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Abstract

Matching one set of objects to another is a ubiquitous task in machine learning and computer

vision that often reduces to some form of the quadratic assignment problem (QAP). The QAP is

known to be notoriously hard, both in theory and in practice. Here, we investigate if this difficulty

can be mitigated when some additional piece of information is available: (a) that all QAP

instances of interest come from the same application, and (b) the correct solution for a set of such

QAP instances is given. We propose a new approach to accelerate the solution of QAPs based on

learning parameters for a modified objective function from prior QAP instances. A key feature of

our approach is that it takes advantage of the algebraic structure of permutations, in conjunction

with special methods for optimizing functions over the symmetric group n in Fourier space.

Experiments show that in practical domains the new method can outperform existing approaches.

1. Introduction

Matching one set of objects to another is a fundamental problem in computer science. In

computer vision it arises in the context of finding the correspondence between multiple

images of the same scene taken from different viewpoints (Fig. 1). In bioinformatics one

must align sequences of genes and amino acids. In machine learning one often needs to align

examples before a meaningful similarity measure can be computed between them (Pachauri

et al., 2011). Some of these problems reduce to a linear assignment problem

(1)

where n is the set of all permutations of {1, 2, …, n}, and Qij captures the negative cost of

matching object xi to object yj. This problem can be solved in O(n3) time using the well-

known Kuhn–Munkries (or Hungarian) algorithm.
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The limitation of (1) is that it does not take into account the relationships of the xi’s (and the

yi’s) to each other. For example, in matching feature points (or landmarks) between images,

not only do we want landmarks in one image to be matched to similar landmarks in the other

image, but we also want the distances between landmarks in the first image to be similar to

the distances between the corresponding landmarks in the second one. This leads to a more

general optimization problem

(2)

known as the quadratic assignment problem (QAP). One way to think of (2) is to view it

as the problem of matching two weighted graphs with adjacency matrices A and A′ so as to

maximize the overlap between them.

Unfortunately, the QAP is NP–hard, and it is also notoriously hard to approximate or solve

heuristically. Combinatorial search methods such as branch and bound almost never manage

to solve real world QAP instances in polynomial time, while convex optimization methods

are thwarted by the fact that the feasible region (called the second order permutation

polytope) has an exponential number of faces. From a purely empirical point of view the

most successful approaches are ant-methods and the like, which are very heuristic

algorithms with no optimality guarantees whatsoever. In a fraction of the cases they find a

near-optimal solution very fast, while in many other cases they fail, and there is no way of

knowing whether we are in the former domain or the latter.

It is natural to ask whether one can use side information to make QAP easier. Here, we

propose a new approach for doing this by learning a modified objective function fω from a

set of prior “training” QAP instances. The two criteria that fω must satisfy are

1. arg maxσ∈ n fω (σ) should be close to the maximum of the original objective

function f.

2. fω should be much easier to optimize than f.

The vector ω that parametrizes fω is determined by methods similar to Structural Risk

Minimization. This form of risk minimization strategy (Finley & Joachims, 2008), as in

Structural SVMs, when applied to the training set, allows our parameter ω to generalize to

unseen examples well. Note that Structural SVMs are very well understood if the original

inference problem (arg max fω) is poly-time solvable (see (Tsochantaridis et al., 2006;

Taskar et al., 2003)). Unfortunately, the original graph matching problem requires finding a

ω such that the minimizer of fω (·) matches σ* — this is itself a QAP. Existing theoretical

guarantees for Structural SVM are known to be far less satisfactory for such intractable

problems (Tsochantaridis et al., 2006; Joachims et al., 2009).

Fortunately, we may observe that the σ’s of our interest are not arbitrary objects, rather

constitute the symmetric group, and this opens the door to look at the properties of specific

sub-classes of fω and/or σ that may provide useful insights into efficient solution strategies.

Specifically, this view allows us to leverage an entire spectrum of tools from abstract

algebra including non-commutative harmonic analysis and fast Fourier transforms on groups
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to develop efficient algorithms (Rudin, 1962; Diaconis, 1988). The real promise of this new

approach lies in its generality: by setting matching problems in a broader algebraic

framework it has the potential to serve as a basis for developing new matching algorithms

that exploit the representation theory of groups and are better informed by the the

characteristics of the underlying vision or learning task.

While the model developed here is applicable to the learning version of most of the above

scenarios, to make our exposition concrete, we will restrict our attention to the problem of

learning parameters for graph matching. The Learning Graph Matching problem (Caetano et

al., 2009) seeks to solve for parameters of compatibility functions so that the solution from

an approximate solution matches the permutation matrix provided by the user as best as

possible. Since the main objects of interest are permutation matrices, it makes this an ideal

sandbox to develop and present our main ideas.

Graph Matching and other Related Work

Graph Matching is the problem of finding correspondences between the nodes of two graphs

to maximize alignment. One way to model it is to write it as a Quadratic Assignment

Problem (QAP), which is among the most well-studied combinatorial optimization problems

in the literature (Pardalos et al., 1994; Cela, 1998; Umeyama, 1988; Vishwanathan et al.,

2007). Many alternative approaches for graph matching are also known (Leordeanu &

Hebert, 2005; Hancock & Wilson, 2009; Caelli & Caetano, 2005). In the context of learning

graph matching (Caetano et al., 2009; Leordeanu & Hebert, 2009), one is interested in the

following question: if the optimal correspondence between the nodes of a pair of graphs is

known (and many such pairs are available), how should one use this knowledge to learn

correspondences between another pair of graphs which were extracted under similar

conditions. The notion of conditions reflects properties of the application under study – for

instance, (Caetano et al., 2009) uses the example of image pairs acquired under similar

illumination from an airport surveillance camera, where the matching task refers to aligning

the “feature points” from such images. The to be determined parameter ω then corresponds

to weights which appropriately adjust the joint feature map of node and edge compatibilities,

so that the match found by the solver agrees with the user provided solution. Learning graph

matching serves another very important need – by restricting our focus to a specific domain

and tuning weights that best reflect practical considerations in that application, a less

sophisticated approach may still be able to obtain good quality solutions in a fixed amount

of time or memory (Xu et al., 2007). This has implications in most situations where training

data is available. The algorithm in (Caetano et al., 2009) uses a nice structure learning

formalization for this problem. But finding the most violated constraint precisely in the

construction (Caetano et al., 2009) itself involves solving a QAP, and can only be

approximately estimated (e.g., via its linear assignment relaxation).

This Paper

We recast the learning problem above using ideas from the theory of non-commutative

Fourier analysis on the symmetric group. Our core algorithm is defined on a certain tree

which has the permutations (σ ∈ n) at the leaves and each branch corresponds to a coset of

n; the modulation of the edge and node compatibility functions then consists of solving a
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set of simple convex optimization models defined in Fourier space. Broadly, the approach

performs stochastic descent-like weight updates to induce a margin between the path that

leads to the correct user-provided σ*, relative to all other σ’s, for each training example. The

contribution of this paper is the parameter learning framework for a class of combinatorial

problems where the solution is a candidate in the symmetric group n. We show how the

representation theory of n makes the procedure computationally tractable, and how Branch

and Bound schemes can be modified to learn information relevant for problem instances

coming from an application of interest.

2. The form of QAP in Fourier space

The key aspect of the QAP which our approach exploits is that n, the set of permutations

that we need to optimize over, is a group, called the symmetric group over n letters. Recall

that this means, with respect to the natural notion of multiplication, which is (σ2σ1) (i) =

σ2(σ1(i)), permutations in n satisfy the following axioms:

1. σ2σ1 ∈ n (closure);

2. σ3(σ2σ1) = (σ3σ2)σ1 (associativity);

3. there is an identity e ∈ n such that σ1e = σ1;

4. every σ has an inverse σ−1 ∈ n such that σ−1σ = σσ−1 = e

Remarkably, these axioms are sufficient to define a meaningful notion of harmonic analysis

on n. However, because n is non-commutative (σ2σ1 ≠ σ1σ2), the Fourier components will

be matrices. In particular, the Fourier transform of a general function f : n → ℝ consists of

the matrices

(3)

where λ = (λ1, λ2, …, λk) is the so-called integer partition of n and plays the role of

“frequency”, while ρλ : n → ℂdλ×dλ is the corresponding irreducible representation (irrep)

of n. For more details on these algebraic concepts, see this paper’s extended version.

Kondor (2010) recently showed that the machinery of non-commutative Fourier transforms

can be used to advantage in solving the QAP. One key observation is that if one defines so-

called graph functions fA : n → ℝ,

then the objective function of the QAP,

(4)

can easily be expressed in Fourier space as
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where † stands for the conjugate transpose. Given that functions of the form (4) are band-

limited to {(n), (n − 1, 1), (n − 2, 2), (n − 2, 1, 1)} (i.e., all components of f̂A other than those

indexed by these integer partitions are identically zero), the Fourier transform of the

objective function will also be restricted to f̂((n)), f̂((n − 1, 1)), f̂((n − 2, 2)) and f̂((n − 2, 1,

1)). In fact, this observation has already been made in (Rockmore et al., 2002a). We will use

this idea for computing QAP bounds to be discussed shortly.

Another key ingredient in our proposed approach is the technology of Fast Fourier

Transforms (FFTs) on n, going back to the work of Clausen (1989). Recall that given a

subgroup H of n and a permutation σ ∈ n, the set σH = {στ | τ ∈ H} is called a left H–

coset. Similarly, one can talk about right H–cosets such as Hσ = {τσ | τ ∈ H}, and two-sided

cosets such as σ1Hσ2 = {σ1τσ2 | τ ∈ H}. FFTs generally work by first computing Fourier

transforms of f restricted to small cosets, and then recursively assembling such small

transforms into ever large ones until we reach the Fourier transform in (3) on the entire

group. A QAP solver can use this structure to search n by employing the Inverse Fast

Fourier Transform (iFFT) to restrict f to various cosets and bound it. We illustrate a Coset

tree in Figure 2 for n = 3.

As briefly discussed above, the final component of Fourier space QAP solver are the bounds

for f (restricted to various cosets) based on its Fourier components. The simplest such bound

is

(5)

where ‖ ‖* denotes the nuclear norm. Combining these components leads to a Branch and

Bound type optimization algorithm that runs in O(n3) time per branch visited and is

competitive with more conventional exact QAP solvers (Kondor, 2010). Unfortunately, in

many practical problems the resulting algorithm still takes an exponential amount of time to

run, simply because it needs to visit so many branches.

3. The Objective function for Learning

Observe that QAPs are hard because the objective function is relatively flat, and according

to most reasonable metrics, the diameter of n is small compared to its size. In practical

problems, however, one can sometimes overcome such seemingly insurmountable barriers

by making inventive use of side information. In particular, we take the approach of using

similar QAP instances (derived from the application of interest) to learn a modified

objective function that will more effectively drive our algorithm to the correct solution.

Since solving a QAP from scratch for each modification of parameters is clearly an

intractable option, our main goal will be to adapt tools from non-commutative harmonic
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analysis to recast the problem in a way that sidesteps this burden. The framework described

next formalizes this idea.

We first write the QAP objective function for Graph matching. The function is defined on

the adjacency matrices of a graph pair, and has a band-limited structure observed in

(Rockmore et al., 2002b). Next, we incorporate (i.e., parameterize) domain information

within the objective. This will set us up to present the framework for learning these

parameters given multiple instances of related graphs.

Given two graphs G, G′ of n vertices with adjacency matrices A, A′, the standard quadratic

assignment problem finds the permutation which best aligns the graph. We choose σ which

optimizes

(6)

In the unweighted case, f(σ) simply counts the number of edges which appear in both G and

the permuted graph σ(G′). The objective function of standard QAP is expressed as the graph
correlation (Kondor, 2010) between the two graphs G and G′

(7)

where fA and fA′ are defined in section 2. One may then systematically search the coset tree

(2) via the standard Branch and Bound to maximize (7).

3.1. Parameterizing the QAP objective

QAP instances derived from Vision problems typically rely on some analytic form

approximating the perceptual similarity between two feature points. For instance, how

similar are a pair of shape features (Belongie et al., 2002), u and υ, extracted from different

images? If a node to node match which is perceptually correct turns out to be only

marginally better than many other incorrect matches, this necessarily suggests that the

features are not very discriminative. One practical consequence is that a Branch and Bound

type search will need to work much harder (i.e., explore many sub-trees) to find the global

solution.

The core strategy is to incorporate domain information in the QAP objective. To do this, we

use the simple idea of composing various QAPs to write a base QAP objective which has

certain desirable properties. Since features are available in most applications, it seems

logical to use this additional information in the design of a function that can be used to

inform the base QAP objective. While this function might not be perfect due to the noisy

features, standard learning algorithms can be used to learn shared structure by observing

multiple instances drawn from the specific domain.

Using training data (examples from the application of interest) we will be able to learn the

parameters such that learnt parameters will induce domain friendly QAP instances – biasing
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the search towards the more interesting matches first, while simultaneously suppressing the

influence of misleading features.

3.2. Learning Graph Matching

There are various ways of extracting features in Vision. Each of them model the

neighborhood relationship between the vertices of G based on similarity of features. The list

may include edge features such as a Delaunay triangulation, Euclidean distance between

interest points, Shape context features etc. Consider D such representations are at our

disposal, where each encodes the corresponding graph neighborhood.

We use each of these representations to generate D adjacency matrices for each graph. Each

entry  is a squared distance between the feature values of vertex i and j of G according to

representation d ∈ D. Similarly, we define A′d for G′. We can write QAP objective (7) as

before using (Ad, A′d)

We want to find a match such that edge (i, j) in G should be assigned to an edge (i′, j′) in G′

that is of a similar length (or weight) simultaneously in all encoded adjacency matrices.

However, features are noisy and not very discriminative, and can lead to wrong assignments.

The strategy is to parameterize each fd(σ) and write a parameterized QAP objective for

learning

(8)

where the subscript ωd represents parameterization, that is, we use the parameter vector ω ∈

ℝD to modulate the QAP function fω (σ).

The learning algorithm then essentially amounts to adjusting the ω appearing in the

parameterized QAP objective using the true assignments σ* given for each training pair

. Our general goal is to find

(9)

for some loss function L(·, ·) and regularizer Ω, where σ̂
m(ω) is the optimal permutation for

example m. Note that σ̂m(ω) itself corresponds to solving a QAP objective given a QAP

objective modulated by parameter ω. The goal is to “learn” ω by performing stochastic

descent at each level of a tree of cosets. In our experiments, we implemented a 0/1 loss. We

observe that there may be many ω’s that will yield the same 0/1 loss; the regularization Ω

used here seeks the minimal difference from the ω in the previous step, so that the path/node

leading to  is preferable to any other node at this level, by a small margin. The exact

algorithm is discussed next.
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4. Algorithm: Learning in Fourier space

In the following, we explain our Fourier space bounds for learning. The Fourier space

machinery discussed in §2 bounds the objective function for learning (introduced in §3).

More details on FFT and irreducible representation of n are in this paper’s longer version.

4.1. Fourier Space Upper Bounds for Learning

When working in a so-called adapted system of representations, the Fourier matrices at level

n of a general function f can be expressed in terms of the Fourier matrices at level n − 1 as

(10)

where ⊕ is the direct sum of Fourier matrices, and λ↓n − 1 is used to denote the integer

partitions of the “ancestor partitions”.

The Fourier space QAP solver proceeds by searching the tree of cosets, which corresponds

to assigning vertex n, n−1, … of G to some sequence of vertices of G′. At level n−k in the

coset tree, it decides which vertex of G′ it should assign the vertex n−k to by comparing the

Fourier space bounds. Kondor (2010) used the inverse map of (10) to define the Fourier

space bounds for standard QAP, where the inverse map at level n−1 is given by

(11)

Fourier space bounds are defined as

(12)

f̂ is replaced by f̂ω in (12) for learning correct parameters. It turns out that for a fixed ω, fω

(σ) is easily computable from each  entirely in Fourier space, without having to perform

a very costly full Fourier transform. The exact form in which ω interacts with  depends

on the problem formulation. To keep the presentation simple, we formulate our QAP

objective as follows

(13)

The Fourier transform of fω can be expressed as

(14)
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The fact that makes fω learnable is that the inverse map  can be expressed as:

 is the inverse map of f̂d(λ) according to (11). The

identity follows directly from linearity of Fourier transform.

Ultimately, we may use the convex nature of the nuclear norm that makes Jensen’s

inequality handy to derive an easy-to-optimize set of bounds,

(15)

With these concepts in hand, the only missing ingredient is the actual procedure to calculate

the parameters ω that is presented next.

4.2. Stochastic gradient descent solver

In general, our loss function L as in (9) is a hinge loss on the relative bounds between the

correct nodes and their incorrect siblings. This takes the form

(16)

which is summed over all examples, and along with the regularization represents the

function we seek to minimize. And  denotes the correct node at level n − k for some σ*.

Note that bounding the siblings of the correct nodes will bound f for all incorrect

permutations.

We employ a stochastic gradient descent approach similar to (Shalev-Shwartz et al., 2007)

on upper bounds defined in (12). During the training phase, we know which node to node

assignment we should make, that is, we know which of these bounds, say the one

corresponding to vertex , we want to be the largest. A random training example and

node i is selected and compared to its correct sibling . We then reduce the objective for

one term by taking a gradient step on ω. When  is replaced with the

bounds in (15), each update takes the form

(17)

η is an exponentially decaying step length parameter, M is the number of training examples,

and the  term arises from splitting the regularizer over all nodes considered by the

optimization.

This is like structural SVM, where we try to find parameters so that the model predicts 

instead of i, with the bound for each correct node in the coset trees of the training set greater

Pachauri et al. Page 9

Proc Int Conf Mach Learn. Author manuscript; available in PMC 2014 October 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



than its incorrect siblings by some margin. As per (15), learnt parameters are goodness

measures of individual graph correlation function fd contributing in (13).

5. Experiments

To demonstrate proof of principle results of the proposed algorithm, we learnt parameters

for compatibility functions in the context of graph matching. This has numerous

applications, but the setting below considers the task of aligning two 2D images using local

features extracted from the image data including interest points, and shape context features.

Edge–features

We performed Delaunay triangulation on interest points to generate unweighted edges. This

provides unweighted adjacency matrix.

Distance–features

We used 2D coordinates of interest points to calculate Euclidean distance between points.

We extracted weighted adjacency matrices at various scales using 2D distances.

Shape Context–features

As in (Caetano et al., 2009), we also included Shape context features (Belongie et al., 2002).

Briefly, the feature vector is a descriptor in Log-Polar space that describes the localized

shape at each node. We generated weighted adjacency matrices by using normalized

histogram differences of subsets of shape context features.

Dataset and Setup

We performed an experimental evaluation on 3 datasets. We used a subset of the landmark

points provided. The experimental set for each dataset closely follow the setup described in

(Caetano et al., 2009). Graph pair instances were generated such that the two graphs are

separated by a varying baseline (referred to as “offset” below). Our training data include

multiple QAP’s for each pair of images. The algorithm learnt a suitable ω. We performed

standard 10–fold cross-validation on train/test data for each offset. The number of pairs in

the train/test splits varied based on the offset. We summarize our results on various datasets

below.

Hotel/House Dataset

We considered the CMU house dataset, which contains 111 frames of a video sequence of a

toy house. Landmark points were identified and hand–labeled in each frame. Quantitative

results corresponding to the matches found on the test set are shown in Fig 4 (left). (Red

plots) present the accuracy of matches (on test sets) as the offset (separation between

frames) varies. We compared our results against a greedy (“No Learning”) matching on two

feature settings (blue plots). As expected, no-learn-greedy approach perform poorly if not all

features are informative (blue dashed line). For small offsets, no-learn-greedy takes

advantage of the fact that the problem instance is easy and the shape context features are

useful, but its performance gradually deteriorates as the offset increases (blue bold line). A
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greedy assignment using learnt weights still performs well. Note that the test phase does not

perform any backtracking in Branch and Bound.

We performed a similar experiment on CMU hotel dataset, which contains 101 frames of a

video sequence of a toy hotel. Again, we see good overall agreement with the ground truth

using the learnt parameters. Quantitative results are shown in Fig 4(center). Qualitative

results corresponding to the learnt matches on the test set shown in Fig 3

Silhouette Dataset

For our second experiment, we used the Silhouette database. We applied horizontal shear to

twice its width and transformed the images synthetically. Results for this experiment are

shown in Fig 4 (right). Introducing uninformative features makes matching problem more

difficult (blue dashed line). While shape context features are quite useful, the learning

setting still outperforms no-learning for all offset variations.

Finally, we analysed learnt parameters for the setup that includes Delaunay and distance–

based adjacency matrices at 5 scales along with random graph pairs. Learning induced

parameters corresponding to Delaunay and distance. Fig 5 shows an example of average

weights produced in 10–fold cross-validation setup indicating reduced weights on

uninformative features (e.g., non-informative distance scales).

6. Conclusions

This paper shows that parameter learning (for setting up domain driven compatibility

functions) for a general class of hard combinatorial optimization problems can be performed

efficiently if the solution to the primary objective function is a member of n. We present a

framework for performing weight updates on the nodes of a Coset tree. Observe that while

the number of leaves of this tree is still n!, for the functions discussed here, the bandlimited

nature of its Fourier transform makes the process tractable. Our algorithm is inspired by

recent results (Kondor, 2008; Huang et al., 2009; Huang & Guestrin, 2010) showing how

concepts from harmonic analysis tie to topics in machine learning. Our procedure

generalizes to other problems that can be cast as appropriate functions on n, and provides a

complementary approach to a number of problems typically tackled using Structure

Learning. We believe there is additional structure that is not explicitly leveraged by our

current model – for instance, we are evaluating the computational benefits of performing

weight updates on the frequency components instead of the features. Exploring these

properties may provide strategies for other seemingly unrelated problems. For instance, very

recently, some related ideas have been independently investigated for submodular set

functions (Stobbe & Krause, 2012). Our implementation will be available at http://

pages.cs.wisc.edu/~pachauri/.
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Figure 1.
A set of images of the same object. Assuming that the images are not related by a simple

transformation such as homography (Hartley & Zisserman, 2000), the matching seeks to

assign feature points (nodes) in one image to its most similar feature point in the other

image. Typically, there is also a cost associated with alignment of corresponding edges.
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Figure 2.
Left coset tree for 3 showing all members of 3 as leaves. Second level of the tree

represents 2–coset of 3 which corresponds to candidate permutations 〚1, 3〛, 〚2, 3〛, 〚3, 3〛.
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Figure 3.
A representative pair of permutation is visualized, with the ground truth (green) and the

learnt correspondences (red). (Left) House27 – 97 frame. (Center) Hotel 58 – 98 frame.

(Right) Shear 66 – 146 frame.
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Figure 4.
Results for our method compared with no-learn baseline. Two colors represent learning (red)

and no-learning (blue). (Dashed) Delaunay, distance and 5 uninformative features. (Bold)

Delaunay, distance and shape context features. (Left) House, (Center) Hotel, and (Right)

Silhouette.
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Figure 5.
Learnt weights for base QAP objective with Delaunay, distance, and uninformative (Uinf)

features based QAPs.
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