability and kin-

etic transition of the attractors. MFPT provides an avenue to

acquire the information of transition rates or kinetic speeds

for the system to jump from one attractor to another one. By

the global sensitivity analysis in terms of barrier heights and

MFPT, we provided some predictions about the key genes

and connections affecting the transition between normal and

cancer states significantly, which can be tested by experiments.

Importantly, the key links and genes from global sensitivity

analysis and biological paths we acquired can be used to

guide designing anti-cancer tactics by targeting multiple key

nodes or regulations.

Throughout the paper, we have used different ways to vary

regulation strengths to explore broader parameter space
(activation constant a, repression constant b, as well as specific

regulation strengths in sensitivity section). As the regulation

strengths vary, the shape of the underlying landscape also

varies as found in the sensitivity analysis section. The changes

in regulation strengths reflect the changes from the environ-

ments. This leads to the changes of the network structure. In

this respect, we are able to quantify how the environmental

changes or network changes lead to the changes of the landscape

topography, and therefore the appearance or disappearance of

the cancer state in our approach. In other words, by changing

the regulation strengths, we are effectively exploring different

network structures and how those influence the functions.

We need to stress that our current cancer network is merely a

typical one, in which we include certain biological markers for

cancer and their interactions. With more biological details

added into the network, we expect to obtain more accurate

network structures/topology guided by the relevant exper-

iments and construct a more realistic cancer regulatory

network. On the other hand, in consideration of some specific

cancer marker genes, some specific cancer networks can also

be constructed, such as a breast cancer network including key

marker genes BRCA1 and BRCA2 [26]. It can be anticipated

that by exploring the landscape and paths of some more accurate

and specific cancer networks, we can obtain more intricate

mechanisms and predictions about cancer regulatory networks.

Our approach provides a general way to investigate the

global properties (landscape topography, transition rate,

and kinetic path) of large gene regulatory networks which

have information only on interaction directions (activation

or repression) without interaction strengths, and can be

applied to other disease related gene regulatory networks

or protein networks.
4. Methods
4.1. Self-consistent mean field approximation
The time evolution of dynamical systems is governed by the

diffusion equations. Given the system state P(X1, X2, . . .

,Xn,t), where X1, X2, . . . ,Xn represents the concentrations or

populations of molecules or species, we expected to have

N-coupled differential equations, which are difficult to solve.

Following a self-consistent mean field approach [12,14,44,45],

we split the probability into the products of individual ones:

P(X1, X2, . . . , Xn, t) �
Qn

i P(Xi, t) and solve the probability

self-consistently. This can effectively reduce the dimensionality

from MN to M � N, and thus make the computation of the

problem tractable.

However, for the multi-dimensional system, it is still hard

to solve diffusion equations directly. We start from moment

equations and simply assume specific probability distribution

based on physical argument, i.e. we give some specific con-

nections between moments. In principle, once we know all

moments, we can acquire the probability distribution. In

this work, we use Gaussian distribution as an approximation,

which means we need two moments, mean and variance.

When the diffusion coefficient D is small, the moment

equations can be approximated to [46,47]

_�x(t) ¼ F[�x(t)] (4:1)

and

_s(t) ¼ s(t)AT(t)þA(t)s(t)þ 2D[�x(t)]: (4:2)
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Here, x, s(t) and A(t) are vectors and tensors, and AT(t) is

the transpose of A(t). The matrix elements of A are Aij ¼

@Fi[X(t)]/@xj(t). According to this equation, we can solve

x(t) and s(t). Here, we consider only diagonal elements of

s(t) from mean field splitting approximation. Therefore, the

evolution of probabilistic distribution for each variable

could be acquired using the mean and variance based on

Gaussian approximation:

P(x, t) ¼ 1ffiffiffiffiffiffi
2p
p

s(t)
exp� [x� �x(t)]2

2s(t)
: (4:3)

The probability obtained above corresponds to one fixed

point or basin of attraction. If the system has multistability,

then there are several probabilistic distributions localized at

every basin of attraction, with different variations. Therefore,

the total probability is the weighted sum of all these probability

distributions. Finally, once we have the total probability, we

can construct the potential landscape by the relationship with

the steady-state probability: U(x) ¼2lnPss(x).

For non-equilibrium dynamical systems, the driving force F
cannot be written as the gradient of potential U as in the equi-

librium case. We have shown previously that, in general, F can

be decomposed into a gradient of the potential and a curl flux

force linking the steady-state flux Jss and the steady-state prob-

ability Pss [11,12] (F ¼ þD/Pss
. (@/@x)Pss þ Jss(x)/Pss ¼

2D(@/@x)U þ Jss(x)/Pss). The probability flux vector J of the

system in concentration or gene expression level space x is
defined as [46]: J(x, t) ¼ FP 2 D . (@/@x)P. From our theory,

both the barriers (from potential landscape) and curl flux

determine the total force. Therefore, both barrier and curl

flux are important for the dynamics of the system.

In the 32-dimensional protein concentration space, it

is hard to visualize 32-dimensional probabilistic flux.

Approximately, we explored the associated two-dimensional

projection of flux vector: J1(x1, x2, t) ¼ F1(x1, x2)P 2 D(@/

@x1)P and J2(x1, x2, t) ¼ F2(x1, x2)P 2 D(@/@x2)P.
4.2. Kinetic path from path integral
Within the cell, there exists intrinsic noise from statistical fluctu-

ations of the finite number of molecules and external noise

from highly dynamical and inhomogeneous environments,

which can be significant to the dynamics of the system

[48–50]. Therefore, a network of chemical reactions in noisy

fluctuating environments can be addressed by: _x ¼ F(x)þ z.

Here, x ¼ (x1(t), x2(t), . . . , x32(t)) represents the vector of protein

concentration or gene expression level. F(x) is the vector for the

driving force of chemical reaction. z is the Gaussian noise term

whose autocorrelation function is kzi(x, t)zj(x, 0)l ¼ 2Dd(t) and

D is the diffusion coefficient matrix.

The dynamics for the probability of starting from initial

configuration xinitial at t ¼ 0 and ending at the final configur-

ation xfinal at time t, in terms of the Onsager–Machlup

functional, can be formulated [13,51] as
P(xfinal, t, xinitial, 0)¼
ð

Dx exp �
ð

dt
1

2
r �F(x)þ 1

4

dx

dt
� F(x)

� �
� 1

D(x)
� dx

dt
� F(x)

� �� �� �
¼
ð

Dx exp[�S(x)]¼
ð

Dx exp[�
ð

L(x(t))dt]:
D(x) is the diffusion coefficient matrix. The integral over Dx

denotes the sum over all possible paths from the state x inital at

time t¼ 0 to x final at time t. The exponent factor gives the

weight of each path. Therefore, the probability of network dyna-

mics from initial state x initial to the final state x final is equal to the

sum of all possible paths with different weights. S(x) is the action

and L(x(t)) is the Lagrangian or the weight for each path.

The path integrals can be approximated with a set of

dominant paths, since each path is exponentially weighted,
and the other subleading path contributions are often small

and can be neglected. So, the dominant path with the opti-

mal weights can be acquired through minimization of the

action or Lagrangian. In our case, we identify the optimal

paths as the biological paths (normal to cancer and cancer

to normal).
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