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Abstract

We have calculated the intrinsic dimensionality of visual object representations in anterior

inferotemporal (AIT) cortex, based on responses of a large sample of cells stimulated with

photographs of diverse objects. As dimensionality was dependent on data set size, we determined

asymptotic dimensionality as both the number of neurons and number of stimulus image

approached infinity. Our final dimensionality estimate was 93 (SD: ± 11), indicating that there is

basis set of approximately a hundred independent features that characterize the dimensions of

neural object space. We believe this is the first estimate of the dimensionality of neural visual

representations based on single-cell neurophysiological data. The dimensionality of AIT object

representations was much lower than the dimensionality of the stimuli. We suggest that there may

be a gradual reduction in the dimensionality of object representations in neural populations going

from retina to inferotemporal cortex, as receptive fields become increasingly complex.

Introduction

The nature of object representations within the visual system remains a mystery (see review

by Kourtzi & Connor, 2011). Underlying the difficulty of the problem is the large

dimensionality of the representation space, whose size is unknown. While it has long been

known that the full richness of color in the world can be encoded in primates by three

dimensions (red, blue, green), the question remains how many dimensions are required to

encode all aspects of visual objects in general, including shape, texture, and color. The goal

of this study is to provide a specific numerical estimate for the intrinsic dimensionality of

object representations in inferotemporal cortex. To our knowledge this is the first study to

measure the dimensionality of neural representations using single-cell neurophysiological

Corresponding author: Sidney R. Lehky Cognitive Brain Mapping Laboratory RIKEN Brain Science Institute Hirosawa 2-1, Wako-shi
Saitama 351-0198 Japan sidney@brain.riken.jp.

NIH Public Access
Author Manuscript
Neural Comput. Author manuscript; available in PMC 2015 April 01.

Published in final edited form as:
Neural Comput. 2014 October ; 26(10): 2135–2162. doi:10.1162/NECO_a_00648.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



recordings, though there has been previous work based on human psychophysics (Meytlis &

Sirovich, 2007; Sirovich & Meytlis, 2009) and fMRI (Haxby et al., 2011).

Intrinsic dimensionality is the number of independent parameters required to fully describe a

data set (Fukunaga, 1990; Lee & Verleysen, 2007). In this case the data are neural

population responses to object stimuli. We will not be interested in the number of

parameters required to represent one object stimulus, but rather the number of parameters

required to describe responses to all objects collectively in a large stimulus set.

Dimensionality is equivalent to the minimum neural population size needed to encode a

collection of objects, provided the response of each neuron is statistically independent from

all others. In reality, of course, neural responses are not independent but show correlations

and other, higher order, statistical dependencies. Therefore actual neural populations for

encoding objects will undoubtedly be much larger than this minimum size.

The dimensionality of population responses and the sparseness of population responses are

unrelated concepts. Population sparseness is the fraction of neurons stimulated by a single

object. Sparseness for this data set was presented previously (Lehky, Kiani, Esteky, &

Tanaka, 2011). Population dimensionality, on the other hand, is the minimum size of the

population required to encode all objects.

Anterior inferotemporal cortex is an appropriate region to measure the intrinsic

dimensionality of neural objects representations because it is a high level visual area

believed to be important for object recognition (Logothetis & Sheinberg, 1996; Tanaka,

1996). It forms the highest predominantly visual area along the ventral visual pathway, after

which projections run forward to multimodal areas such as perirhinal cortex and prefrontal

cortex. Visual stimuli required to stimulate inferotemporal neurons are more complex than

in any of the earlier visual areas.

Unraveling the neural basis of object recognition has had less success than some other visual

modalities such as color or motion. This is largely due to the high dimensionality of object

representations. Color has three dimensions, at least in the early visual stages, and 2D

motion also has three dimensions (speed, and the x and y motion direction components). In

those low dimensional systems it is fairly obvious which stimuli to apply to neurons to

characterize the system. In a high dimensional system such as object representation it is not

clear which stimuli to use. This problem has led to two general approaches in experimental

design when dealing with object recognition. One is to stimulate neurons with as many

random object images as possible and use that as a starting point to search for regularities in

the responses (e.g., Roozbeh Kiani, Esteky, Mirpour, & Tanaka, 2007). Another is to select

some image parameter for close study on the basis of intuition without principled knowledge

of the neural object space (e.g., surface curvature, Yamane, Carlson, Bowman, Wang, &

Connor, 2008). In this difficult situation, quantitatively characterizing the space of object

representations would be of benefit. Measuring the dimensionality of the space provides an

early step towards that goal.
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Methods

A. Recording

Extracellular single cell recordings were collected from two macaque monkeys (M. mulatta).

Recordings were conducted in three regions of anterior inferotemporal cortex as

anatomically defined by Saleem and Tanaka (1996): superior temporal sulcus (STS),

anterior dorsal TE (TEad), and anterior ventral TE (TEav). The STS region ran along the

lower bank of the superior temporal sulcus. TEad extended across the lateral convexity of

inferotemporal cortex from the lip of STS to the lateral lip of the anterior medial temporal

sulcus (AMTS). TEav extended across the entire AMTS including its lateral bank, and

continued along the lateral half of the inferior temporal gyrus. Penetration positions were

evenly distributed over anterior 15-20 mm (monkey 1, right side) and anterior 13-20 mm

(monkey 2, left side). All cells that remained reliably isolated throughout the stimulus

presentation period were included in the data set, regardless of selectivity. Because we did

not find major differences in the statistical properties of the three areas (Lehky et al., 2011),

all these data were pooled for the dimensionality calculations below. Further details of the

recording methods and other aspects of the procedures have been previously described (R.

Kiani, Esteky, & Tanaka, 2005; Roozbeh Kiani et al., 2007; Lehky et al., 2011).

Recording procedures were in accord with NIH guidelines as well as those of the Iranian

Physiological Society.

B. Stimuli and task

The stimulus set consisted of color photographs of natural and artificial objects (125×125

pixels), isolated on a gray background. Object sizes were approximately 7° across at their

largest dimension. Stimulus images were drawn from a wide variety of categories, including

human, monkey and non-primate faces, human and animal bodies, reptiles, fishes, fruits,

vegetables, trees and various kinds of artifacts (Figure 1 shows examples). Image

presentations were repeated a median of ten times to each neuron. We used color images

because we were interested in the dimensionality of object representations in general, and

not just object shape. We expect using colored images would only slightly increase

dimensionality over grayscale images, as it doesn't appear many dimensions are required to

represent color (perhaps just three).

Each neuron was presented with 1271 images on average. However, not all those images

were the same for every neuron. Therefore we only used data from the overlapping set of

806 images that were presented to all 674 neurons. This produced a response matrix with

806 rows and 674 columns, leading to 806×674=543,244 elements in the matrix.

The task of the monkey was to maintain fixation within 2° of a 0.5° fixation spot presented

at the center of the screen. Eye position was monitored by an infrared eye-tracker.

At the start of each trial the monkey fixated the central spot for 300 ms. After that, a series

of images was presented using rapid serial visual presentation (RSVP) (Földiák, Xiao,

Keysers, Edwards, & Perrett, 2004; Keysers, Xiao, Földiák, & Perrett, 2001). Each image

appeared for 105 ms followed immediately by the next image without gap, with images in

Lehky et al. Page 3

Neural Comput. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



pseudorandom order. A trial lasted for 60 images or until the monkey broke fixation. The

monkey received a juice reward every 1.5-2.0 seconds while maintaining fixation.

C. Spike train analysis

We measured neural activity for each stimulus presentation during a 140-ms window, offset

by the earliest significant response within the inferotemporal population (70 ms) (Tamura &

Tanaka, 2001). Dimensionality calculations described below were based on the mean

response to each image over that time period. Responses to the last two stimuli in each

image series were not included because the data analysis window extended beyond the end

of the trial.

Using the RSVP procedure depended on sparseness in the responses of inferotemporal

cortex, in which it was unlikely that two successive stimuli would both evoke a strong

response. To minimize crosstalk of neural activity measurements in cases where the

previous stimulus did have a strong response, we excluded presentations with large activity

(exceeding the spontaneous activity by 2 × SD) within the first 50 ms of the latency period,

immediately following stimulus onset. This resulted in exclusion of 15% of presentations.

Spontaneous activity was measured in a 200 ms window at the start of each trial, preceding

the series of stimulus presentations.

D. Dimensionality calculations

For this analysis we started with the population response to each image. Because there were

674 neurons in the data set, each image was represented by a 674-element population

response vector. The population response to each image could therefore be thought of as a

point in a 674-dimensional space. As there were 804 images, we had 804 points in a 674-

dimensional space.

The presumption behind estimating the intrinsic dimensionality of this 674-dimensional

space was that there was some degree of redundancy in the responses of the 674 neurons, so

that in fact the number of independent dimensions was actually smaller than 674. In that

case the 804 points would be confined to a lower dimensional subspace (or manifold) within

the original 674-dimensional space. A simple example of this is shown in Figure 2, where

the points are nominally in a three-dimensional space, but in reality are confined to a two-

dimensional surface (2D manifold) within that 3D space.

Two unrelated methods were used to calculate intrinsic dimensionality of neural object

representations. One was a local method and the other a global method. As described by

Camastra (2003), a local method uses only information in the neighborhood of each data

point, while a global method first pools the information from all data points before doing

any calculations. The local method we used was the Grassberger–Procaccia algorithm

(Grassberger & Procaccia, 1983), while the global method was based on eigenvalues from a

principal components analysis (PCA) of the data. The two methods were first used to check

the consistency of their dimensionality estimates, and then after that a more detailed analysis

was performed using the PCA eigenvalue method.
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i. Grassberger-Procaccia algorithm

The Grassberger-Procaccia algorithm finds what is called the correlation dimension of data.

Although best known for calculating fractal dimensions, it can be used for estimates of

intrinsic dimensionality in general (Camastra & Vinciarelli, 2002; Lee & Verleysen, 2007;

Martinez, Martinez, & Solka, 2012).

Implementing the Grassberger-Procaccia algorithm, a hypersphere was placed around each

data point. In our data, that would be a 674-dimensional sphere around each of the 804 data

points. Then the fraction of other data points falling inside the hyperspheres was counted as

a function of hypersphere radius. The assumption under the algorithm is that the fraction of

data points inside the hyperspheres is proportional to rd for small values of r, where r is the

radius of the hyperspheres and d is the intrinsic dimensionality of the data.

In terms of equations (using the notation of Martinez et al. (2012)):

(1)

where

(2)

In Eq. (1), the indices i and j refer to images in the data set, C(r) is the fraction of data points

falling inside the hyperspheres as a function of hypersphere radius r. C(r) is therefore

bounded in the range [0.0 1.0]. The term c(r) is a counter for the number of data points

falling inside each hypersphere. The total number of data points in the data set is given by n

(804 in this case), so that the total number of distances between all data points is n(n − 1)/2.

In Eq. (2), x is an individual data point (corresponding to the neural population response

vector to one image). The equation increments the count cij(r) if the Euclidean distance

between two data points is less than r in the 674-dimensional space defined by the 674

neurons in the dataset.

As C(r) is proportional to rd for small values of r, then:

(3)

The intrinsic dimensionality d of the data can therefore be estimated by plotting the

log(C(r)) vs. log(r) curve and determining the slope of the curve when values of r are small.

In our implementation of the Grassberger-Procaccia algorithm we did a linear least squares

regression over points in the leftmost portion of the log(C(r)) vs. log(r) curve (small values

of r) and used the slope of that line as our estimate of intrinsic dimensionality. The region of

the curve included in the linear regression calculations was selected as follows. Because the

amount of data was finite, hyperspheres with extremely small radii had very few data points

falling within them and small-sample noise therefore made it impossible to do a meaningful
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linear regression under that condition. We therefore excluded the portion of the curve where

the total number of points included in the hyperspheres was less than 16. That formed the

lower bound in the region used to calculate the linear regression. The upper bound was set at

2.2×10−3. That value was based on visual inspection of the curve, as a reasonable estimate

of where the asymptotic region of the left portion of the curve ended.

ii. Principal components analysis algorithm

The basis for using PCA to estimate intrinsic dimensionality lies in observations such as

those of Farmer (1971) that for noisy data, large eigenvalues from the PCA analysis

correspond to “signal” and small eigenvalues to “noise”. The dimensionality of the data then

becomes in principle just a matter of counting the number of large eigenvalues. The practical

problem is finding a formal criterion to define the eigenvalue categories “large” and “small”.

The general starting point for this kind of analysis is to plot log eigenvalues as a function of

their rank order, starting with the largest eigenvalue to the left. This forms a rapidly

decreasing curve even when plotted logarithmically. Many algorithms then differentiate

“large” from “small” eigenvalues by trying to find some discontinuity in that curve, either in

slope or in the size of the difference between successive eigenvalues.

Here we introduce a different approach in which PCA eigenvalues for the data are compared

with eigenvalues produced by a randomly shuffled version of the data. The assumption is

that the shuffling destroys whatever signal was present in the data.

To implement this, two curves were plotted. One curve was for eigenvalues from the

original data and the other from the shuffled data. Each set of eigenvalues was first

normalized so that it summed to 1. Total number of eigenvalues in each case was 674. That

was equal the number of elements in the population response vector for each image.

Original eigenvalues larger than the shuffled eigenvalues were then categorized as “large”,

corresponding to “signal” in the data. The rest were “small”, corresponding to “noise”.

Counting the number of “large” eigenvalues gave the intrinsic dimensionality of the data.

Graphically, the point at which the original and shuffled eigenvalue curves crossed indicated

intrinsic dimensionality. For a given set of eigenvalues only one shuffling was used, as there

was little change in the intrinsic dimensionality estimate for repeated reshufflings (an

occasional change in the value by one).

In this procedure, we shuffled the data in the 806×674 response matrix by assigning each

neural response to a randomly selected stimulus image. In practice that was done by

unfolding the 806×674 matrix into a 543,244×1 matrix, randomly permuting the elements of

that 1D matrix, and then reshaping it back to an 806×674 matrix.

This method, comparing original and shuffled data, is a variant of the parallel analysis

technique introduced by Horn (1965). A variety of procedures in this genre are reviewed by

Peres-Neto et al. (2005).
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iii. Effects of neural correlation

Population responses to images were synthesized from neurons recorded individually with

single electrodes, rather than in parallel with multielectrodes. Because of that, we would

expect actual neural correlations in our sample population to have been higher than what we

measured. To investigate the effect this might have on our dimensionality estimates, we

mathematically increased correlations in the data.

To do that, we defined a 674×674 correlation matrix C for the 674 neurons in our sample.

The correlation values in the matrix were all set to a constant value c, except for self-

correlations on the matrix diagonal that were set to 1.0. The correlation matrix then

underwent a Cholesky decomposition to generate a matrix U according to the formula UTU

= C. Finally, for each population response vector ri in our data, corresponding to the ith

image in the stimulus set, a new response vector r′i with higher correlations between

neurons was generated by r′i = riU.

This procedure is designed to generate random variables with correlation c starting from

uncorrelated random variables. However, our raw data was not uncorrelated but already had

non-zero correlations between neurons. Because of that, the value c set in the correlation

matrix C we defined did not accurately reflect the final correlations in our transformed data.

Therefore we adjusted the value of c empirically to produce the level of neural correlation

we desired.

iv. Effects of data set size

Intrinsic dimensionality depends on data set size. Dimensionality increases as either the

number of stimulus images or the number of neurons increases. As more images are added,

new features are included that weren't present in any previous images. As new neurons are

added, new feature selectivities are included that weren't present in any previous neurons.

Assuming that the number of independent feature dimensions is not indefinitely large (see

discussion), at some point dimensionality reaches an asymptotic limit as the number of

stimulus images approach infinity and the number of neurons approach infinity. The

asymptotic intrinsic dimensionality of neural object representations is the fundamental

measure we are interested in, not dimensionality calculated on the basis of an arbitrary,

limited sampling of images and neurons in the available data set.

To estimate asymptotic dimensionality, we first constructed curves that plotted

dimensionality as a function of both the number of stimulus images and the number of

neurons. Then an asymptotic function (see next section) was fit to these curves, allowing us

to estimate dimensionality as data set size approached infinity. The curves themselves were

constructed by taking various-sized subsamples of the data (various numbers of images,

various numbers of neurons) from the full data set and calculating dimensionality for each

subsample size.

We estimated asymptotic dimensionality using only the global method (PCA eigenvalues)

and not the local method (Grassberger-Procaccia), as it was judged to be more robust when

using small subsamples of the data as required by the procedure. The PCA method requiring

determination of the point where two curves crossed. On the other hand the Grassberger-
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Procaccia calculated the asymptotic slope of a curve, which was more sensitive to

uncertainty at small sample sizes and also required a decision about what points to include in

the “asymptotic” region of the curve.

Bootstrap resampling was used to subsample data. For example, if we wanted to estimate

dimensionality for 300 neurons presented with 200 images, we took a random sample of 300

neurons from the data and a random sample of 200 stimulus images and calculated

dimensionality based on that. This subsampling was repeated 20,000 times, each time with a

different random set of 300 neurons and 200 images, and the dimensionality estimates

averaged.

Dimensionality was calculated over a two-dimensional grid using different neuron sample

sizes and different image sample sizes. The dimensionality could thus be plotted as a three-

dimensional surface, as a function of the number of neurons and number of images. Both the

number of neurons and number of images were sampled at increments of 20, so image

sample sizes were [20, 40, 60, ..., 800] and neuron sample sizes were [20, 40, 60, ..., 660].

Including points on the axes (zero images or zero neurons), the total number of points on the

dimensionality surface was 1394. At 20,000 replications for each point on the grid,

dimensionality calculations were performed over 20 million times.

Finding the asymptotic dimensionality as both neurons → ∞ and images → ∞ was a two-

step process in which a one-dimensional asymptotic function was first fit along one

parameter (either number of neurons or number of images), and then fit along the other

parameter. The curve fitting could be done in either order, along the neuron parameter first

and image parameter second [Neurons → Images], or the opposite way [Images →

Neurons]. Reversing the order of curve fitting produced two independent estimates of

asymptotic dimensionality for any given asymptotic function. These two estimates ideally

should both be identical. We repeated all curve fitting with two completely different

asymptotic functions to check reproducibility. Therefore, using two asymptotic functions

each fitted to the two parameters in opposite orders, we produced four estimates of

asymptotic dimensionality.

Below we will describe the procedure for the [Neurons → Images] curve fitting order. The

[Images → Neurons] procedure was entirely analogous. For the [Neurons → Images]

process, we first took a set of cross sections of the dimensionality surface along the number-

of-neurons axis. This produced a family of curves showing dimensionality as a function of

neurons, each curve corresponding to a different number of images. There was one

dimensionality vs. neurons curve when number of images = 20, another curve when number

of images = 40, and so forth, all the way up to number of images = 800, for a total of 40

curves. Each of these curves was then fit with an asymptotic function. When this curve

fitting was done, we had 40 estimates of dimensionality, each for different numbers of

images, all under the condition that the number of neurons approached infinity (plus a

41ststpoint for the trivial condition of zero dimensionality for the representation of zero

stimulus images).
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Next we moved to fitting along the second parameter, number of images. The 41 estimates

derived above were plotted to form a single curve (dimensionality vs. number of images).

This curve was fit with the same asymptotic function as before. The value of the asymptote

for this curve gave the final answer, the asymptotic intrinsic dimensionality of the data for

the neural representation of objects, as both the number of images and the number of

neurons both approached infinity.

For the [Images → Neurons] process, we took cross sections of the dimensionality surface

along the number-of-images axis rather than number-of-neurons axis, producing a set of

curves showing dimensionality as a function of number of images. Everything proceeded

analogously from there. As all the curve fitting was performed on an entirely different set of

curves, this provided a second, independent estimate of asymptotic dimensionality.

The asymptotic functions we used had 6 parameters. Because a different set of parameters

was used to fit each cross section of the dimensionality surface, the total number of

parameters was six times the number of cross sections along the first variable (neurons or

images) plus six more parameters to fit along the second variable. Therefore, for the

[Neurons → Images] order, there were a total of (41×6)+6=252 parameters to fit the surface,

and in the [Images → Neurons] order there were (34×6)+6=210 parameters. These are both

much lower than the 1394 data points defining the surface.

The reason we divided the fitting of the dimensionality surface into a series of 1D fittings

instead of a single 2D fitting is because of the general unwieldiness of dealing with a large

2D equation with hundreds of parameters, including defining a form of the equation capable

of generating good fits as well as searching for optimal parameter values within such a large

parameter space. On the other hand, approximating the surface with a simple 2D equation

having few parameters would have led to relatively large fitting errors rendering

extrapolations unreliable.

v. Curve fitting procedure

Curve fitting was replicated with two independent asymptotic functions. The first was

adapted from Nilson (2002):

(4)

where y was the dimensionality and x was the number of neurons or images in the data set.

Equation (4) reduces to the widely used asymptotic function y = 1− e−x when all six

parameters [a, b, c, d, e, f] are set to one. The second asymptotic equation was:

(5)

This reduces to tanh(x + log(x +1)) when all parameters are set to one. In both cases the

parameter we were primarily interested in estimating was a, which defined the asymptotic

values of the curves generated by these equations. Nonlinear curve fitting was done with the

‘lsqcurvefit’ command in the Matlab Optimization Toolbox, using the ‘fmincon’ algorithm
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with the interior point option set. Both the ‘MaxFunEvals’ and ‘TolFun’ options were set to

104, and both the ‘TolFun’ and ’TolX’ options were set to 10−8.

All nonlinear curve-fitting algorithms require an initial guess of the parameters. Starting

from that initialization, the algorithm iteratively adjusts parameter values to reduce error

between the fitted curve and the data, until a local error minimum is reached. There is no

guarantee that this local error minimum is the global error minimum. Therefore, “best-fit”

parameters produced by the curve-fitting algorithm, including estimated values of

asymptotes, frequently depend on the initial parameter setting.

We started the fit of each curve by trial and error setting of initial parameters until a

reasonable fit to the data was obtained as determined by visual inspection of the plots. This

was then refined by manually adjusting initial conditions to produce the smallest calculated

fit error. In the final stage of fitting, we followed an automated iterative procedure in which

the output parameter estimates from the fitting algorithm were fed back as initialization

parameters for the next run of the algorithm. This caused a drop in fitting error with each

iteration (measured as RMS error), as the input and output values of the parameters

gradually converged. The iterative running of the fitting algorithm was continued until the

change in the asymptotic dimensionality estimate produced by 10,000 iterations was less

than 0.01.

vi. Dimensionality of stimulus images

In addition to computing the asymptotic dimensionality of the neural data, we determined

the asymptotic dimensionality of the physical stimulus images producing the data, following

an identical procedure. In this case, we looked at the dimensionality of the physical image

set as the number of images approached infinity. To reduce the computational load, these

calculations were done on 60×60 pixel versions of the images. That would have the effect of

slightly reduced dimensionality estimates relative to the 125x125 pixel versions actually

used as stimuli in the experiments.

For these computations, the 60×60×3 matrix defining each color image was unfolded to a

1×10800 one-dimensional matrix. The 1302 images we had available were then pooled to

form a 1302×10800 image matrix. PCA eigenvalues from the original and shuffled versions

of this image matrix were compared to form the dimensionality estimate of the image set.

Random subsampling of the image set was used to generate a dimensionality vs. number of

images curve, with 1000 bootstrap resamplings for each point. Finally the two asymptotic

functions (Eqs. (4) and (5)) were fit to this curve, producing two estimates of the asymptotic

intrinsic dimensionality of the physical stimulus set.

Results

Using the full data set of 674 neurons, each presented with 804 images, the result of the

local (Grassberger-Procaccia) method is shown in Figure 3. The estimate of intrinsic

dimensionality of inferotemporal responses to object stimuli is given by the slope of the C(r)

vs. r curve (for small r) in the figure. The value of the dimensionality produced by this

analysis was 40.
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The result of the global method (PCA eigenvalues) analysis is shown in Figure 4. Plotted are

two curves, the rank-ordered eigenvalues for the original data (based on the 674×806 neural

response matrix), and the rank-ordered eigenvalues for randomly shuffled data. The point at

which the two curves cross gives the dimensionality estimate for the data. The value of the

dimensionality for this analysis was 52 (although occasionally a particular shuffling of the

data produced a value of 53). Thus two unrelated techniques for estimated dimensionality, a

local technique and a global technique, produced roughly similar values.

Dimensionality values were not affected in any way by subtracting spontaneous activity

from each neuron prior to doing the calculations, or by any other subtractive (additive)

constant. On the other hand, transforms of the data involving multiplicative constants did

affect dimensionality. For example, normalizing all response vectors to have unit length

increased the Grassberger-Procaccia dimensionality estimate from 40 to 53, and the PCA

dimensionality estimate from 52 to 63. However, in the absence of compelling evidence for

such normalization in vivo, we proceeded with data analysis using unnormalized response

vectors.

Examination of these PCA eigenvalues can tell us how much of the response to object

stimuli in inferotemporal cortex is signal and how much is noise. When eigenvalues are

normalized to sum up to 1.0, the value of each eigenvalue indicates the fraction of variance

in the data that the eigenvalue accounts for. Thus summing the 52 largest eigenvalues in

data, corresponding to the dimensionality of the data, tells us the fraction of the neural

response corresponding to signal. By this criterion, 59% of inferotemporal response was

signal and 41% was noise. Of course, the category “noise” includes not only truly random

effects but also all aspects of the signal not relevant to the present analysis. The first two

principal components accounted for 17% of the variance, similar to 15% in the

inferotemporal object data of Baldassi et al. (2013).

Effect of neural correlation

Neural populations were synthesized from neurons recorded individually with a single

electrode, rather than in parallel using multielectrodes. Therefore we would expect that in

reality correlations amongst neurons would have been higher than what we measured, due to

noise correlation. We examined the effect that this would have on dimensionality estimates

by mathematically transforming the data to increase correlations, as described in the

Methods section.

The correlation matrix for the 674 neurons in our data set is shown in Figure 5a, with

correlation shown using a color code. Within a 674×674 matrix, it shows the correlation

coefficient of the responses of each neuron with every other neuron. The mean of the

absolute value of correlations was 0.063 (removing all self-correlations of 1.0 from the

calculation). The Grassberger-Procaccia estimate of dimensionality for this data, as

mentioned before, is 40 (Figure 3), and the PCA estimate is 52 (Figure 4). A second

correlation matrix is shown in Figure 5b, in which the mean absolute correlation was

doubled to 0.126. With this higher correlation data, the Grassberger-Procaccia

dimensionality estimate changed from 40 to 41. The PCA estimate changed from 52 to 48.
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Noise correlations between simultaneously recorded neurons have been reported to be 0.2

when the neurons were close, within several hundred micrometers of each other, declining

as neural separation increased (Kaliukhovich & Vogels, 2012). Our neurons were widely

separated, spread over more than a centimeter, so correlations would not have been high,

almost certainly less than the correlation of 0.126 we examined. It therefore appears that the

results of this study would not be substantially changed for modest increases in neural noise

correlations provided by multielectrode recording techniques.

Effect of data set size

Dimensionality estimates depended on the size of the data set. Dimensionality increased as a

function of the number of stimulus images (Figure 6a) and the number of neurons (Figure

6b), both figures produced by analyzing subsampled data using the PCA eigenvalue method.

Varying both parameters simultaneously produced the dimensionality surface in Figure 6c.

Therefore, the dimensionality values computed above are valid only for the limited sample

of stimulus images and neurons in our data set. What is required is an estimate of asymptotic

dimensionality of neural object representations as the size of the data set (both images and

neurons) approached infinity.

In our two-step procedure for estimating asymptotic dimensionality, the two parameters

‘number-of-neurons’ and ‘number-of-images’ could be fit successively in either order, either

[Neurons → Images] or [Images → Neurons]. Below, we show the estimation procedure in

detail for [Neurons → Images], using Eq. (4) as the asymptotic function.

The first step in estimating the asymptotic dimensionality using the [Neurons → Images]

order is illustrated in Figure 7. Shown is a series of curves plotting dimensionality as a

function of the number of neurons, each curve for a different number of stimulus images.

These curves are cross sections taken from the dimensionality surface in Figure 6c.

Although Figure 7 shows curves at increments of 200 images, in reality we had curves at

increments of 20 images, too many to show in an uncrowded manner.

Each curve in Figure 7 was individually fitted with an asymptotic function (Eq. (4)). Figure

7a gives a close-up perspective of the fits. Figure 7b gives a broader perspective showing the

same curves as they approach their asymptotic values. The green dots in Figure 7b indicate

the actual asymptote for each curve.

The next step was to take all the asymptotes in Figure 7b (the green dots) and plot them as a

function of number of images (Figure 8). Thus we have dimensionality as a function of

number of images, for the condition that the number of neurons approaches infinity.

At this point the asymptotic function was fit to the set of points in Figure 8a, producing the

line shown in the figure. The asymptote for that line is show in Figure 8b. That is the

asymptotic dimensionality as both number of images and number of neurons approach

infinity. The final value of the asymptotic intrinsic dimensionality provided by this analysis

therefore was dim=87.
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Another estimate of asymptotic dimensionality was found by reversing the order in which

the two parameters were fit, this time following the [Images → Neurons] order. To do this,

we started with a set of dimensionality curves plotted as a function of number of images

rather than as a function of the number of neurons (cross sections of the dimensionality

surface in Figure 6c taken parallel to the number-of-images axis). From there the procedure

was completely analogous to that followed in Figure 7 and 8. Using Eq. (4) again as the

asymptotic function, the estimated asymptotic in this case was dim=105.

Two more estimates of asymptotic dimensionality were found using Eq. (5) as the

asymptotic function rather than Eq. (4), with both the [Neurons → Images] and [Images →

Neurons] order of fit. These estimates were dim=80 and dim=97 respectively. The four

estimates of asymptotic dimensionality are summarized in Table 1, providing a mean

estimate of dim=93 (SD±11).

Attempts to apply this procedure to subsets of the data, such as to each monkey individually

or to different classes of object stimuli, resulted in asymptote estimates that varied

erratically within a single series of curves (such as those in Figure 7), indicating that the

amount of data was too small.

Dimensionality of stimulus images

In addition to estimating the dimensionality of the neural responses, we followed an

analogous procedure to estimate the dimensionality of the physical stimulus images. If each

pixel in the images were statistically independent, then the dimensionality of the images

would be equal to the number of pixels times three (for the three color channels), which for

our calculations would be 60×60×3 = 10,800. However, images have a lot of structure such

that nearby pixels tend to be correlated, producing a much lower dimensionality than if each

point in the image were independent. Figure 9 shows dimensionality plotted as a function of

the number of images, using Eq. (4) as the asymptotic function. This produced a

dimensionality estimate of 441. Using Eq. (5) as the asymptotic function produced a second

dimensionality estimate of 572, with the average of the two estimates being 507. This

estimate will depend on the resolution of the images in pixels, with greater dimensionality

with more pixels. As the actual stimuli were 125×125 pixel images rather than 60×60, the

dimensionality of the stimuli would be somewhat greater than given here. In any case, the

important point is that the dimensionality of the object stimuli was clearly much larger than

the dimensionality of the neural representation of the stimuli.

Discussion

This is the first estimate of the dimensionality of object representations in the primate visual

system based on neurophysiological data. Two independent methods for estimating intrinsic

dimensionality of neural object representations in inferotemporal cortex produced similar

values. Estimates were 40 using a local method (Grassberger-Procaccia) and 52 using a

global method (PCA eigenvalues). This consistency reinforces confidence that these

methods are producing reasonable estimates of dimensionality. However, we found that

dimensionality depended on the size of the data set, increasing as the amount of data

increased. As more data was accumulated, either as the number of neurons or the number of
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images, a richer sampling of the world was created requiring a greater number of

independent parameters, or dimensions, to describe. Once data set size was taken into

account, the estimate of intrinsic dimensionality of object representations asymptoted at

around one hundred.

For some, a hundred dimensions may intuitively not seem like a lot to provide a reasonable

representation for every object or scene a creature is likely to encounter. However, once one

recalls that merely three dimensions generate all the richness of colors in the world, then

perhaps 100 dimensions doesn't seem so small to represent shape and texture as well.

Previous studies of the dimensionality of object representations have not considered the

data-size factor. Estimates by Sirovitch and Meytlis (2009) of “less than 70” and by Haxby

et al. (2011) of 35 are similar to our findings without taking sample size into account.

However, when we extrapolated the data to larger sample sizes we found a larger measure of

dimensionality.

The major limitation of this analysis is the requirement to extrapolate far beyond the

available data. That is an issue that must ultimately be dealt with by collecting data on far

larger numbers of neurons and stimulus images. An assumption of these analyses is that

intrinsic dimensionalities asymptote to a finite value as sample size increases, both in terms

of number of stimulus images and number of neurons. The samples we have are in fact too

small and noisy to distinguish, purely on mathematical grounds, between a dimensionality

function that asymptotes and one that increases without limit as the sample size goes to

infinity. Given all this, the use of asymptotic functions to fit the data bears some

examination.

Looking first at number of stimuli, an argument can be made why the dimensionality of

inferotemporal responses might asymptote to a finite limit as the number of images goes to

infinity. Photoreceptors in the retina are finite in number and noisy, leading to acuity limits

(Westheimer, 1990). Having a finite number of spatial arrangements that can be reliably

distinguished leads to a finite limit on the dimensionality of the retinal representation, as the

number of stimulus images increases. The potential dimensionality in the retina is further

constrained by the very high redundancy of retinal representations (Puchalla, Schneidman,

Harris, & Berry, 2005). A finite dimensionality of population representations at the input

stage would be inherited by subsequent stages, including inferotemporal cortex. We expect

that as one moves up the visual hierarchy dimensionality will either remain the same or

decrease, but never increase, so that finite-dimensionality at the input is retained at all levels.

Neural processing rearranges the organization of response manifolds within a representation

space (DiCarlo, Zoccolan, & Rust, 2012), but does not create new dimensions for that space.

If the stimulus inputs to AIT are finite-dimensional (where the immediate stimulus inputs

would actually be signals from lower levels of the visual pathways), then responses of AIT

would also be finite-dimensional, less than or equal to the dimensionality of its inputs.

Given that situation, as the number of neurons in the AIT representation increases, the

resulting dimensionality cannot exceed the limit imposed by the finite-dimensional input. In
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other words, dimensionality asymptotes as the number of neurons increases because the

neurons run out of new stimulus dimensions to represent.

In looking at asymptotic dimensionalities, one might question the real-world significance of

the concept of having an infinite amount of data. However, examining Figure 7 we see that

the curve approaches its asymptote after just a couple of thousand neurons. For all practical

purposes, “as the number of neurons approaches infinity” is well approximated by just a few

thousand neurons, which is quite modest. Similarly, in Figure 8 we see that the curve

approaches its asymptote after several tens of thousands of images, which is well within the

experience of any individual. So, the dimensionality of object representations in the brain is

likely to be close to the asymptotic limit we estimated, and not constrained to be far below

that limit by the numbers of neurons and images that actually exist.

The intrinsic dimensionality computed here indicates that there is a basis set of

approximately a hundred independent features that characterize the dimensions of neural

object space. In other words, the theoretical minimum population size required to represent

objects is about a hundred neurons. Clearly real population sizes are much larger than that,

indicating a large degree of redundancy in the representation, possibly necessitated by noise,

response correlation, and potential loss of neurons over the lifetime of the organism. Most

likely the high degree of redundancy observed in retinal ganglion cells (Puchalla et al.,

2005) is a general feature of visual representations, including in inferotemporal cortex.

The most obvious way to achieve redundancy is to make multiple copies of the same small

basis set. However, we know from recordings that populations of inferotemporal neurons do

not have a small set of feature selectivities that are encountered over and over again. Rather,

inferotemporal neurons seem to have a bewilderingly large and varied set of feature

selectivities. A previous statistical analysis of these same data (Lehky et al., 2011) indicated

that there are an indefinitely large number of neurons each with different receptive field

tunings for objects.

Having a limited number of independent, canonical features in the neural representation and

at the same time having an indefinitely large number of different neural tunings for objects

can be reconciled if neural feature selectivities in different neurons are not entirely

independent. The object selectivity of each neuron must pool more than one feature from the

canonical set, with a vastly large number of such combinations possible. For example, if

each cell combined selectivity to five random feature dimensions out of 100 possibilities,

that would produce approximately 9 billion different neural response characteristics to

object stimuli. Individual face cells in macaque monkeys have been reported to combine

selectivity to several feature dimensions (Freiwald, Tsao, & Livingstone, 2009), and we are

suggesting such may be true in general for all neurons involved in object representations.

A technical limitation in the mathematical methods in the analyses was that they were

fundamentally linear, and thus were unsuitable for extracting intrinsic dimensionality if the

data points fell along a nonlinear manifold. Such nonlinear manifolds would have

characteristics of being highly folded, twisted or curved. If a nonlinear manifold described

the data better than a linear one, use of linear analysis methods would bias the results
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towards reporting a larger dimensionality than actually exists. For example, if the points fell

on a 2D sheet that was highly folded so as to fill up 3D space (the prototypical example of

this in the dimensionality reduction literature being the Swiss roll curve), our methods

would not pick up the complex internal structure of that folded sheet, and would incorrectly

report the intrinsic dimensionality as 3 rather than 2. It is possible, therefore, that when the

PCA eigenvalue analysis estimated an intrinsic dimensionality of 93, it was really, for

example, an 82-dimensional manifold folded up in a complex way so as to fill up a 93

dimensional space. Our methods would not discover that.

There are newer algorithms for dealing with such nonlinear manifolds, such as isometric

feature mapping (ISOMAP) (Tenenbaum, de Silva, & Langford, 2000) and locally linear

embedding (LLE) (Roweis & Saul, 2000), among others (see review by van der Maaten et

al. (2009)). However, these algorithms have primarily been tested with artificial data sets

having intrinsic dimensionalities in the range 2-4. As a practical matter it is doubtful how

effective they would be when applied to an object space having a dimensionality on the

order of a hundred. For these algorithms to operate, they would need to have the nonlinear

manifold densely sampled with data points in order to resolve its fine internal structure. In a

high dimensional space such dense sampling would require an impractically large amount of

data. We therefore leave the issue of high-dimensional nonlinear manifolds with respect to

the neural representations of objects as a future research problem. However, we believe that

the potential overestimation of the dimensionality with our linear techniques would be minor

and would not critically alter our conclusions.

The data here covered a wide variety of different object categories. Possibly, restricting the

data to a single category, such as faces, would have produced a different estimate of intrinsic

dimensionality. As different object categories cluster in different regions of object space

(Roozbeh Kiani et al., 2007; Kriegeskorte et al., 2008), it is possible that those category

clusters are occurring within lower-dimensional subspaces of the object space as a whole. In

that case, individual object categories may have lower intrinsic dimensionalities than

reported here. In this study we did not examine the dimensionalities of individual object

categories because the number of examples we had in each category was too small for the

methods we are using.

Different visual areas may have different intrinsic dimensionalities for stimulus

representations. We saw that inferotemporal responses had a much lower dimensionality

than the stimulus images. We suggest here that a reduction in dimensionality of population

representations occurs gradually as one ascends the hierarchy of visually responsive regions

in the ventral stream. Response patterns in the retina, most closely resembling the high-

dimensional stimulus images, would have the highest dimensionality. Inferotemporal

responses, with more abstract representations involving a small basis set of relatively

complex features, would have the lowest dimensionality.

Visual shape selectivity occurs not only along the ventral pathway but also within parietal

cortex along the dorsal pathway (Lehky & Sereno, 2007; Murata, Gallese, Luppino, Kaseda,

& Sakata, 2000; A. B. Sereno & Maunsell, 1998; M. E. Sereno, Trinath, Augath, &

Logothetis, 2002). Quantitative differences found in shape representation in AIT and LIP
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(Lehky & Sereno, 2007) raises the possibility that the dimensionality of visual

representations in parietal cortex may be different than in inferotemporal cortex.

As we have noted, intrinsic dimensionality of inferotemporal responses to object images was

much lower than the dimensionality of the physical stimuli. Most dimensions of physical

object space appear not to be registered by inferotemporal cortex. Fewer dimensions in the

neural object space than in the physical object space means that objects discriminability is

reduced compared to what is in principle possible. That would be roughly analogous to the

way that a colorblind person with two cone pigments (two-dimensional color representation)

cannot make discriminations that a person with a normal three-dimensional color

representation can. Thus, inferotemporal cortex would be forming an impoverished

representation of objects compared to what physically exists. Perhaps this is an evolutionary

consequence of resource limitations in the brain. So, with optimization for limited resources,

primates get a particular object representation that is just good enough for all practical

purposes in their daily lives but does not reach theoretical limits. The difference in

dimensionality between neural object space and physical object space also relates to

philosophical discussions about the relationship between our subjective experience of the

world and the nature of the underlying physical reality.

It would be interesting to measure the dimensionality of visual representations in non-

primates to see if there is a further decrease relative to physical object space in less visually

oriented species. In addition, the same mathematical dimensionality methods could be

applied to human fMRI data through voxel-based calculations.

Moving beyond counting dimensionality size, a key question for the future is obviously to

identify what these dimensions specifically are, or in other words, what features in the world

they correspond to. It is also an open question whether there exists an inborn inferotemporal

object representation space with a particular dimensionality size, or if different individuals

parse the world into different sets of dimensions based on experience. Even though there

certainly is experience-dependent plasticity in feature responses of monkey inferotemporal

cells or their human analog (Kobatake, Wang, & Tanaka, 1998; H. Op de Beeck, Baker,

DiCarlo, & Kanwisher, 2006; Suzuki & Tanaka, 2011), it has been suggested that these

changes may be confined to modulations of pre-existing properties (H. P. Op de Beeck &

Baker, 2010).

To understand the biological basis of object recognition, we need to quantitatively describe

the neural object representation space. Measuring the dimensionality of that space is a step

towards that goal. The finding that object space has approximately one hundred dimensions

highlights the complexity and challenge of the object recognition problem.
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Figure 1.
Examples of object images used as stimuli.
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Figure 2.
Two-dimensional saddle-shaped manifold embedded in a three-dimensional space. Although

points are nominally in 3D space, they are confined to lying on a lower dimensional, 2D

surface (aside from slight noise jitter) and therefore have an intrinsic dimensionality of 2.

This illustrates the idea that although neural population responses to object stimuli may

nominally be in a very high dimensional space (defined by the number of neurons in the

encoding population), because of redundancies between neurons, population responses may

be confined to a lower dimensional subspace.
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Figure 3.
Estimating intrinsic dimensionality of the data using the Grassberger-Procaccia algorithm.

The curve plots the relationship defined by Eq. (1). The asymptotic slope of the curve for

small values of r gives the dimensionality.
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Figure 4.
Estimating intrinsic dimensionality of the data from eigenvalues associated with a principal

components analysis. The solid lines plots eigenvalues from the data sorted in rank order,

while the dashed line plots eigenvalues after the data has been randomly shuffled. In both

cases eigenvalues are normalized to sum to 1.0. The point at which the two curves cross

gives the dimensionality.
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Figure 5.
Correlation matrices of neural responses for 674 neurons in the data set. a. Correlation

matrix for the original data. Mean absolute correlation is 0.063. The dimensionality for these

data is 52, as shown in Figure 4. b. Correlation matrix for data that has been mathematically

transformed to increase neural correlations, in order to examine effect on dimensionality.

Mean absolute correlation doubled to 0.126. The increased correlation caused a slight

decrease in dimensionality from 52 to 48.
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Figure 6.
Dimensionality as a function of data set size. a. Dimensionality as a function of the number

of stimulus images, holding the number of neurons constant at 674. b. Dimensionality as a

function of the number neurons, holding the number of stimulus images constant at 806. c.
Dimensionality as a function of data set size. Here the number of stimulus images and the

number of neurons are both varied.
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Figure 7.
Asymptotic dimensionality as the number of neurons approaches infinity. a. Series of

dimensionality curves plotted as a function of the number of neurons, each for a different

number of stimulus images. Lines indicate fit of asymptotic function (Eq. (4)) to points. b.
Same series of curves plotted further out to make the asymptotes more apparent. Green dots

indicate actual asymptotic dimensionality as the number of neurons approach infinity.
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Figure 8.
Asymptotic dimensionality as both the number of neurons and number of images approach

infinity. a. Dimensionality plotted as a function of the number of stimulus images. Green

points are from Figure 7b (plus additional points not shown in that figure), which already

reflect the number of neurons going to infinity. Here we extend along the second dimension,

number of stimulus images. Line indicates fit of asymptotic function (Eq. (4)). b. Same

curve plotted further out to make the asymptote more apparent.
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Figure 9.
Asymptotic dimensionality of object images. This is dimensionality of the physical stimuli,

and not dimensionality of neural responses to stimuli that was shown in previous figures. a.
Dimensionality plotted as a function of number of images, with line indicate fit of

asymptotic function (Eq. (4)). b. Same curve plotted further out to make the asymptote more

apparent.
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Table 1

Four estimates of asymptotic dimensionality of object representations in inferotemporal cortex. These were

derived using two different asymptotic equations, each with two orders of fit.

Asymptotic Function Fit order Dimensionality

Equation 4 Neurons→Images 87

Equation 4 Images→Neurons 105

Equation 5 Neurons→Images 80

Equation 5 Images→Neurons 97

Mean: 93 ± 11
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