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ABSTRACT

The sequencing of libraries containing molecules
shorter than the read length, such as in ancient or
forensic applications, may result in the production
of reads that include the adaptor, and in paired reads
that overlap one another. Challenges for the process-
ing of such reads are the accurate identification of
the adaptor sequence and accurate reconstruction
of the original sequence most likely to have given
rise to the observed read(s). We introduce an algo-
rithm that removes the adaptors and reconstructs the
original DNA sequences using a Bayesian maximum
a posteriori probability approach. Our algorithm is
faster, and provides a more accurate reconstruction
of the original sequence for both simulated and an-
cient DNA data sets, than other approaches. leeHom
is released under the GPLv3 and is freely available
from: https://bioinf.eva.mpg.de/leehom/

INTRODUCTION

Recent improvements have increased the efficiency with
which endogenous molecules from ancient samples can be
made accessible for sequencing (1). However, the DNA
molecules extracted from ancient samples are often short
due to the degradation of DNA after the death of the or-
ganism and average length rarely exceeds 100 bp (2).

As a consequence, read length usually exceeds the length
of the DNA molecule, and the read contains both the se-
quence of the original molecule and also part of the adaptor
sequence (see Figure 1). For paired-end reads that exceed
the molecule length, both the forward and reverse reads
will have the sequence of the same original molecule before
showing residual adaptor sequence. Similarly, molecules
that are shorter than the sum of the forward and reverse
read length are expected to show identical bases at the ends
of both reads since the same part of the molecule is read
twice. Merging of identical sequences is also expected to re-
duce sequencing error due to the repeated observation of the
same base. Since residual adaptor sequences in the reads in-

terfere with mapping and assembly, it is necessary to trim
reads up to the start of the original molecule.

Several algorithms have been implemented to trim adap-
tor sequences (see (3,4) and http://code.google.com/p/ea-
utils/wiki/FastqMultx) and to merge overlapping paired-
end sequences (see (5,6) and https://github.com/jstjohn/
SeqPrep). However, these algorithms use cutoffs for detect-
ing adaptors and merging reads and need to be adapted
to varying rates of sequencing errors. More liberal cutoffs
can lead to a greater number of false positives. Other al-
gorithms (7–9) have been designed to merge overlapping
pairs but do not provide the likelihood of seeing the adaptor
at the end of both reads. Furthermore, sequencing centers
often give end-users sequencing data with the adaptors al-
ready trimmed and including the likelihood of sequencing
the adaptor becomes impossible or use this information to
reconstruct very short molecules.

We present a new Bayesian maximum a posteriori trim-
ming and merging algorithm, leeHom, that is particularly
useful for ancient DNA (aDNA) and other cases where
short molecules are sequenced. Instead of separating the
processes of adaptor trimming and merging, leeHom con-
siders both steps into a single probabilistic model. Briefly,
leeHom computes the probability of observing the reads
given a certain original molecule length and returns the
most likely one. Our algorithm is highly robust to sequenc-
ing error, produces few false positives and is able to handle
common sequencing problems, such as missing cycles. The
algorithm was tested on a set of simulated aDNA sequences
where the original molecule sequenced was known, and on
Neandertal sequence data. Our results show that leeHom
outperforms currently available software in speed and ac-
curacy for both simulated and real aDNA data, and that it
is suitable for processing large volumes of sequence data. It
can take unaligned BAM or fastq files as input and requires
the sequence of the adaptors be provided.

MATERIALS AND METHODS

Computation of the likelihood for a given sequence length

Our approach relies on computing the probability of ob-
serving a pair of reads assuming that the original molecule
is of a certain length. A similar maximum likelihood ap-
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Figure 1. Schematic representation of paired-end sequencing for very short
molecules. (a) When the molecule is shorter than the read length, both
reads will run into the adaptors and the remaining part will completely
overlap. (b) If the sequence is longer but still not longer than twice the
read length, adaptor sequences will be absent but a partial overlap can be
observed between the end of the sequences.

proach for paired-end reads was used in the literature for
assembling 16S rRNA or polymerase chain reaction prod-
uct flanked by primer sequences using partially overlapping
paired-end reads (see (7)). Apart from computing the likeli-
hood of all possible overlapping sequence lengths, the likeli-
hood of stemming from non-overlapping pairs is also com-
puted, thus removing the need for hard cutoffs. Further-
more, a probabilistic prior of seeing a sequence of a certain
length can be added.

Given that we have sequenced paired-end reads r1 and r2,
we assume that if the original sequence was shorter than
the read length, each read will have, at the end, the se-
quences of the adaptors: a1 and a2, respectively. We define l1
= length(r1) and l2 = length(r2). The probability of observ-
ing this data given that we assume that the original sequence
was of length i, denotated as P(r1, r2, a1, a2|i), can be com-
puted using the following formula:

P(a1 ≈ r1[i − 1..]) · P(r1[1..i − 1] ≈
r2[1..i − 1]) · P(a2 ≈ r2[i − 1..]) (1)

where P represents the probability, r2 is the reverse com-
plement of r2, the [i..] and [1..i − 1] operators denote the
suffix starting at position i and the prefix ending before po-
sition i, respectively, and where an end index greater than
the start one represents an empty string. The first and last
terms correspond to the probability of observing r1[i..] and
r2[i..] given that the templates were a1 and a2, respectively.
The middle term corresponds to the probability of observ-
ing the stretches r1[1..i − 1] and r2[1..i − 1] given that they
stemmed from a common sequence. The specific equations
for those two probability functions are defined in greater de-
tail below. This probability is computed from for every i ∈
0...l1 + l2. The posterior probability of any length being i
given the data can be described using the following expres-
sion:

P(i |r1, r2, a1, a2) ∝ P(r1, r2, a1, a2|i ) · P(i ) (2)

The prior on the sequence length i is defined using the prob-
ability density function of the log-normal distribution given
by:

P(i ) = 1

i
√

2πσ
e− (ln(i )−μ)2

2σ2 (3)

Figure 2. Empirical (black) and theoretical (red) length distributions of an-
cient and modern DNA libraries. Presented is the output of the maximum
likelihood fit from the Fitdistrplus R package using a log-normal distribu-
tion for an aDNA library (left) and a modern DNA library (right). aDNA
molecules tend to be of shorter length with a much narrower variance than
modern DNA.

The term above models the likelihood of seeing that par-
ticular sequence size given a prior belief on the sequence size
distribution. To find the most suitable distribution to model
the length of DNA sequences, various heavy-tail distribu-
tion were compared using the maximum likelihood fit from
the Fitdistrplus R package (http://cran.r-project.org/web/
packages/fitdistrplus/) and the one maximizing the likeli-
hood of the fit was log-normal (data not shown). To illus-
trate how the shape of the prior changes from modern to
aDNA sequences, the log-normal distribution for both a
modern and aDNA data set was computed (see Figure 2).
Users also have the option of using a uniform prior on the
sequence length if the size distribution of the sequences is
unknown.

leeHom aims at finding the original sequence length imax
that maximize the likelihood of observation of r1 and r2:

imax = argmaxi∈{0...l1+l2} P(i |r1, r2, a1, a2)

and returns the most likely bases for the sequence of length
imax.

To compute P(a1 ≈ r1[i..]) and P(a2 ≈ r2[i..]), we use a
string comparison that disallows insertions/deletions while
tolerating mismatches. The probability of seeing a substring
of a read r[i..] given that an adaptor a was the template is
given by the product of the likelihood for each base:

P(a ≈ r [i − 1..]) =
k=length(r )∏

k=i−1

Pmatch(a[k − i + 1], r [k]) (4)

where Pmatch is the likelihood of match for two bases. Let q[i]
be the quality score associated with base r[i], the probability
of sequencing error for a given quality score q[k] is defined
as follows:

pe(q[k]) = 10
−q[k]

10 (5)

Therefore, the probability of observing r[k + i] given that
the correct nucleotide is a[k] is computed as follows:

Pmatch(a[k], r [k + i ]) =
⎧⎨
⎩

1 − pe(q[k]) if a[k] = r [k + i ]
pe(qk) · 1

3 if a[k] �= r [k + i ]
1
4 if k > length(a)

(6)

http://cran.r-project.org/web/packages/fitdistrplus/
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Equation (6) assumes that the probability of error given a
certain sequenced base represents the probability of miscall-
ing the base to any other base with equal probability.

The likelihood of the overlap P(r1[1..i − 1] ≈ r2[1..i −
1]), is defined as the probability of having seen both sub-
strings given that they stemmed from the same DNA se-
quence. Assuming that each base is independent of the re-
maining ones, the likelihood for each base can therefore be
multiplied as such:

P(r1[1..i − 1] ≈ r2[1..i − 1]) =
k=i−1∏

k=1

Poverlap(r1[k], r2[k])(7)

Given that the strings r1 and r2 have the associated quality
scores q1 and q2, the likelihood of two bases from two dif-
ferent reads stemming from the same original base is given
by marginalizing the probabilities for each potential nu-
cleotide that could have been this original nucleotide multi-
plied by the respective probability of observation of the two
sequenced nucleotides:

Poverlap(r1[k], r2[k]) =
∑

n∈{A,C,G,T}
Pobs(n) · Pobs(r1, r2|n) (8)

where Pobs(n) representing the likelihood of observing nu-
cleotide n in the original overlapping sequence, approx-
imated to 1

4 for ∀n ∈ {A, C, G, T}. The second term
(Pobs(r1, r2|n)) can be quantified as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − pe(q1[k])) · (1 − pe(q2[k])) if r1[k] = r2[k] ∧ r1[k] = n
(1 − pe(q1[k])) · (pe(q2[k])) · 1

3 if r1[k] �= r2[k] ∧ r1[k] = n
(pe(q1[k])) · 1

3 · (1 − pe(q2[k])) if r1[k] �= r2[k] ∧ r2[k] = n
(pe(q1[k])) · 1

3 · (pe(q2[k])) · 1
3 if r1[k] �= n ∧ r2[k] �= n

(9)

Again, we assume that a sequencing error is equally likely
to produce any nucleotide besides the correct one.

Once again, leeHom aims at finding the sequence length
i that maximizes Equation (1). However, different values of
i can be equally likely. To avoid incorrect reconstructions
due to multiple sequence lengths that are equally likely, we
avoid reconstructing sequences where the ratio of the likeli-
hoods of the second most likely sequence length to the most
likely one exceeds 1 in 20. This ensures that the most likely
sequence has to be several fold more likely than the second-
best option. As mentioned before, the likelihood of having
no overlap and, therefore, having a sequence length exceed-
ing twice the read length is also computed as follows:

∫ ∞

l1+l2

1

x
√

2πσ
e− (ln(x)−μ)2

2σ2 ·
∏
l1+l2

Pobs(n) (10)

where Pobs(n) is defined as in Equation (8). The prior

(
∫ ∞

l1+l2

1
x
√

2πσ
e− (ln(x)−μ)2

2σ2 ) on the sequence length represents the
probability of generating a sequence longer than l1 + l2 and
can be interpreted as 1 − cdf(l1 + l2), where cdf() is the cu-
mulative distribution function for the aforementioned log-
normal distribution. The resulting value is compared with
the remaining likelihood values for sequence lengths.

Consensus of overlapping regions

Once the most likely sequence length has been computed,
the remaining task is to assemble the sequence using the in-
formation provided by r1 and r2. If a base has been cov-
ered in only one read, it is reported along with the origi-
nal quality score. However, if the base is covered by both
reads, a consensus base with its associated quality score is
produced. Again, we assume a principle of independent ob-
servations with quantified error probabilities given by the
quality scores to produce both quantities.

Let two sequenced bases b1 and b2 with quality scores
on the PHRED scale q1 and q2, respectively. For any given
nucleotide n ∈ {A, C, G, T} that we believe to be the actual
base, the probability of observing b1 can be computed by
the following:

p(b1|n) =
{

1 − pe(q1) if b1 = n
pe(q1)

3 if b1 �= n
(11)

Assuming that both bases b1 and b2 represent independent
observations, we can define the probability of n given b1 and
b2:

p(b1, b2|n) = p(b1|n) · p(b2|n) (12)

For calling the consensus base we seek to compute the likeli-
hood of a nucleotide n given the observation b1 and b2. This
can be computed using Bayes’ rule:

p(n|b1, b2) = p(b1, b2|n) · p(n)
p(b1, b2)

(13)

The probability of having observed b1 and b2 can be com-
puted by summing the probability of having generated both
bases given that we believe that they came from the same
base. Since there are only four possibilities for this base, the
following equation can be used:

p(b1, b2) =
∑

m∈{A,C,G,T}
pobs(m) · p(b1, b2|m) (14)

where pobs(m) is the prior for that given nucleotide (see sec-
tion above) and p(b1, b2|m) can be derived using Equations
(12) and (11). In resulting BAM files, the probability of er-
ror, which is the probability of not observing n given the
two bases b1 and b2, is reported. Hence, the following can
be derived:

p(−n|b1, b2) = 1 − p(n|b1, b2) (15)

= 1 − p(b1, b2|n) · p(n)
p(b1, b2)

(16)

= p(b1, b2) − p(b1, b2|n) · p(n)
p(b1, b2)

(17)

By substituting the result from Equation (14) in the pre-
vious expression, p(−n|b1, b2) becomes:

p(−n|b1, b2) =
∑

m∈{A,C,G,T}\n p(b1, b2|m)∑
m∈{A,C,G,T} p(b1, b2|m)

. (18)
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Finally, the most likely nucleotide is produced along with
its associated quality score by taking the PHRED scaled
quantity defined in Equation (18).

aDNA sequencing data

Since sequencing error rates vary between sequencing runs
and even vary within a run, such a complex error rate is dif-
ficult to model and an actual data set would be needed to
evaluate reconstruction accuracy. To benchmark the afore-
mentioned programs on actual aDNA data, the first 10M
reads from a paired-end Illumina HiSeq 2500 run from
the Altai Neandertal (10) were used as test data set. Pro-
grams that trim and merge reads - MergeTrimReads, Se-
qPrep and AdaptorRemoval - were used with default pa-
rameters as comparison. The resulting reconstructed se-
quences were mapped back to the human reference genome
(1000 Genomes version hg19) using BWA 0.5.10 (11) with
default parameters. The number of aligned sequences along
with the number of sequences aligning with mapping qual-
ity greater than 30 were tallied for each algorithm.

A common feature of the programs being tested is the
ability to merge overlapping stretches. To evaluate whether
this strategy improved sequence accuracy compared to sim-
ply trimming the adaptors and mapping both remaining
reads separately, the same data set was processed by cu-
tadapt (3) and the resulting unmerged and paired reads were
mapped with BWA. The number of mismatches per aligned
basepair was computed for aligned read which were merged
by leeHom and simply left as trimmed paired reads by cu-
tadapt.

RESULTS

Distribution of the log likelihood

To illustrate the differences in the likelihood landscape be-
tween actual modern and aDNA paired reads, the log-
likelihood for different potential sequence length was plot-
ted (see Figure 3). For aDNA pairs, there is a clear peak
in log-likelihood around the length of the original frag-
ment, whereas modern DNA shows a more even probabilis-
tic landscape. For the aDNA, the difference between the
log of the most likely and the second most likely fragment
length was 66.93, whereas that difference was 0.19 for the
modern DNA pairs.

Simulated data

Paired-end. Using simulated paired-end reads at differ-
ent levels of error, the performance of leeHom was com-
pared to MergeTrimReads (5), SeqPrep (https://github.
com/jstjohn/SeqPrep) and to AdaptorRemoval (6). Briefly,
sequences matching the sequence length distribution of
aDNA molecules generated for the Denisova genome
project (12) were selected at random from the genome. Se-
quences with unresolved base pairs (‘N’) were removed.
Reads of 100 bp were simulated by either adding adapter
sequences to the end of reads if the original sequence was
shorter than the simulated read length or by simply tak-
ing the first hundred base pairs from each end. An Illu-
mina error profile was used by aligning PhiX control se-
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Figure 3. The log-likelihood for various possibilities of length of the orig-
inal molecules for an ancient and modern DNA read pair. The dotted line
represents the likelihood that the reads do not merge and that they came
from a molecule of length greater than the longest possible overlap. For the
aDNA read pairs, a particular length of the original molecule is more likely
than the remaining possibilities. This is not the case for modern DNA read
pairs due to the longer length of the original molecule.

quences to the PhiX genome and building a frequency ta-
ble for matches and types of substitution. The frequency of
quality scores associated with each were tallied. Errors were
introduced at a certain rate and a nucleotide substitutions
were added with the an associated quality score taken from
the error profile. Errors were introduced for each base inde-
pendently of each other. As our data set contains the orig-
inal sequence, we assessed both the number of molecules
for which the sequence was reconstructed perfectly, and the
number of sequences with the correct length.

The number of perfectly reconstructed sequences versus
the simulated error rate is plotted in Figure 4. Clearly, the
number of inferred sequences without any mismatches de-
creases both due to the increased difficulty of inferring the
original sequence and the smaller number of sequences with
no mismatches. The relative number of sequences with at
least one mismatch was also plotted. This number tends to
reach a plateau due to the absence of reads without any se-
quencing errors. Both in terms of perfectly reconstructed se-
quences and inexact matches, leeHom outperforms remain-
ing algorithms especially at high error rates. Furthermore,
in terms of reconstructed sequences with the correct length
irrespective of the number of mismatches, leeHom also of-
fers superior accuracy.

In terms of falsely merged reads, out of 931 767 paired-
end reads, neither AdapterRemoval nor SeqPrep generated
any false positives. MergeTrimReads and leeHom generated
respectively 11 and 22 false positives. Those reads were lo-
cated in regions of genomic repeats. It should also be noted
that using a prior in leeHom on the sequence length equal to

https://github.com/jstjohn/SeqPrep
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Table 1. Runtime and accuracy for various adapter trimming and merging software packages

leeHom (+prior) leeHom MergeTrimReads AdapterRemoval SeqPrep
cutadapt +
FLASH

runtime (wallclock) 17m16s 16m51s 60m17s 27m37s 23m20s 4m32+5m37
runtime (CPU) 17m14s 16m49s 60m16s 28m16s 24m27s 6m00+5m15
Mapped 3 381 755 3 373,531 3 370 675 3 308 763 3 222 585 3 276 250
MQ30 2 814 558 2 806 692 2 803 915 2 758 884 2 743 703 2 744 661

The runtime of different algorithms for sequence reconstruction along with the number of produced sequences aligning to the human genome. In terms of
aligned sequences both at minimum mapping quality 0 and 30, leeHom outperforms other algorithms especially if a prior on the sequence length is used.
Also in terms of runtime, leeHom compares favorably to other programs. PEAR failed to run due to the amount of data even when increasing the amount
of RAM (to 5GB). The time reported for FLASH is the time for cutadapt to run for both forward and reverse reads and for FLASH to run.
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Figure 4. Comparison of the fraction for all input reads of reconstructed sequences as a function of simulated error rate for the output of leeHom and
currently available software for sequence reconstruction based on paired-end read data. The number of perfectly reconstructed sequences (left), the ones
with a single mismatch (mm) to the original sequence (center) and those with the correct length (right) are presented. Both in terms of perfectly reconstructed
sequences and in terms of sequences with the correct length, leeHom outperforms other currently available algorithms.

the distribution used to generate the simulated reads elimi-
nates these false positives.

Single-end. In a similar approach to the one taken for
paired-end reads, the number of perfectly inferred se-
quences was tallied for single-end reads for various soft-
ware packages that trim adaptor sequences. Also, the num-
ber of sequences with imperfect matches to the original sim-
ulated sequence as well as the total number of sequences
with correct length was computed (see Supplementary Fig-
ure S2). leeHom and AdapterRemoval offer the greatest ro-
bustness to sequencing errors. Upon measuring the amount
of false positives on simulated modern DNA reads (see Sup-
plementary Table S1), leehom offers fewer false positives
than AdapterRemoval.

Sequencing data

On an actual aDNA data set of 10M paired-end reads from
(10), the runtime as well as the number of inferred sequences
mapping back to the genome was computed (see Table 1).
Also, the number of sequences aligning with mapping qual-
ity of at least 30 was also computed. Since an algorithm
is unlikely to produce a sequence that aligns to the human
genome by chance and even more unlikely to align with high
mapping quality, the number of aligned sequences indicates
the accuracy of the reconstruction. Both in terms of run-

time and accuracy, leeHom outperforms currently available
programs.

Trivially, it should be noted that the use of any of these
tools is an improvement over aligning the raw sequences
without any attempt at adaptor trimming and paired-end
read merging since, out of 10M paired-end reads, only 1
506 567 (15.07%) reads align and among those, 1 338 397
(13.38%) have high mapping quality.

An assumption behind paired-end read merging for
aDNA is the ability to cross-correct using double observa-
tions of the sequenced bases and quality scores. To test this
hypothesis, the number of mismatches per aligned base was
computed for both merged sequences produced by leeHom
and trimmed reads produced by cutadapt (see Table 2). The
number of mismatches per aligned nucleotide is lower in the
merged reads produced by leeHom thus indicating the gain
in accuracy is due to cross-correction.

DISCUSSION

The tasks of stripping residual adapters and merging over-
lapping pairs are generally separated. Our results show that
considering both at once in a single model increases the
number of sequences that can ultimately be mapped. Fur-
thermore, the use of the prior distribution can help distin-
guishing between corner cases. For instance, when a few
bases of the adapters are seen, the decision to trim or not
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Table 2. Mismatches per aligned base for various aDNA strategies

Approach Mismatches Aligned bases Mismatches per 1000 bases

leeHom 1 130 159 218 746 206 5.17
cutadapt 2 326 041 410 027 512 5.67

The number of mismatches and aligned bases for both merged sequences produced by leeHom and reads trimmed by cutadapt. This table presents the raw
number of aligned nucleotides given that, for a given paired-end read, the merged sequences produced by leeHom and the trimmed sequences produced
by cutadapt were aligned to the human genome. By computing the number of mismatches per nucleotide, leeHom produces sequences that have greater
similarity to the human reference due to cross-correction of the reconstructed sequence using the paired reads.

depends heavily on the prior probability for the length dis-
tribution. For very short aDNA molecules, trimming such
bases might be beneficial, whereas for longer molecules, re-
solved bases might be needlessly removed. A Bayesian ap-
proach given the distribution offers the possibility of a natu-
ral probabilistic transition from very short fragment size to
longer ones without the use of arbitrary cutoffs. A prior on
the distribution should, therefore, be used whenever there
is data from the same library that provides information
about the size distribution of the library inserts. If no previ-
ous data on insert-size are available, the default parameters
should be used.

Stricter cutoffs can be used for high quality data sets this
will reduce the number of false positives. More liberal cut-
offs should be used on data sets with higher errors as this
will allow more sequences to be retrieved. However, as men-
tioned before, error rates vary between sequencing runs and
often within a single sequencing run. Adapting the thresh-
olds for the detection of the adapters and the overlapping
within a single sequencing run is generally infeasible. Prob-
abilistic approaches obviate this need by returning the most
likely model given the data at hand. As shown in the results
section, this approach outperforms currently available algo-
rithms especially at high error rates.

Since adapters are often simply trimmed and the reads
left unmodified during standard processing, the value of
merging overlapping parts for aDNA studies was evaluated.
As shown in the results section, the cross-correction effect
of having observed the same sequence twice reduces noise
and mismatches to the reference.

leeHom can be used with a prior on the distribution of
the molecule lengths. However, this information is not al-
ways available beforehand especially for newly sequenced
libraries. Ideally, the step of trimming adapters and merging
overlapping parts should be combined with mapping where
the distribution of the original sequences could be empiri-
cally determined. Once sufficient confidence in the shape of
the fragment size distribution, this could be used as prior
for both aDNA and modern samples as a standalone tool.
Furthermore, substitution rates to remaining nucleotides
have been assumed to be equally likely which is empirically
not the case (13). More realistic substitution probabilities
could be incorporated in our model. Also, leeHom assumes
that quality scores are correlated positively with their ob-
served error rate which is increasingly the case for modern
sequencers.

CONCLUSION

leeHom outperforms currently available algorithms for re-
construction of aDNA sequences from reads both in terms

of accuracy and speed. The maximum likelihood sequence
reconstruction lowers error in aDNA, and other data sets
with overlapping paired end reads, thus leading to more ac-
curate alignments.

SUPPLEMENTARY DATA

Supplementary data are available at NAR Online.
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We thank Kay Prüfer for useful comments and Amin Saffari
for testing the software.

FUNDING

The authors acknowledge financial support from the Max
Planck Society; NSERC for PGS Doctoral scholarship [to
G.R.] Funding for open access charge: Max Planck Society.
Conflict of interest statement. None declared.

REFERENCES
1. Gansauge,M.-T. and Meyer,M. (2013) Single-stranded DNA library

preparation for the sequencing of ancient or damaged DNA. Nat.
Protoc., 8, 737–748.

2. Sawyer,S., Krause,J., Guschanski,K., Savolainen,V. and Pääbo,S.
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