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PURPOSE. Proper refractive eye growth depends on several features of the visual image and
requisite retinal pathways. In this study, we determined the contribution of rod pathways to
normal refractive development and form deprivation (FD) myopia by testing Gnat1�/� mice,
which lack functional rods due to a mutation in rod transducin-a.

METHODS. Refractive development was measured in Gnat1�/� (n ¼ 30–36) and wild-type
(WT) mice (n ¼ 5–9) from 4 to 12 weeks of age. FD was induced monocularly from 4 weeks
of age using head-mounted diffuser goggles (Gnat1�/�, n ¼ 9–10; WT, n ¼ 7–8). Refractive
state and ocular biometry were obtained weekly using a photorefractor, 1310 nm optical
coherence tomography, and partial coherence interferometry. We measured retinal dopamine
and its metabolite, DOPAC, using HPLC.

RESULTS. During normal development, the refractions of WT mice started at 5.36 6 0.68
diopters (D) and became more hyperopic before plateauing at 7.78 6 0.64 D. In contrast,
refractions in Gnat1�/� mice were stable at 7.39 6 1.22 D across all ages. Three weeks of FD
induced a 2.54 6 0.77 D myopic shift in WT mice, while Gnat1�/� mice did not respond to
FD at any age. Axial lengths of Gnat1�/� and WT mice increased with age, but differences
between genotypes or with goggling did not reach statistical significance and fell within the
precision of the instruments. The DOPAC levels were significantly lower in Gnat1�/� mice
from 2 to 12 weeks of age with DOPAC/dopamine ratio peaking earlier in Gnat1�/�

compared to WT mice. No differences in dopamine were seen in response to FD or between
genotypes.

CONCLUSIONS. Functional rod photoreceptors are critical to normal refractive development and
the response to FD in mice. Dopamine levels may not directly modulate the refractive state of
the mouse eye, but tonic levels of dopamine during development may determine
susceptibility to myopia.
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Visually-driven eye growth is responsible for matching the
power of the eye with ocular length to acquire in-focus

images; a process called emmetropization. Local signaling by
the retina mediates refractive development, as shown by the
selective effect of partial occluders altering growth in only the
corresponding region of the globe in chickens1–3 and
primates,4 preservation of the response to form deprivation
(FD)5 or lens-induced defocus6 after optic nerve section in
chickens, or pharmacologically blocking retinal ganglion cell
transmission in tree shrews7 (see review8). However, it should
be noted that the response to lens defocus is altered after
blocking input from higher visual processing areas in chick-
ens.5,9–11

Since an in-focus image is the ultimate goal of refractive
development, it may be presumed that the visual image should
be of high acuity and temporal resolution,12 qualities attributed
to cone-mediated visual processing. Thus, there is an assump-
tion that cone pathways likely underlie the signaling needed for
proper eye growth control. However, results from a few studies
suggest that cone pathways may not dominate the signaling of

mammalian eye growth: (1) Laser ablation of the cone-rich
fovea region in monkeys did not prevent the development of
FD myopia13,14 and (2) imposing FD on the rod-dominated
peripheral regions of the monkey eye produced similar
magnitudes of FD myopia as when the entire visual field was
affected.15

The limitation of these studies is that rods and cones are
present in the periphery of the retina and, thus, a small
population of cones still could be contributing signals for eye
growth. In addition, these experiments were performed under
photopic conditions in which cones would be functionally
predominant. Nonetheless, they do suggest that the rod-rich
peripheral regions of the retina may be important for visually-
guided eye growth and a few other studies have suggested a
role for photoreceptors in refractive development.16 In fact,
spatial frequency thresholds of mice without functional cones
(cyclic nucleotide-gated cation channel subunit A3 knock-out,
CNGA3�/�, mice), are the same as those of wild-type (WT)
mice, suggesting that rod and/or rod pathways are capable of
providing visual signals under photopic conditions for the
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optokinetic response. In contrast, mice with nonfunctional
rods (CNGB1�/� mice) have much poorer spatial resolution.17

Abnormal refractive development also is associated with
retinal diseases involving rod photoreceptors and/or pathways.
For instance, patients with the complete form of congenital
stationary night blindness (cCSNB) have disrupted visual
transmission between rods and ON bipolar cells due to a
mutation in Nyx gene and also present with high myopia.18 In
addition, patients with cone–rod dystrophy19,20 or retinitis
pigmentosa21 have increased incidence of myopia. Similarly,
we found that mice with the Nyx mutation22 and mouse
models of retinitis pigmentosa with a mutation in the Pde6b

gene (Pde6brd1/rd1 [rd1] or Pde6brd10/rd10 [rd10])23 are more
susceptible to FD myopia. Finally, in the retinopathy of
prematurity (ROP) rat model, myopia is present (although
paradoxically with shorter than normal axial length)24 and
abnormal rod photoreceptor function has been implicated.25

Dopamine (DA), a key neuromodulator in the retina that
regulates circadian rhythms and mediates adaptation to
different lighting conditions, has been proposed as a stop
signal for visually-driven eye growth.26 In the retina, DA is
synthesized from L-3,4-dihydroxyphenylalanine (L-DOPA) and
metabolized into 3,4-dihydroxyphenylacetate (DOPAC). Syn-
thesis and release of DA are stimulated by light via the ON
pathway.27–30 Initial light exposure increases retinal DA
synthesis, release, and metabolism; however, the system then
reaches equilibrium, such that the steady state level of DA does
not change appreciably and only DOPAC levels vary during the
light phase.31 Thus, an increase in the amount of DOPAC is an
indicator of DA turnover (often reported as DOPAC/DA ratio)
and use. Light regulation of dopamine levels is mainly through
rods, cones, and possibly melanopsin cells.32–34 Dopamine
increases in a log-linear relationship with illuminance,35–37

although these studies did not examine rod-isolating illumi-
nance levels. Moreover, rod pathways and the dopaminergic
system interact structurally and functionally; for instance, DA
neurons synapse onto AII and A17 amacrine cells in the rod
pathway, rod-driven ON pathways stimulate DA release, which
in turn decrease rod function as the retina adapts to daylight
function, and loss of rods results in decreased DA levels in the
retina.32,38

The mouse recently has been adopted as an experimental
model for myopia, offering the ability to manipulate genes and
environment (see review39). The mouse eye responds with
myopic shifts when exposed to FD40–45 or negative lens
defocus.43,46 In addition, a number of studies using mice have
confirmed signaling pathways implicated in previous chicken
studies as influencing refractive development, such as the early
growth response protein-1,47–49 muscarinic receptors,50 aden-
osine receptors,51 retinoic acid,52 and dopamine23,53 (Zhou X,
et al. IOVS 2014;55:ARVO E-abstract 3038).

To more fully explore the contributions of rod photorecep-
tors to emmetropization and myopia development, we tested
mice with nonfunctional rod photoreceptors, carrying alleles
for the gene of the rhodopsin-associated G protein, transducin
a1 (Gnat1) under normal and form deprived visual conditions.
We then evaluated DA and DOPAC levels in the retina across
postnatal development and following FD.

METHODS

Animals and Experimental Design

The Gnat1�/� mice were a generous gift from Janis Lem, PhD
(Tufts-New England Medical Center, Boston, MA, USA).
Importantly, loss of Gnat1 renders the rods nonfunctional,
but does not induce rod degeneration until 13 weeks of age.54

Mice were maintained at the Atlanta Veterans Affairs Medical
Center, on 12:12-hour light cycles (~17 lux; lights on at 6 AM)
and housed in typical shoe box cages with mouse chow and
water available ad libitum.

Refractive development (RD) was characterized with
weekly measurements of refractive error and axial length from
4 to 12 weeks of age in Gnat1�/� and age-matched WT control
mice without any visual manipulation (see Table for animal
numbers used). The response to FD was characterized by
subjecting separate cohorts of WT and Gnat1�/� mice to
monocular diffuser goggles at 4 weeks of age. Goggles were
held in place using head-mounted frames, as described
previously, for up to 8 weeks (12 weeks of age).41 All
procedures adhered to the ARVO Statement for the Use of
Animals in Ophthalmic and Vision Research, and were
approved by the local Institutional Animal Care and Use
Committee.

It is important to note that we found the rd8 gene55 in the
Gnat1�/� mice, as well as in some of the WT animals (31% as
homogenous mutant of rd8, 26% as heterozygotes). It is
unlikely that the slow rod photoreceptor degeneration caused
by the rd8 mutation had any significant contributions to our
results as the mice reported here were younger than 6 months,
when electroretinograms still are normal in rd8 mice,56 and no
statistically significant differences were found between the
different rd8 genotypes (WT mice 2-way repeated ANOVA on
myopic shift, main effect for rd8 genotype F(2,48)¼ 0.125, P¼
0.88).

Refractive State and Axial Length Measurements

Each mouse underwent the following experimental measure-
ments of refractive error and ocular biometry, as described
previously.57 First, eyes were dilated with 1% tropicamide and
measurements of refractive state obtained using an automated
photorefractor.23,42,58 Axial length measurements of a subset of
mice (see Table for animal numbers) were acquired using a
custom-built 845-nm time-domain partial coherence interfer-
ometer (PCI) after being placed in an open-ended conical tube
with the mouse’s head pedestal stabilized by a clip.58,59

Mice then were anesthetized (ketamine 80 mg/kg and
xylazine 16 mg/kg) and refractions repeated to obtain a more
stabilized measurement with standard deviations of less than
0.5 diopters (D).57 While still anesthetized, axial length
measurements were obtained using 1310 nm spectral-domain
optical coherence tomography (SD-OCT; Bioptigen, Inc.,
Durham, NC, USA), as described previously.58 After measure-
ments, mice were given yohimbine (2.1 mg/kg) to reverse the
effects of anesthesia and reduce the development of corneal
lesions.60 Mice recovered on a warming pad with saline drops
applied to the eyes. The entire measurement routine lasted
approximately 30 minutes.

Retinal Dopamine Quantification

Separate cohorts of 8-week-old WT and Gnat1�/� mice were
sacrificed at Zeitgeber time 3 (ZT3) and ZT22 (or 3 hours after
and 2 hours before light onset, respectively) to confirm
abnormal DOPAC/DA ratio phenotype in Gnat1�/� mice33

(see Table for animal numbers). To determine the levels of
retinal DA during development, retinas from both genotypes
were collected at 1, 2, 4, 6, 8, 10, and 12 weeks of age between
10 and 12 AM (see Table). In addition, retinal DA and DOPAC
levels also were measured from mice after the final endpoint of
the FD experiments (see Table). Retinas were collected 48
hours after ocular parameters assessment to provide a recovery
period from any effects of anesthesia. In brief, DA and DOPAC
levels were quantified using HPLC with coulometric detection
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as described previously.31 Retinas were homogenized in 0.1 N
HClO4 solution (0.01% sodium metabisulfite and 50 ng/mL
internal standard 3,4 dihydroxybenzylamine hydrobromide)
and centrifuged. The HPLC conditions included an Ultrasphere
ODS 5 lm 250 3 4.6 mm column (HiChrom, Berkshire,
England, or Beckman Coulter, Fullerton, CA, USA) for
separation with a mobile phase containing 0.1 M phosphoric
acid, 0.1 mM EDTA, 0.3 to 0.35 mM sodium octylsulfate, 6%
acetonitrile, adjusted to pH 2.7 with NaOH. The retinal DA and
DOPAC levels were quantified using standard curves generated
with 0.1 to 1 ng DA and DOPAC. All FD cohort retinas were
homogenized individually, while the right and left retinas were
pooled together in the RD cohort for DA and DOPAC
quantification.

Data Analysis

All statistical analyses were performed using commercial
software (SigmaStat 3.5; Aspire Software International, Ash-
burn, VA, USA). Data plotted in Figures are presented as mean
6 SEM, underwent repeated-measures 2-way ANOVA, and
Holm-Sidak post hoc tests for statistical significance. For RD
refraction and axial length data both eyes received the same
treatment and the values from the two eyes were averaged to
represent a single value from each individual mouse. In a
selection of animals that underwent PCI and SD-OCT
measurements, the axial length values were averaged together,
since measurements by the two techniques were in good
agreement (interclass correlation coefficient ¼ 0.94).58 For FD
results, refractive errors are presented as ‘‘myopic shift’’
(difference between right and left eyes), since the refractive
errors of untreated opposite eyes were not statistically
different from those of näıve control eyes. Axial lengths of
FD cohort were normalized to 4-week-old values (baseline) to
eliminate individual variability in eye size due to differences in
body size.61 ‘‘Axial shift’’ represents the difference in length
between the right and left eye after values had been

normalized to baseline. The DA and DOPAC levels across age
were normalized to the Gnat1�/� and WT values obtained at
ZT3. The DA and DOPAC values from FD cohorts were
analyzed by taking the difference between the two eyes. When
normality failed for DA analysis, Student’s t-test was used with
P value corrected with the rough false discovery rate method
(calculated as P*[#tests þ 1]/[2 * #tests]).62

RESULTS

Abnormal Refractive Development in Gnat1�/�Mice

Nonfunctional rod photoreceptors had the most profound
effect on normal refractive development at young ages. At 4
weeks of age, WT animals had refractive errors of 5.02 6 0.52
D (mean 6 SEM, n ¼ 12) and became more hyperopic with
age, reaching a refractive error of 7.78 6 0.64 D at 12 weeks
old (n¼12, Fig. 1A). In contrast, the eyes of Gnat1�/�mice did
not have a period of growth toward relative hyperopia, but had
stable refractive errors in the range from 6.85 to 7.88 D during
the entire study period (n¼ 31–38/timepoint). This produced
significant differences between Gnat1�/� and WT mice at 4
and 5 weeks of age (Fig. 1A; 2-way repeated ANOVA, F(7,336)¼
9.33, P < 0.001).

While axial length significantly increased with age for WT
and Gnat1�/� mice, there were no differences between
Gnat1�/� and WT mice (Fig. 1B; 2-way repeated ANOVA, main
effect of age F(8,154) ¼ 2.17, P ¼ 0.034; n ¼ 5–8/timepoint for
WT and 9–15 mice/timepoint for Gnat1�/�).

Gnat1�/� Mice Unresponsive to FD

First, regardless of genotype, eyes in näıve control mice (not
goggled) had similar refractive errors (Fig. 2; myopic shift
[difference between right and left eyes] in WT mice, 0.04 6
0.45 D, n ¼ 9; Gnat1�/� mice, 0.11 6 0.18 D, n ¼ 12).
Conversely, the response to FD differed depending on the

TABLE. Animal Numbers Used in the Experiments Described in This Study

Experiment Measurement Strain

Weeks of Age

1 2 4 5 6 7 8 9 10 11 12

Refractive development Refraction WT 8 9 9 8 9 9 5 9 9

Gnat1�/� 31 30 36 35 35 36 33 35 35

Axial length WT 8 8 8 7 8 8 5 8 8

Gnat1�/� 10 10 10 9 10 10 8 10 10

Form deprivation Refraction WT naive 8 8 8 9 9

WT FD 14 13 12 10 7

Gnat1�/� naive 13 11 13 12 13

Gnat1�/� FD 10 9 9 10 9

Axial length WT naive 10 10 10 9

WT FD 12 12 11 8

Gnat1�/� naive 9 9 8 7

Gnat1�/� FD 14 12 12 9

Dopamine ZT3 and ZT22 WT ZT3 7

WT ZT22 6

Gnat1�/� ZT3 3

Gnat1�/� ZT22 3

Across age WT 6 3 11 11 10 9 8

Gnat1�/� 12 13 10 7 9 7 7

Form deprivation WT naive 4

WT FD 10

Gnat1�/� naive 6

Gnat1�/� FD 5

Mice were derived from two or more separate litters for each experiment.
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genotype. The WT mice exhibited a relative myopic shift
(�2.54 6 0.77 D, n ¼ 10) compared to the contralateral eye
after 3 weeks of goggle wear (Fig. 2A; 2-way repeated ANOVA,
F(3,77) ¼ 3.1, P ¼ 0.035). In contrast, Gnat1�/� mice did not
respond to FD. After 3 weeks of goggle wear, the refractive
errors of Gnat1�/� form-deprived eyes did not shift and
remained similar to the contralateral eye (�0.04 6 0.10 D, n

¼ 10; Fig. 2B; 2-way repeated ANOVA, F(3,86)¼ 0.9, P¼ 0.447).
Therefore, results from form-deprived Gnat1�/�mice were not
significantly different from the näıve nongoggled Gnat1�/�

animals (Fig. 2B). At 8 weeks after goggling, Gnat1�/� animals
still had no significant myopic shift (�0.12 6 0.14 D, n ¼ 9)
compared to WT mice (�2.15 6 1.27 D, n ¼ 7). A direct
comparison of WT and Gnat1�/� mice at 3 weeks after
goggling showed significant differences in response to FD
between the genotypes (data not shown; 2-way ANOVA, F(1,42)

¼ 7.36, P ¼ 0.01).
Axial length differences were not detected after form

deprivation with the instruments used. In WT mice, goggled
and opposite eyes had longer axial lengths after 3 weeks of FD
compared to näıve controls; however, this was not statistically
significant (n ¼ 8, Fig. 3A). In Gnat1�/� mice, similar axial
lengths were measured between goggled and opposite eyes,
with näıve control eyes showing a trend for longer axial

lengths (n ¼ 9, Fig. 3B). No statistically significant differences
were found between the body weights of goggled and control
mice (data not shown). Schematic models of the mouse eye
predict that 5 to 6 lm change in axial length is needed for 1 D
change in optical power.42 Thus, it is possible that the
interuser measurement variability of the SD-OCT instruments
(21 lm) used here58 is not sufficient to detect differences in
axial length, as the measured axial shifts of goggled mice were
less than the resolution limit.

Dopamine Metabolism Altered in Gnat1�/� Mice

The retinal dopaminergic systems in WT and Gnat1�/� mice
responded differently to light and dark cycles. The DOPAC
levels were lower in Gnat1�/� mice compared to WT at night
(ZT22; Student’s t-test, t¼ 4.11, P¼ 0.004; Fig. 4A). Comparing
the response between light (ZT3) and dark (ZT22) cycles
within each genotype, Gnat1�/� mice had a diminished
response to light (658 6 153 to 331 6 36, respectively, 98%
difference) compared to WT mice (2699 6 1062 to 1123 6

130, respectively, 140% difference). The DOPAC/DA ratio also
was significantly decreased in Gnat1�/�mice compared to WT
in the dark cycle, as reported previously (Fig. 4C; Student’s t-
test, t ¼ 3.24, P ¼ 0.01).33 However, the DA levels in WT and
Gnat1�/� mice were similar between the genotypes and
different light phases (Fig. 4B).

Next, we examined DOPAC and DA across postnatal
development. We found that DOPAC levels in WT mice (Fig.
5A) significantly increased from 1 to 4 weeks, then decreased
until week 8 before rising again (2-way ANOVA, F(6,123) ¼
5.499, P < 0.001). In contrast, DOPAC levels remained
consistent in Gnat1�/� mice, with no statistically significant
differences across age. The pattern of DA in the retina was
fairly similar between the two genotypes, with low levels at 1
and 2 weeks of age that increased and then became stable until
12 weeks of age (Fig. 5B; 2-way ANOVA, F(6,123) ¼ 4.56, P <
0.001). These differences between genotypes in the pattern of
DOPAC and DA indicated significant differences in dopamine
metabolism, as illustrated by the DOPAC/DA ratio. The
DOPAC/DA ratio was significantly higher in Gnat1�/� mice at
1 week of age, due to very low levels of DA at this age, and then
decreased rapidly at 2 weeks and beyond (Fig. 5C; 2-way
ANOVA, F(6,123) ¼ 20.17, P < 0.001). In contrast, the DOPAC/
DA ratio in WT retinas increased from 1 to 2 weeks of age,
decreased at 4 to 6 weeks, and then further diminished at 8 to
12 weeks of age.

Lastly, we examined the levels of DOPAC and DA and
DOPAC/DA ratios (data not shown) after FD and found no
significant differences due to genotype or goggling.

FIGURE 2. Use of FD has no effect on Gnat1�/� mice. (A) WT mice
showed a significant shift (goggled minus opposite eye) with FD
goggling, while the nongoggled näıve mice showed no change
between eyes (right eye minus left eye; 2-way repeated ANOVA,
F(3,77)¼ 3.1, P¼ 0.035). (B) The Gnat1�/�mice did not respond to FD
and showed no change in refractive error across the goggling period.
Holm-Sidak post hoc comparisons, *P < 0.05, **P < 0.01, ***P < 0.001.
Data shown are mean 6 SEM.

FIGURE 3. Axial length changes with FD. Axial length measurements in
WT (A) or Gnat1�/� (B) mice showed no significant differences
between näıve, goggled, or opposite eyes. Data are mean 6 SEM.

FIGURE 1. Refractive development of Gnat1�/� mice. (A) Refractive
error plotted across age for WT and Gnat1�/�mice shows that Gnat1�/�

mice refractions change little across the experimental period compared
to WT (2-way repeated ANOVA, F(7,336) ¼ 9.33, P < 0.001). (B) Axial
length measurements in WT and Gnat1�/� mice increased with age,
but were not statistically different (2-way repeated ANOVA, main effect
of age, F(8,154) ¼ 2.17, P ¼ 0.034). Holm-Sidak post hoc comparisons
***P < 0.001. Symbols represent mean 6 SEM.
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DISCUSSION

Functional Rod Photoreceptors Needed for
Visually-Guided Refractive Development

In most animals, refractive development follows a predictable
pattern. In mammals, this typically starts with hyperopic
refractions and then shifts to emmetropia during early
development to adolescence.63,64 In WT mice used here and
reported previously,42,49,51,57,65–69 the normal refractive devel-
opment curve starts with hyperopic refractions, then shifts to
greater levels of hyperopia (Fig. 1). Surprisingly, the Gnat1�/�

mice did not have this same refractive development curve, but
instead maintained the same range of refractions across the
entire experimental period (4–12 weeks), not deviating more
than 1.03 D (maximum, 7.88 D; minimum, 6.85 D). We
hypothesized that the initial shift toward more hyperopic
refractions in WT mice is due to visual input that drives
signaling pathways controlling refractive development. Thus,
in the Gnat1�/� mice the critical signaling pathways may not
be activated, since there was no change in refractive error
across age. Another explanation is that Gnat1�/� mice have
reached the refractive error plateau more quickly than WT,
perhaps due to a change in dopamine metabolism, as indicated
by the high initial DOPAC levels in the retina (Fig. 5).

Functional Rods Needed to Respond to FD Myopia

The use of FD has become a standard method to induce
experimental myopia.70 In our WT mice, application of the
diffuser goggle induced a myopic shift within 1 week (Fig. 2).
However, Gnat1�/� mice did not respond to FD, even in mice
that were followed for up to 8 weeks of goggling. One

interpretation of this result is that functional rod photorecep-
tors are needed to signal myopic eye growth. Without
functional rods, Gnat1�/� mice may be unable to detect rod-
mediated aspects of the disrupted form-deprived image and,
therefore, lack the typical FD myopic shift. Alternatively, rod
and cone pathways may produce a balance in controlling
refractive eye growth, such that cone-mediated signaling may
became stronger without functional rods and prevent exces-
sive eye growth signaling. This scenario may explain the more
hyperopic refractions in the Gnat1�/� mice at younger ages
with normal visual input. Another possibility is that an
alternative, transducing-a1-independent form of signaling,
may have a role in refractive development.71 We also cannot
rule out the possibility that the deletion of Gnat1 may alter
normal retinal development, and disrupt the retinal pathways
that drive refractive development and myopia. Reduced retinal
dopamine levels may increase gap junction conductance
between rod and cone photoreceptors, horizontal cells, and
amacrine cells, and AII amacrine and cone bipolar cells.72 This
could have the effect of decreasing the cone pathway signal
and altering the response to normal and form-deprived visual
input, consistent with other data showing that photopic
conditions are required for FD myopia. Regardless of the
underlying mechanisms, it would be interesting to examine
how Gnat1�/� mice respond to plus or minus lens defocus.

Role of DA in Refractive Eye Growth

There is some evidence that DA synthesis and signaling takes
several postnatal weeks to fully develop and mature. Some
dopamine receptors are expressed in the vertebrate retina,73

along with L-DOPA74 before detectable immunohistochemical
expression of tyrosine hydroxylase, a key enzyme in DA

FIGURE 4. The DA and DOPAC analyses between day (ZT3) and night (ZT22) in WT and Gnat1�/�mice at 8 weeks of age. (A, C) The DOPAC levels
and DOPAC/DA ratios were lower in Gnat1�/� compared to WT retinas at ZT22 (Students t-test, P < 0.01). The WT retinas showed a greater increase
in DOPAC levels and DOPAC/DA ratio in the light phase compared to Gnat1�/� retinas. (B) DA levels were similar between day and night in WT and
Gnat1�/� mice. Error bars: mean 6 SEM.

FIGURE 5. Dopamine analysis across postnatal development. (A) DOPAC levels were significantly altered across age in WT mice, while levels
remained significantly lower and stable in the Gnat1�/�mice (2-way ANOVA, F(6,123)¼5.499, P< 0.001). (B) The overall patterns in DA levels across
development were similar between the two genotypes. However, the Gnat1�/� mice appeared to reach peak levels of retinal DA earlier than WT
mice (2-way ANOVA, F(6,123)¼4.56, P < 0.001). (C) The DOPAC/DA ratios showed different development patterns between WT and Gnat1�/�mice.
The Gnat1�/�mice appeared to have an earlier DOPAC/DA ratio peak than WT mice and then dropped rapidly to become significantly lower (2-way
ANOVA, F(6,123) ¼ 20.17, P < 0.001). Holm-Sidak post hoc comparisons **P < 0.01, ***P < 0.001. Error bars: mean 6 SEM.
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synthesis. The DA receptor expression continues to increase
after birth, with dopamine D4 receptor expression reaching a
peak at postnatal day 12.75 The retinal dopaminergic neurons
do not reach maturation with typical ring-like axonal processes
until the third postnatal week.76 Finally, L-DOPA content
increases through development until the fourth postnatal week
and then sharply declines.77 These observations correspond
well with our data (Fig. 5) that show DOPAC levels increased
until 4 weeks of age in WT mice and then decreased as the
animals aged. This pattern may be indicative of a reduction in
the amount of diffusible or nonvesicular dopamine with age
concomitant with an increase in vesicular DA within the cell,
which would increase the overall steady-state DA content (see
continued increased in Fig. 5B).

Relating DA development to refractive state, it is not clear
from these data that DA is directly signaling visually-driven eye
growth in the mouse. If DA directly modulates eye growth, it
would be expected that refractive values would follow closely
the changes in DOPAC or DA levels. However, the rapid
hyperopic shift from 4 to 6 weeks in WT mice is not mirrored
in the DA data, although steady DOPAC levels in Gnat1�/�mice
are similar to the consistent refractive values across age.
Furthermore, DOPAC and DA levels were not significantly
different between strains after FD, although they had
drastically different refractive responses to FD. It is important
to point out that HPLC analysis of DA and DOPAC levels has
limitations, as it only measures total retinal levels and does not
provide information about whether DA is intra- or extracellular.
Previous studies in form deprived chickens have shown that
dopamine release by amacrine cells and diffusion through the
retina, and not the total dopamine retinal content, is most
relevant to the myopic response.78 Nevertheless, these data
suggested that DA may not have a direct effect on refractive
development in mice; instead, dopamine metabolism may
predispose the retina to certain levels of myopia susceptibility.
For instance, the loss of functional rods across development
may alter dopamine release and the expression of several other
associated molecules, leading to chronic changes in extracel-
lular dopamine levels. Dopamine and DOPAC have been found
to decrease with form deprivation in many species (see
review26) and, thus, it would be expected that chronically
low levels of retinal dopamine may increase susceptibility to
FD myopia. We have found previously that low levels of
DOPAC correlated with increased susceptibility to FD myopia
in the rd1 and rd10 mouse models of retinitis pigmentosa.23

However, the role of DA in refractive development is likely very
complex as this hypothesis did not seem to apply to Gnat1�/�

mice, which are resistant to FD even though they had lower
retinal DOPAC levels (Fig. 5). Furthermore, recent reports have
suggested that dopamine may differentially act on dopamine
receptor subtypes to influence eye growth in mice53 (Zhou X,
et al. IOVS 2014;55:ARVO E-Abstract 3038), adding further
complexity to the mechanisms involved.

Thus, more research is needed to elucidate how DA
influences refractive development and susceptibility to FD, or
myopia in general, so that it may serve as a potential
therapeutic target for myopia in the future.

Effects of Gnat1 Deletion on Retinal Dopaminergic
System

These studies showed that nonfunctionality of rod photore-
ceptors have relatively small effects on steady-state levels of
retinal dopamine, as indicated by the nearly normal levels of
DA in the Gnat1�/� retina in the light/dark phases and across
age (Figs. 4, 5). This may indicate that DA is synthesized in
Gnat1�/� retinas, but not properly metabolized. However, loss
of rod function appears to disrupt DA metabolism, resulting in

diminished DOPAC levels between 1 and 4 weeks postnatally
and during the light phase in Gnat1�/�mice. This could be due
to a variety of reasons, such as diminished neuronal activity to
stimulate DA release, insufficient reuptake of DA to the
presynaptic terminal, or defective metabolism of DA to
DOPAC.38 Further research is needed to determine if these
effects are due primarily to the loss of rod function or if the
absence of rod signaling unmasks contributions from other
sources, such as the RPE or choroidal innervation.

How Could Rods Contribute to Refractive
Development?

Cone-mediated visual processing has been assumed to regulate
refractive development based on the fact that emmetropia
produces a focused image on the retina and FD myopia occurs
under photopic illumination, with little emphasis placed on a
potential role of rod-mediated processing. Using the Gnat1�/�

model provided a unique opportunity to isolate the contribu-
tions of functional rod photoreceptors in refractive develop-
ment. Our data showed that functional rods are important for
normal refractive development and the response to FD.
However, the exact mechanism of how rod signaling could
contribute to refractive development and the detection of FD is
not known.

While rod and cone photoreceptor sensitivity traditionally
has been thought to occur in a binary fashion under scotopic
and photopic conditions, there is increasing evidence that
retinal circuitry is much more complicated. For instance, rods
in the mouse retina in vivo are capable of providing detectable
signals in the presence of steady lights that are 2 log units
higher than the Weber line where rod saturation is behaviorally
shown to occur; although the sensitivity is decreased
compared to cones.79 Furthermore, rod photoreceptors can
drive circadian photoentrainment under high light intensities80

and mediate vision under photopic conditions.81 Since the
ocular growth response to defocus occurs over minutes,82

compared to the millisecond response needed to detect
photons for functional vision, the role of rod-mediated
signaling in refractive development may involve retinal
pathways with reduced sensitivity and/or roles in circadian
rhythms.

Thus, our results suggested that functional rods may be a
critical component of retinal signaling for refractive develop-
ment. Further experiments are needed to examine the
contribution of cone photoreceptors in isolation as well as
testing the effects of eliminating other elements of visual
pathways for their potential role in refractive development.
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