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ABSTRACT

The resilience of Mycobacterium tuberculosis (MTB)
is largely due to its ability to effectively counter-
act and even take advantage of the hostile environ-
ments of a host. In order to accelerate the discov-
ery and characterization of these adaptive mecha-
nisms, we have mined a compendium of 2325 pub-
licly available transcriptome profiles of MTB to deci-
pher a predictive, systems-scale gene regulatory net-
work model. The resulting modular organization of
98% of all MTB genes within this regulatory network
was rigorously tested using two independently gen-
erated datasets: a genome-wide map of 7248 DNA-
binding locations for 143 transcription factors (TFs)
and global transcriptional consequences of overex-
pressing 206 TFs. This analysis has discovered spe-
cific TFs that mediate conditional co-regulation of
genes within 240 modules across 14 distinct envi-
ronmental contexts. In addition to recapitulating pre-
viously characterized regulons, we discovered 454
novel mechanisms for gene regulation during stress,
cholesterol utilization and dormancy. Significantly,
183 of these mechanisms act uniquely under con-
ditions experienced during the infection cycle to reg-
ulate diverse functions including 23 genes that are
essential to host-pathogen interactions. These and
other insights underscore the power of a rational,
model-driven approach to unearth novel MTB biol-
ogy that operates under some but not all phases of
infection.

INTRODUCTION

Mycobacterium tuberculosis (MTB) is an extraordinarily
successful pathogen that has infected thirty percent of

the world’s population (http://apps.who.int/iris/bitstream/
10665/91355/1/9789241564656_eng.pdf). The success of
MTRB is tied to the adaptive repertoire of the bacilli in the
face of varying and hostile environments within the host.
In the course of chronic infection, MTB encounters diverse
environmental conditions, including hypoxia, nitric oxide
stress and varying nutritional limitations (1). Microbes re-
spond and adapt to such immunological, environmental
and nutritional changes through regulatory programs pri-
marily encoded at the transcriptional level. A significant
fraction of these regulatory programs are controlled via
transcription factors (TFs) that modulate transcriptional
activity upon binding to cis-regulatory motifs located in in-
tergenic promoters. A detailed model of MTB’s transcrip-
tional regulatory network, including the complete set of
TFs, co-regulated genes, and regulatory motifs, has signif-
icant implications for elucidating novel strategies to eradi-
cate infection by MTB.

Models of transcriptional regulatory networks are typi-
cally constructed by integrating large omics datasets with
computational algorithms to reproduce and elucidate com-
plex regulatory interactions. Through an iterative process,
network models can inform the design of new biological
experiments, which yield more powerful models. Bridging
the gap between computation and experimentation has re-
markable promise, especially in organisms like MTB that
are challenging and time-consuming to work with in the lab-
oratory.

Useful information about MTB’s transcriptional regula-
tion is available from studies that have focused on regulation
during particular stages of pathogenesis such as hypoxia (2),
transition to growth arrest (3) or macrophage infection (4).
However, the aforementioned models cover at most 50% of
the MTB genome. To improve on this, we reconstructed a
global transcriptional regulatory network model of MTB
that encompasses up to 98% of the genome (3922 genes) and
accurately predicts gene expression for new environmental
conditions.
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In this study, we present a comprehensive transcriptional
regulatory network of MTB. Our method generated an en-
vironment and gene regulatory influence network (EGRIN)
of MTB using a compendium of 2325 publicly available
mRNA expression profiles (5). Subsets of putatively co-
regulated genes (i.e., biclusters) were identified based on co-
herent mRNA expression across some environmental con-
ditions and the presence of a common promoter TF bind-
ing motif. Accuracy of this model was tested by performing
new experiments to overexpress all of MTB’s ~200 TFs, fol-
lowed by ChIP-Seq (chromosome immunoprecipitation fol-
lowed by sequencing) and expression profiling. We demon-
strate that the EGRIN model accurately predicts regula-
tory interactions in a network of 240 validated biclusters.
We augmented these validated biclusters with gene ontol-
ogy (GO) terms for enrichment of genes in each bicluster (6)
and identified the environmental contexts in which they act
by analyzing transcriptional responses across different envi-
ronmental and nutritional conditions. Following validation,
we used the EGRIN model to investigate how cholesterol
utilization genes are co-regulated. MTB uses host-derived
cholesterol as a carbon source, a facility that is required for
MTRB persistence in the host (7). We analyzed the regula-
tory mechanisms responsible for this important carbon shift
and uncovered novel interactions for testing in new envi-
ronmental and genetic perturbation experiments. Similarly,
the model has also discovered putative previously unchar-
acterized regulons that are active across 14 environmental
contexts, including hypoxia, carbon monoxide stress, and
nitrosative stress.

The MTB expression data (http://www.tbdb.org) (8.,9),
cMonkey algorithm (http://baliga.systemsbiology.net/
drupal/content/cmonkey), MTB EGRIN model and val-
idation data (http://networks.systemsbiology.net/mtb/)
are available online. By making our approach and results
publicly available, we are encouraging exploration of the
model to drive rational experimentation. The EGRIN
model is sufficiently predictive to formulate hypotheses
of MTB regulatory interactions that respond to various
environmental conditions, including those responsible for
MTB pathogenicity.

MATERIALS AND METHODS

The approach used in this study includes both computa-
tional and biological methods. Unless otherwise noted, all
algorithms developed for this research were implemented
in the R programming language (10). Plots were gener-
ated using R (10), regulatory network diagrams were gener-
ated using BioTapestry (11) and images were prepared using
Adobe Illustrator CSS.

Construction of environmental and gene regulatory influence
network

The cMonkey integrated biclustering algorithm was applied
to identify subsets of genes that were co-regulated under
certain culture conditions (12). The inputs to cMonkey were
2325 transcriptome profiles (Supplemental Data file S1),
upstream regions of all genes, and functional association
networks, including operon predictions from MicrobesOn-
line and functional protein interactions from EMBL String

databases (13). Briefly, the transcriptome data were mi-
croarrays obtained as pcl files from TBDB (www.tbdb.org).
Each file was standardized independently as described pre-
viously (13) and merged into a single file by gene name.
During clustering analysis, cMonkey iteratively prioritizes
the grouping of genes with similar expression profiles, sup-
ported by additional evidence of co-regulation such as the
existence of similar cis-regulatory motifs in their promoter
regions (detected de novo using the MEME algorithm) (14)
and functional associations between genes (functional as-
sociation network provided by STRING database) (15).
cMonkey first creates seed clusters and then optimizes them
to create biclusters by adding or removing genes and con-
ditions after calculating coexpression measures, searching
for motifs and additional evidences of co-regulation. At
each stage it computes the probability of being a member
of the bicluster for each gene or condition sampled from
the conditional probability distribution. The algorithm al-
lows genes to be members of multiple co-regulated gene
groups, a property that is consistent with how biology oper-
ates, thereby allowing the discovery of combinatorial regu-
lation of the same genes by multiple environmental factors
and/or TFs.

TF overexpression—ChIP-Seq binding analysis

To systematically map TF binding sites, we performed
ChIP-Seq using FLAG-tagged TFs episomally expressed
under control of a mycobacterial tetracycline-inducible pro-
moter (2). MTB H37RV cells were cultured in Middle-
brook 7H9 with ADC (Difco), 0.05% Tween80 and 50 g
ml~! hygromycin B at 37°C with constant agitation and in-
duced with 100 ng mI~! anhydrotetrachycline (ATc) dur-
ing mid-log-phase growth. ChIP was performed using a
protocol optimized for strains of Mycobacteria and related
species of Actinomycetes and sequencing was performed
on an Illumina GAIIx sequencer. Full data files, the al-
gorithm used for peak-calling and analyzed ChIP-Seq tar-
gets for each TF are available on the network portal (http:
/Inetworks.systemsbiology.net/mtb/). Motif discovery and
analysis from ChIP-Seq binding targets were carried out us-
ing MEME and MAST (14).

TF overexpression—microarray analysis

MTB H37RV cells were cultured and induced as described
above. All experiments were performed under aerobic con-
ditions and growth was monitored by OD600. Total RNA
was isolated from TF-induced cultures 18 h after treatment
with 100 ng ATc per ml of culture or an equivalent volume
of DMSO (in the case of uninduced controls). When inter-
rogating the same culture for ChIP-Seq and transcriptome
profiling, cells were divided immediately prior to sample
processing. RNA samples were isolated from MTB cells and
profiled using custom Nimblegen microarrays. Expression
ratios were generated by comparing the induced expression
level to a baseline median expression value calculated from
all the microarrays where the TF was not induced. Altered
gene expression was considered significant if it produced a
moderated z-test P-value <0.01 after Benjamini Hochberg
multiple testing correction. Expression data are available
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on the network portal (http:/networks.systemsbiology.net/
mtb/) and the gene expression omnibus (GEO) in series
GSE59086.

Bicluster enrichment analysis of TF overexpression regula-
tory targets

We identified biclusters with significant enrichment of regu-
latory targets of overexpressed TFs by pairwise overlap and
computed hypergeometric enrichment P-values. The genes
of a bicluster with regulatory binding were identified as hav-
ing a significant overlap with ChIP-Seq binding targets of a
particular TF as well as having a significant overlap with
differentially expressed genes of the same TF. The signifi-
cance of overlap was calculated as the number of genes with
regulatory binding from a bicluster compared to randomly
sampled gene sets of the same size. In total, 50 000 permu-
tations were performed and the significance of the overlap
between a TF’s regulatory targets (ChIP-Seq targets that are
also differentially expressed) and a bicluster’s member genes
was calculated based on the resulting permuted P-values
(Benjamini-Hochberg, BH, multiple hypothesis correction
< 0.01). The biclusters enriched in ChIP-Seq binding and
the biclusters enriched in diffentially expressed genes in bi-
cluster member genes were also calculated separately by
pairwise overlap and computed hypergeometric enrichment
P-values, with significant biclusters having a BH multiple
hypothesis corrected P-value < 0.01.

Functional annotations for validated biclusters

GO annotations for each MTB gene were obtained from
UniProt-GOA (16). We used the Bioconductor package
topGO (17) to discover significantly enriched GO terms in
gene sets of interest. Briefly, topGO tests the enrichment of
GO terms with validated targets of each TF using two sta-
tistical tests, namely Kolmogorov—Smirnov test and Fisher’s
exact test.

Discovering context-dependent regulation by TFs

In total, 1355 transcriptome profiles were categorized into
14 condition sets for this analysis (Supplemental Data file
S5). We only used experiments from the compendium set
that were published with experimental methods to help in-
form their categorization into a condition set. Correlation
coefficients between the expression of a TF and bicluster
member genes were calculated for each of the 14 condition
sets. Positive and negative correlations were considered sep-
arately, where a positive correlation indicates an activator
role and a negative correlation coefficient indicates a repres-
sor role. Median correlation coefficients between a TF and
bicluster member genes in a condition set were compared to
randomly sampled gene sets of the same size. In total, 10 000
permutations were performed and the significance of the
median correlation coefficient between a TF and its biclus-
ter member genes under each condition set was calculated
based on the resulting permuted P-values (BH multiple hy-
pothesis correction < 0.05). As a final test, we performed
a Pearson’s pairwise correlation of all TFs and the median
expression of the bicluster member genes in each condition
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set. We identified genes that were significantly correlated
with the TF’s expression under that condition set based on
a correlation coefficient —1.0 < R > —0.850r 0.85 < R >
1.0 and a P-value < 0.05.

Bicluster enrichment analysis of cholesterol utilization

For bicluster enrichment analysis, a list of genes essential
for in vitro growth on cholesterol was collected from Griffin
et al. (18). The genes represented in this list were compared
with the members of each bicluster to find statistically sig-
nificant enrichment of cholesterol utilization. P-values for
overrepresentation of cholesterol utilization-specific genes
in each bicluster were calculated using the hypergeometric
distribution and were corrected for multiple hypothesis test-
ing by the BH method.

Motif analysis of cholesterol utilization biclusters

Motifs (e-value < 1) from the cholesterol utilization biclus-
ters were run against the ‘Prokaryotes—RegTransBase v4
database using TOMTOM (19). The regulators with signif-
icant P-values (P < 0.01) were searched for sequence sim-
ilarity against the MTB genome using blastn (nucleotide
query/nucleotide database) from TBDB (8,9). Finally, the
genes with lowest e-values (e < 0.1) were aligned with the
corresponding bicluster motifs using MAST (20). The re-
sulting P-values were subjected to a cutoff value of 0.01 to
determine regulation.

RESULTS AND DISCUSSION

Our primary goal was to construct a model that could be
used to generate hypotheses and guide experimentation to
discover and characterize context-specific regulatory mech-
anisms. In the following sections, we describe the systems
approach that was used to investigate genome-wide tran-
scriptional regulation under environmental conditions en-
countered by MTB during its infection cycle in the human
host (Figure 1A-D). In addition to providing details on the
global architecture of the resulting network, we discuss in-
sights that were gained from rigorous testing to evaluate
model accuracy and utility in making meaningful exper-
imentally testable predictions of context-dependent tran-
scriptional regulation in MTB.

Reconstruction of a gene regulatory network model of MTB

The MTB EGRIN model was constructed from a com-
pendium of 49 microarray datasets, containing 2327 pub-
licly available transcriptional profiles for MTB genes (8,9).
The microarray data were integrated with ~250 000 func-
tional gene associations from STRING (15) and nearly
5000 operon prediction associations from MicrobesOnline
(21). These protein interactions and functional associations
were used as input for the cMonkey algorithm to identify
sets of genes that are co-expressed over subsets of environ-
mental conditions and share cis-regulatory motifs in their
promoters (Figure 1A) (12). Before biclustering and model
construction, 77 genes (~2%) that did not show significant
expression changes or had large amounts of missing expres-
sion values were filtered out as described previously (12).
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Figure 1. An overview of the approach to model global gene regulation in Mycobacterium tuberculosis. The approach consists of four parts. (A) The
model was constructed using publicly available data. The cMonkey biclustering algorithm identified sets of genes that are co-regulated under a subset of
experimental conditions, have a common motif in their promoters and are enriched in protein—protein (P-P) interactions. Biclusters were filtered based on
their residuals and the resulting biclusters were organized into a network model of gene regulation. (B) The model was tested for accuracy by investigating
how often two or more genes within a bicluster were bound by the same TF (P-D interactions) and had mRNA changes upon over-expression of that
TF. This identified a set of 454 genes that were co-regulated in varying combinations across biclusters. (C) Validated biclusters were investigated for
environment-specific regulation patterns of important functions in MTB. (D) The MTB Network Portal was developed to allow exploration of the model
and enable predictions for experimental investigation. The web-portal is located at http://networks.systemsbiology.net/mtb/.
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Table 1. Summary of properties for the EGRIN model of MTB

Property Mtb total network Mtb filtered network
Biclusters 598 4444

cis-regulatory motifs 1192 475b

Gene coverage (%) 98 84¢ /554

abiclusters with residual < 0.55

Y motifs with e-value < 1

Cgenes in biclusters with residual < 0.55

d genes in biclusters with residual < 0.55 and e-value < 1

Similarly, two microarray experiments were removed be-
cause of numerous missing expression values, resulting in
2325 experiment conditions that were included in the biclus-
tering process (Supplemental Data file S1). In total, cMon-
key grouped the remaining 3922 MTB genes into 598 bi-
clusters (Supplemental Data file S2). Of note, the algorithm
was set to group genes into multiple biclusters, allowing
the discovery of different regulatory programs for the same
gene. Out of the 598 biclusters, 444 were of high quality,
with mean residual values <0.55. The residual is a metric
for gene co-expression among bicluster member genes, and
was calculated as previously described (12). Biclusters with
‘tighter’ co-expression profiles had a mean bicluster resid-
ual <0.55 and were passed into the high-confidence filtered
network (Table 1). The residual cutoff was set at 0.55 to
be more inclusive of biclusters than the EGRIN model for
Halobacterium salinarum (12), but still maintain high statis-
tical significance (P-value = 1 x 10~°) for the co-expression
of genes in a bicluster as opposed to random genes. During
biclustering, co-regulated genes were also determined based
on the de novo detection of motifs by cMonkey (12). Motifs
with an e-value <1 were included in the high-confidence fil-
tered network (Table 1) (22). Altogether, cMonkey incor-
porated 3922 genes into the EGRIN model, resulting in the
most comprehensive transcriptional regulatory network of
MTB to date (Table 1) (2-3,13). Even the high-confidence
filtered network that used progressively more stringent cri-
teria (residual < 0.55 or residual < 0.55 and motif e-value
< 1) had gene coverage of 84 and 55%, respectively (Table
1). To our knowledge, this is still greater coverage than that
of all previously reported transcriptional regulatory net-
works of MTB. Unlike other models, this regulatory net-
work provides environmental context for co-regulation of
genes, along with several independent streams of evidence
for the co-regulation, such as shared cis-regulatory motifs
within gene promoters, and diverse kinds of functional as-
sociations.

Genome-wide validation of modular architecture and regula-
tory mechanisms captured by the MTB model

We tested the MTB EGRIN model trained on the com-
pendium of 2325 microarray experiments against data from
newly conducted experiments that (i) mapped genome-wide
DNA-binding locations of ~200 MTB TFs and (ii) probed
global transcriptional consequences of overexpressing each
TF, one at a time. These two ‘TF overexpression datasets’
were not used to generate the EGRIN model and were
used to assess accuracy of model predictions (Figure 1B).
The premise of this test was that if the modular archi-
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tecture inferred by our methodology was accurate, then
there would be significant concordance between grouping
of genes within modules, distribution of TF-binding loca-
tions, and the global consequences of overexpressing TFs,
which would directly and indirectly alter the expression of
co-regulated genes.

FLAG-tagged TFs were episomally overexpressed us-
ing a mycobacterial tetracycline-inducible promoter under
standard laboratory culture conditions. Clearly, there are
logistical challenges in performing overexpression experi-
ments with over 200 strains across diverse environmental
conditions. This underscores the value of network inference
using published gene expression data from the wild-type
strain subjected to diverse environmental conditions. Fur-
thermore, even though the TF overexpression data were as-
sayed in conditions that did not perfectly match conditions
used to generate the training data, they proved to be ex-
tremely useful for evaluating the accuracy of the EGRIN
model.

(1) Dataset I: a genome-wide TF-DNA interaction map
for MTB. To map TF binding locations, ChIP-Seq
was performed (2). The ChIP-Seq methodology accu-
rately identified previously characterized TF-binding
sites and was able to resolve TF binding sites with
single-nucleotide resolution (23). From ~16 000 total
binding sites, we identified a total of 7248 promoter-
proximal binding sites (2520 unique genes) for 143 TFs
in regions spanning —150 to +70 nucleotides around
transcriptional start sites across the entire genome.

(i1) Dataset II: global transcriptional consequences of over-
expressing ~200 TFs in MTB. We analyzed RNA from
the same cultures in which TFs were induced for ChIP-
Seq to assay global transcriptional consequences of
overexpressing each of 206 TFs. We identified 3785
unique mRNAs of significant expression change (P-
value < 0.01).

To integrate these datasets and employ them for valida-
tion, we first investigated how often two or more genes were
simultaneously within a bicluster, bound by the same TF
and differentially regulated upon over-expression of that
TF. This analysis identified a set of 454 unique genes that
were co-regulated in varying combinations across 240 bi-
clusters by 57 TFs (Benjamini-Hochberg, BH, corrected
permuted P-value < 0.01, Supplemental Data file S3). We
also compared the genes in biclusters discovered by EGRIN
to the experimentally characterized targets of every over-
expressed TF. This comparison showed that the network
model accurately recalled co-regulated genes for 41% of the
overexpressed TFs (57 out of 140 at P-value < 0.05 for all
TFs with >2 unique genes) and recovered 49% of the TF-
gene interactions from the TF overexpression set (793 out
of 1635 genes that were both ChIP-Seq targets and differen-
tially expressed upon over-expression of a TF). The 49% re-
covery rate is greater than validated interactions from other
transcriptional regulation modeling algorithms using ex-
pression data (24,25). Notwithstanding the successful val-
idation of model predictions by this stringent analysis, it
should be noted that this test is restricted to validating reg-
ulatory mechanisms that are active in the context in which
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the physical interactions and overexpression consequences
were assayed. The gene regulatory network model encom-
passes a much larger set of regulatory mechanisms that are
active across diverse environmental conditions, which un-
derlies a key capability of the EGRIN model, i.e., to make
predictions of conditional regulation across environments.
Indeed, a larger set of 671 modules contained two or more
genes that shared binding sites for a TF (BH corrected hy-
pergeometric P-value < 0.01). The 671 modules take into
account redundant modules that can be associated with
more than one TF. We also compared the cis-regulatory
motifs of biclusters to motifs that were deciphered through
analysis of ChIP-Seq mapped binding locations. Bicluster
motifs with significant matches to at least one TF motif
(False Discovery Rate, FDR, g-value < 0.01) are shown in
Supplemental Data file S4. Overall, the model predicts that
1117 unique interactions for 113 TFs in the P-D interaction
network are potentially functional in some environmental
context included in the gene expression compendium used
for model construction. Similarly, a larger set of 261 redun-
dant biclusters was enriched for two or more genes that were
differentially expressed upon over-expression of a TF (BH
corrected hypergeometric P-value < 0.01), validating regu-
lation of 1062 unique genes by 137 TFs (Figure 1B). The
context in which genes are grouped together in the biclus-
ter also predicts an appropriate environmental context in
which to map P-D interactions of a particular TF, possi-
bly justifying the added effort (such as chromosomal tag-
ging strategy, or generating an antibody against the native
protein) required to overcome technical challenges in map-
ping functional interactions of that TF. Thus, it is impres-
sive that co-regulation of genes across 240 biclusters could
be validated just with experiments performed under stan-
dard growth conditions. Moreover, we compared the vali-
dated bicluster targets of two TFs, DosR and KstR, to their
gene targets reported in transcriptional regulatory networks
of hypoxia (3) and macrophage infection (5) and found sig-
nificant overlap (P-value < 0.01), despite the different ex-
perimental conditions and modeling methods used. Impor-
tantly, the gene regulatory network model presented here
makes predictions of various environmental contexts, be-
yond hypoxia and macrophage infection, in which genes are
co-regulated by specific TFs.

Insights into contextual regulation of specific functions in
MTB

Mechanistic features of the gene regulatory network were
validated by comparisons to the independently generated
TF-DNA interaction map and global transcriptional con-
sequences of overexpressing TFs. Next, we investigated how
the gene regulatory network could be used to gain in-
sight into specific environment-induced dynamic changes
in MTB physiology. Statistical analysis for enrichment of
GO terms (6) revealed that co-regulated genes within 33 of
the 179 validated biclusters (18%) from the high-confidence
filtered network were associated with functional GO cat-
egories (Supplemental Data file S3). Given the nature of
the experiments within the gene expression compendium,
it is not surprising that the most common functional cate-
gory represented among the co-regulated genes was ‘growth

of symbiont in host’. The conditional grouping of genes
within biclusters further provides an opportunity to eluci-
date the context in which these functionally related genes
were co-regulated. In other words, while the TF overexpres-
sion datasets validated functional interactions within the
gene regulatory network, only a subset of these interactions
would be active, and biologically meaningful in specific en-
vironments.

We hypothesized that the context in which expression of a
TF is significantly correlated to its target genes would pro-
vide evidence of condition-specific regulation. We investi-
gated patterns of correlations between TFs and their val-
idated bicluster genes (from biclusters in the filtered net-
work) across 1355 transcriptome profiles from the com-
pendium data (see ‘Materials and Methods’ section for se-
lection criteria, Supplemental Data file S5), classified into
14 environmental contexts (re-aeration, nitrosative stress,
hypoxia, etc.). Based on this method, 46 TFs were signif-
icantly correlated or anti-correlated to their validated bi-
cluster target genes across environmental contexts (Pear-
son’s correlation coefficient —1.0 < R > —0.85 or 0.85 <
R > 1.0 and P-value < 0.05; Supplemental Data file S6 and
Supplementary Figure S1). As a specific example, Figure 2A
shows that expression changes in DosR (Rv3133c) were cor-
related with co-regulated genes within bicluster_182, over
150 experiments that were conducted under hypoxic condi-
tions. Remarkably, the gene regulatory network has recon-
structed de novo the DosR regulon including 31 of the 49
genes (BH corrected hypergeometric P-value =2.14 x 107)
that are known to be induced by hypoxia, nitric oxide and
redox stress (26). Independently, the gene regulatory net-
work predicted that DosR conditionally co-regulates these
genes under hypoxia (R = 0.85, P-value = 0.004), nitric ox-
ide (R = 0.87, P-value < 2 x 107'%) and carbon monoxide
stress (R = 0.87, P-value = 0.0001, Figure 2A-C) (26-31).
Additionally, the network predicted that the DosR regulon
is correlated under standard growth conditions (R = 0.93
and P-value < 2 x 107'%) (Figure 2D). This result poten-
tially explains why this regulon was significantly perturbed
upon overexpression of DosR under standard growth con-
ditions (2). The network model also predicted new environ-
mental conditions in which the DosR regulon was active
such as interactions with host surfactants. Using the con-
textual prediction of validated biclusters, we also identified
183 genome-wide regulatory mechanisms that act uniquely
during host infection (i.e., growth on cholesterol, host inter-
actions and growth in macrophage), but were not observed
under normal laboratory growth conditions (Supplemental
Data file S7), predicting some key factors related to host—
pathogen interactions. Overall, the ability of the gene regu-
latory network to predict both the composition of a regulon
and the context in which it is active provides the information
required (genetic background of strain, growth conditions
and phenotypic assay) to facilitate experimentation for iter-
atively testing and refining the model.

Insights into transcriptional regulation of cholesterol utiliza-
tion genes

The utilization of host-derived cholesterol has attracted
considerable attention since the discovery of its important
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Figure 2. The conditional regulation of bicluster_182 by DosR. The scatter plots show the correlation of expression for DosR versus the median correlation
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plot.

role in MTB virulence and persistence in the host (7). Dur-
ing persistence in the host, cholesterol serves as an essen-
tial nutrient source as well as a precursor molecule for the
biosynthesis of complex fatty acids (7,32). Moreover, dele-
tion of MTB genes involved in cholesterol utilization has
been shown to attenuate infection outcome (7,32-35). We
saw opportunity to use the network model to delineate
mechanisms and context for regulation of cholesterol uti-
lization genes, which, despite the importance of this pro-
cess, remain poorly understood. This study was also mo-
tivated and facilitated by a previously conducted genome-
wide screen on essentiality of genes for cholesterol utiliza-
tion in MTB (18).

We discovered that six biclusters within the gene regula-
tory network were significantly enriched for genes essen-
tial for in vitro growth on cholesterol (BH corrected hy-
pergeometric P-value < 0.01, Supplemental Data file S8).
Among these six biclusters, three modules (bicluster_199,
bicluster_200, bicluster_337) were dominated by genes that
degrade the side-chain and rings A/B of the cholesterol
molecule (Figure 3A) (36-39). Together, these three biclus-
ters contain 22 genes that are essential for growth on choles-

terol, and all were enriched for genes annotated with func-
tions in metabolism and catabolism of organic steroid small
molecules. More specifically, a significant number of genes
within the biclusters had ChIP-seq mapped binding sites
for KstR (Rv3574) and were differentially expressed upon
overexpression of this known TetR family regulator (40)
of cholesterol utilization in MTB (BH corrected hyperge-
ometric P-value < 0.01). Analysis of de novo detected cis-
regulatory motifs within bicluster_199, bicluster_200 and
bicluster_337 using TOMTOM (a database of prokaryotic
regulatory motifs, Reg TransBase v4) (19) followed by a
Basic Local Alignment Search Tool (BLAST) search of
the MTB genome revealed an almost perfect match to the
known motif for KstR (P-values < 0.01, Figure 3B) (40).
Supplemental Data file S4 also shows the motifs of biclus-
ter_199 (g-value = 6.6 x 10~%) and bicluster_200 (g-value =
1.8 x 107°) were independently discovered through analysis
of the ChIP-Seq binding locations for KstR. In addition to
accurately reconstructing the KstR regulon, the gene regu-
latory network model also predicted that it is active under
cell envelope stress, hypoxia (41) and oxidative stress con-
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ditions (Supplemental Data file S5, Figure S2) as well as
growth in standard laboratory conditions (data not shown).

From the six biclusters in the cholesterol utilization sub-
network, two biclusters (bicluster_152 and bicluster_181)
were enriched for 10 out of the 15 genes (BH corrected
hypergeometric P-value = 3.10 x 10~2") reported to ca-
tabolize the rings C/D of cholesterol (Figure 3C) (42,43).
Genes within these biclusters were enriched for ChIP-Seq
mapped binding sites (BH corrected hypergeometric P-
value < 0.01) of another TetR-type transcriptional regu-

lator, KstR2 (Rv3557c) (44). Again, the cMonkey detected
motifs of bicluster_152 and bicluster_181 that were signifi-
cantly similar to the known KstR2 motif (P-values < 0.01,
Figure 3D) (44). Notably, the KstR2-regulated biclusters
also had an over-representation of genes for ‘growth of sym-
biont in host’ (P-value < 0.0026), suggesting that KstR2
coordinates cholesterol utilization with other genes essen-
tial for proliferation within macrophages. Consistent with
this observation, expression changes of KstR2 were max-
imally correlated (R > 0.90, P-value < 9.0 x 107%) with
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Figure 4. The conditional regulation of KstR2 biclusters. The scatter plots show the correlation of expression for KstR2 versus the median correlation of
gene members of bicluster_181 under (A) growth on cholesterol (R = 0.98, P-value = 5.6 x 10°) and (B) growth in macrophage (R = 0.90, P-value < 2 x
10~16) and KstR2 versus gene members of bicluster_0152 under (C) growth on cholesterol (R = 0.97, P-value = 9.0 x 10~°) and (D) growth in macrophage
(R=0.91 and P-value < 2 x 10~19). Error bars show the standard deviation of bicluster gene expression. The number of data points in each plot equals
the number of transcriptome profiles in the environmental context shown in the plot.

corresponding changes in its putative target genes of bi-
cluster_152 and bicluster_181 in experiments that had inde-
pendently probed growth using cholesterol (36) and within
macrophages (Figure 4A-D) (45-49). Interestingly, the 183
regulatory mechanisms that act uniquely during host infec-
tion were significantly enriched (23 genes, BH corrected hy-
pergeometric P-value < 0.01) in genes essential for growth
on cholesterol (19) (Supplemental Data file S7) and specif-
ically those in biclusters regulated by KstR2 (11 genes, BH
corrected hypergeometric P-value < 0.01). This suggests the
importance of KstR2 in regulating factors involved in host—
pathogen interactions. It also emphasizes the value of our
model to predict regulatory interactions that occur in im-
portant contexts (i.e., pathogenesis) that would otherwise
be missed in standard laboratory experimentation.

All 10 genes for cholesterol uptake including the ABC
transporter Mce4 (50), were grouped together in biclus-
ter_360 (Figure 3E). Contrary to previous reports, there was
no evidence in the gene regulatory network that the Mce4
genes were regulated by KstR or KstR2 (51). None of these
genes had ChIP-Seq-mapped binding sites for either of the
two TFs, nor did the cis-regulatory motifs within biclus-

ter_360 align with KstR or KstR2 motifs. An in silico ap-
proach and a promoter pull-down assay also failed to iden-
tify any TFs of the Mce4 operon (52). Instead, the gene reg-
ulatory network model predicted that genes within biclus-
ter_360, including Mce4, were regulated by Rv3575c, a Lac
I family regulator. Remarkably, this regulator was discov-
ered to be essential for growth on cholesterol, providing an
independent validation of our model prediction (18).

The power of making an accurate prediction of
environment-specific regulation is underscored by the
fact that a very small number of experiments in the entire
compendium of gene expression profiles were performed
in cholesterol-rich conditions (9 out of 2325, 0.4%). Yet,
the network extended our understanding of the cholesterol
utilization regulatory network by revealing that cholesterol
uptake is regulated by a distinct sub-network. Most impor-
tantly, the gene regulatory network was able to tease apart
regulation of the three distinct components of cholesterol
utilization, i.e., cholesterol uptake, degradation of A/B
sterol rings and catabolism of C/D rings. The network even
made accurate predictions of known regulation of A/B
ring degradation by KstR and C/D ring degradation by
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BioTapestry network model, with additional environmental contexts, can be found at the MTB Network Portal, located at http://networks.systemsbiology.
net/mtb/.
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KstR2, and furthermore it provided context for regulation
of these pathways.

CONCLUSIONS

In this study, we compiled a large compendium of 2325
gene expression profiles from different studies to recon-
struct the transcriptional regulatory network for nearly all
of the genes in MTB. Our model reveals environmental
context-dependent co-regulation of up to 3922 genes (98%)
in various combinations and provides a multi-scalar pic-
ture of gene regulation in conditions and life cycles expe-
rienced by MTB within the host organism. While the sys-
tems biology approach can be readily extended to new data
types and even the host, it should be noted that in its cur-
rent form, the model does not capture all types of regu-
latory mechanisms, such as those mediated by epigenetic,
second messenger signaling (53,54) or post-transcriptional
mechanisms. But the foundation laid in the process of con-
structing this network model has paved the way for future
incorporation of new modeling techniques for overcom-
ing these limitations (55-58). Moreover, we expect that this
model will drive collaborations across the MTB commu-
nity, and establish an iterative cycle of hypothesis formu-
lation, experimental testing and model refinement. Specif-
ically, the network model can be used to formulate exper-
imentally testable hypotheses regarding regulation of spe-
cific genes in the MTB genome—this capability to priori-
tize experiments will be enormously useful given the chal-
lenges of working with this pathogen. This network can
also be used to make discoveries of novel functional asso-
ciations across genes of known, but previously unrelated,
functions and even genes of previously unassigned func-
tions. We demonstrated the mechanistic and predictive ac-
curacy of this network model by generating a TF-DNA
physical interaction map for 143 TFs in MTB, as well as
a compendium of transcriptome profiles from 206 strains,
each overexpressing a different TE. The network model ex-
tracted statistically significant and biologically meaningful
features from both of these genome-scale complex datasets,
to demonstrate unequivocally the power of this new re-
source for the MTB community. Using two subnetworks,
one for regulation of hypoxia and the second for regula-
tion of cholesterol utilization, we demonstrated how the
network can be used to gain insights into environment-
dependent regulation of specific genes, and pathways. To en-
able similar explorations of the new model, we have made
it accessible through a user-friendly web-portal that inte-
grates new and previously established resources for MTB
(http://networks.systemsbiology.net/mtb/).

The MTB Network Portal also contains an interactive
BioTapestry network viewer that nicely demonstrates the
regulation of specific genes in a selection of environmen-
tal conditions we investigated. The architecture of the Bio-
Tapestry network is based on the validated bicluster genes
and their regulatory influences (TFs and environmental).
The network is condensed to only contain genes with an-
notated functions that are grouped into broad categories of
‘cholesterol processes’, ‘fatty acid processes’, ‘growth’” and
‘growth of symbiont in host cell’. Due to the complexity of
transcriptional regulation, a single overview network is not
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sufficient and this visualization method allows for an ecasy
comparison between environmental contexts. By just com-
paring the regulatory interactions that are regulated during
wild-type growth to those that are regulated during growth
on cholesterol, it is possible to glean some interesting bi-
ological insights (Figure 5). In particular, we noticed that
only two TFs regulate genes in both conditions, those being
Rv3574/KstR and Rv1049. We discussed previously the reg-
ulatory activity of KstR under various conditions. However,
it is interesting that during growth on cholesterol, Rv1049
would transition from activating a gene associated with
cholesterol processes to activating genes involved in wild-
type growth. Interestingly, the Rv1049 activated genes dur-
ing growth on cholesterol are vapBC3 (Rv0549-Rv0550),
which encode a type II toxin-antitoxin (TA) system (59).
MTB possesses a large number of TA systems in its chro-
mosome, 79 in total, and vapBC3 was among 10 signif-
icantly up-regulated in persistent cells (60). It is thought
that in response to environmental cues, active toxins are ca-
pable of inhibiting DNA translation or degrading mRNA,
thus allowing MTB to enter a slow or non-replicating state
and establish latent infection (61). Moreover, a recent study
in Mycobacterium smegmatis showed that control of car-
bon (sugar) utilization was mediated by the only TA sys-
tem in M. smegmatis, VapBC (62). They demonstrated that
VapC is an RNase that targets specific mRNA transcripts
involved in carbon transport and metabolism, particularly
those involved in glycerol metabolism (62). This suggests
TA systems are capable of fine-tuning metabolic processes
in Mycobacteria at a posttranscriptional level. Therefore,
it is interesting to hypothesize that in response to growth
on cholesterol, Rv1049 up-regulates the transcription of
VapBC3, and that toxin VapC3 degrades mRNA transcripts
involved in the uptake and metabolism of carbon sources
present during wild-type growth, i.e., glycerol. The degra-
dation of glycerol/sugar uptake and metabolism transcripts
would prevent the accumulation of excess sugar phosphates
and allow the bacteria to transition to the machinery needed
for growth on cholesterol. In this way, it is possible that
VapBC3, and in turn Rv1049, control cholesterol utiliza-
tion in MTB and meet the demands of the various nutri-
ent sources available to MTB during infection in the host.
This is just one of many novel biological predictions that
can be made from our environment-specific transcriptional
regulatory network of MTB.
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