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Lupus nephritis (LN) is an autoimmune disease that occurs when
autoantibodies complex with self-antigen and form immune com-
plexes that accumulate in the glomeruli. These immune complexes
initiate an inflammatory response resulting in glomerular injury. LN
often concomitantly affects the tubulointerstitial compartment of the
kidney, leading first to interstitial inflammation and subsequently to
interstitial fibrosis and atrophy of the renal tubules if not appropri-
ately treated. Presently the only way to assess interstitial inflam-
mation and fibrosis is through kidney biopsy, which is invasive and
cannot be repeated frequently. Hence, monitoring of disease pro-
gression and response to therapy is suboptimal. In this paper we
describe a mathematical model of the progress from tubulointer-
stitial inflammation to fibrosis. We demonstrate how the model can
be used to monitor treatments for interstitial fibrosis in LN with
drugs currently being developed or used for nonrenal fibrosis.
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Systemic lupus erythematosus (SLE) is a multisystem auto-
immune disease that can affect the kidney. The most com-

mon kidney manifestation of SLE is lupus nephritis (LN). LN
occurs when autoantibodies complex with self-antigens and form
immune complexes that accumulate in the glomeruli, the filter-
ing units of the kidneys. Glomerular immune complexes initiate
an inflammatory response that results in the appearance of blood
and protein in the urine and impaired kidney function. Rovin
et al. (1) recently reviewed the clinical aspects and pathogenesis
of LN and noted that, in addition to glomerular injury, LN often
concomitantly affects the tubulointerstitial compartment of the
kidney. Tubulointerstitial injury is thought to begin as an inflam-
matory process. If interstitial inflammation is not attenuated it
can promote interstitial fibrosis and atrophy of the renal tubules,
structural changes that are irreversible, at least with current
therapies. Clinically, the prognosis of the kidney in LN is more
strongly associated with the degree of tubulointerstitial injury
than the original glomerulonephritis (2). LN patients with
moderate to severe interstitial inflammation are more likely to
progress to chronic or end-stage kidney disease than those with
minimal or no interstitial inflammation (3). The prognostic impact
of tubulointerstitial injury is not restricted to LN; indeed, it is ob-
served in several other types of immune-mediated glomerular dis-
eases (4–8).
The pathogenesis of tubulointerstitial inflammation in LN is

not entirely clear, although it is not related to interstitial immune
complex deposition (9). It is likely that the injured glomerular
compartment communicates with the tubulointerstitial com-
partment (10). This may occur through production of soluble
mediators and/or infiltrating glomerular leukocytes in response
to glomerular immune complexes. Monocytes that enter glomeruli
from the circulation differentiate into tissue macrophages, and these
could escape from damaged glomeruli into the tubulointerstitium.
Similarly, soluble proinflammmatory factors could “leak” out of
damaged glomeruli and activate tubular epithelial cells (TECs)
(11–14). Activated TECs secrete a number of proinflammatory
mediators including chemoattractants such as monocyte che-
motactic protein-1 (MCP-1) that recruit additional circulating
monocytes to the tubulointerstitial space (15–18). Infiltrating
monoctyes become activated macrophages and along with activated
TECs perpetuate and enhance tubulointerstitial inflammation

and facilitate the progression from inflammation to interstitial
fibrosis by secreting a number of cytokines and growth factors
(Fig. 1). Activated macrophages secrete PDGF, TGF-β, matrix
metalloproteinase (MMP), and tissue inhibitor of metallopro-
teinase (TIMP) (16, 19, 20), all of which are involved in the
regulation of tissue fibrosis. TGF-β, along with TEC-derived
basic FGF (bFGF), increases the proliferation of interstitial
fibroblasts (21–24). PDGF and TGF-β transform fibroblasts to
myofibroblasts (16, 19), which together with fibroblasts produce
ECM (25, 26). Imbalance between MMP and its inhibitor TIMP
facilitates the accumulation of ECM and formation of interstitial
fibrosis (17, 20).
Presently, the only way to clinically assess interstitial inflam-

mation and fibrosis is through a kidney biopsy. Because of the
invasive nature of this procedure it cannot be repeated fre-
quently to determine how LN is progressing and whether treat-
ment has been effective. Clinical measurements have been found
to poorly reflect histologic changes in the kidneys in LN, and
despite very intense immunosuppression renal fibrosis occurs
quickly (27). A noninvasive method to follow interstitial injury
and detect the effect (or lack thereof) of therapy is an unmet
need in the area of LN. We therefore developed a mathematical
model of the progression from tubulointerstitial inflammation to
fibrosis. We suggest that this model, upon validation and re-
finement, could be used to clinically follow interstitial injury in
LN. The model also allows simulation of interstitial injury and
how injury responds to targeting presumed pathogenic pathways.
This could be developed into a tool to facilitate and test novel
treatments for interstitial damage in LN.

Mathematical Model
The mathematical model is based on the signaling network de-
scribed in Fig. 1. Because the renal tissue is densely packed with
parallel tubules and blood vessels, we consider just a rectangular
cross-section Ω, a part of the renal cortex, as depicted in Fig. 2,
with dimensions 1 × 2 cm2; inflammation begins in a small rect-
angle D interior to Ω.
We assume that all species are dispersing or diffusing in Ω with

appropriate diffusion coefficients. The equation for each species
Xi (1 ≤ i ≤ k) has the form
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∂Xi

∂t
−DXi∇

2Xi =FXiðX1;⋯;XkÞ in Ω; [1]

where ∇2 is the Laplace operator ∇ · grad, or
Pd

i=1
∂2
∂x2i

in d-dimen-

sional space, DXi is the diffusion coefficient, and FXi is a function
that depends on all of the species and expresses the result of
their interactions on the growth of Xi. The term DXi∇2Xi for cells
means dispersion, which decreases crowding, and for cytokines
means diffusion. Because cells are much larger than cytokines,
their dispersion coefficients are much smaller than the diffusion
coefficients of cytokines. In determining the structure of FXi

we use, for simplicity, the linear mass conservation law. For in-
stance, if Xj + Xk → Xi, then FXi =mXjXk, where m is the pro-
duction rate of Xi. However, this law will only apply when Xj
and Xk are unlimited. If, for example, Xj represents cells and
Xk represents molecules that are bound and internalized by
Xj, then the internalization of Xk may be limited owing to the
limited rate of receptor recycling. In this case, we use the Michaelis–
Menten law FXi =mXjðXk=K +XkÞ; we do not use Hill’s law
FXi = mXjðXn

k =K +Xn
k Þ (n ≥ 2) because we want to keep the

linear conservation law for small concentrations. In using the
equation for each species, except macrophages, we ignore, for
simplicity, the space occupied by the blood vessels (which is
typically less that 5%).

Equation for Macrophage Density (M ). The evolution of macro-
phage density outside the blood vessels is modeled by

∂M
∂t

−DM∇2M =−∇ · ðMχP∇PÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
chemotaxis

−dMM|fflfflffl{zfflfflffl}
death

: [2]

Here the first term on right-hand side accounts for recruitment
of macrophages by a cytokine, here represented by MCP-1 (P)
(16, 17).
Because macrophages are the monocytes that migrated from

the blood vessels into the tissue, we assume that M satisfies the
following boundary condition at the endothelial cells:

∂M
∂n

+ α«ðPÞðM −M0Þ= 0 on ∂Ω«; [3]

where M0 is the monocyte density in the blood and α«(P)
depends on the MCP-1 concentration. We assume that the
blood vessels (in the cross-section) are circles distributed pe-
riodically with period ω (as shown in Fig. 3A) and they occupy
5% of the total area. Fig. 3B is a 1/ω magnification of one
circle enclosed in a periodic unit square.
Because ω is small, we can use homogenization theory (28) to

write down the “effective” equation for M over the entire tissue:

θ
∂M
∂t

−DM
f∇2M = αðPÞðM0 −MÞ− θð∇ · ðMχP∇PÞ+ dMMÞ; [4]

where θ= 19=20, αðPÞ= αðP=KP +PÞ (KP is the saturation level
of MCP-1), and f∇2 =

P
aijð∂2=∂xi∂xjÞ. The coefficient aij is com-

puted by

aij =
Z

y∈R∖B

�
δij +

∂χ j
∂xi

�
dy;

where χi satisfies the equation

∇2χi = 0 in R∖B; with 
∂χi
∂n

+ ni = 0 on the boundary of B;

and where ni is the i-th component of the outward normal n
and χi is periodic in the horizontal and vertical directions.
Computing aij by finite element discretization we find that
a11 = a22 = 0.8 and a12 = a21 = 0.

Equation for TEC Density (E). The density of TECs is decreased
owing to the inflammation. Accordingly, the equation for TEC
density is given by

∂E
∂t

=AE − dEE|fflfflffl{zfflfflffl}
death

− dEM

�
1+ λETβ

Tβ

KTβ +Tβ

�
M

M0 +M
E|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

apoptosis

: [5]

There are many mechanisms for TEC apoptosis, but for
simplicity we have taken here only TEC apoptosis directed by
macrophages through nitric oxide (29), a process which is pro-
moted by TGF-β (30) (the last term of the right-hand side of
Eq. 5). The decrease in TEC density is probably also due to the
expansion of the interstitium caused by inflammation and its
associated edema.

Equations for Fibroblast Density (f) and Myofibroblast Density (m).
Fibroblasts and myofibroblasts are modeled by

Fig. 1. Network of the renal interstitial fibrosis. Arrows indicate activation
or induction; hammerheads indicate inhibition or killing.

Fig. 2. Domain Ω with a damaged area D.

Fig. 3. (A) Blood vessels depicted as circles in ω periodic structure and (B)
1/ω magnification of one period. R is a unit square, and B is a circle of area
0.05 with its center at the square’s center.
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∂f
∂t
−Df∇2f = Af + λfE

Tβ

KTβ +Tβ
E|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

production

−df f|ffl{zffl}
death

−
�
λmfT

Tβ

KTβ +Tβ
+ λmfG

G
KG +G

�
f|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f→m

;

[6]

∂m
∂t

−Dm∇2m=
�
λmfT

Tβ

KTβ +Tβ
+ λmfG

G
KG +G

�
f|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f→m

−dmm|fflfflffl{zfflfflffl}
death

 :

[7]

The growth factor bFGF produced by TECs (21–23) activates
fibroblasts (21, 31). For simplicity, we do not specifically in-
clude bFGF in the model, but instead represent it by TECs.
The production of fibroblasts in healthy normal tissue is repre-
sented by the term Af (which depends on the density of TECs in
health). In renal interstitial fibrosis, there is additional produc-
tion of fibroblasts by TECs that is enabled by TGF-β (24, 32,
33) (the second term of the right-hand side of Eq. 6). Fibroblast
transformation into myofibroblast by TGF-β (24, 32, 33) and
PDGF (16, 34) is represented by the last term on the right-hand
side of Eq. 6.

Equation for ECM Density (ρ). The ECM, produced by fibroblasts
and myofibroblasts (25, 26), is degraded by MMP (20). TGF-β
enhances the production of ECM by myofibroblasts (35–37).
The equation for the density of ECM is then given by

∂ρ
∂t

= λρf f
�
1−

ρ

ρ0

�+

+ λρm

�
1+ λρTβ

Tβ

KTβ +Tβ

�
m|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

production

−dρρ− dρQQρ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
degradation

;

[8]

where ð1− ρ=ρ0Þ+ = 1− ρ=ρ0 if ρ < ρ0, ð1− ρ=ρ0Þ+ = 0 if ρ ≥ ρ0.

Equation for MCP-1 (P). In the case of interstitial nephritis, the
TECs and macrophages secrete MCP-1 (15, 17, 18), and MCP-1
is bound and internalized by macrophages that are chemotacti-
cally attracted to MCP-1. Accordingly, the MCP-1 equation is
given by

∂P
∂t

−DP∇2P= λPEEID + λPMM|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
production

− dPP− dPM
P

KP +P
M|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

degradation

;
[9]

where λPE is a function of inflammation and ID is the char-
acteristic function of the injured area D in the renal tissue,
which gives rise to the initial focus of inflammation; see
Fig. 2.

Equations for Concentrations of PDGF (G), MMP (Q), TIMP (Qr), and
TGF-β (Tβ). We have generated the following sets of reaction dif-
fusion equations for the growth factors and proteases (G, Q, Qr,
and Tβ):

0 50

0.7

0.8

0.9

1

time (day)

TE
C

 (g
/m

l)

0 50
0

0.5

1 x 10−7

time (day)

M
C

P
−1

 (g
/m

l)

0 50
0

2

4 x 10−5

time (day)

M
ac

ro
ph

ag
e 

(g
/m

l)

0 50
0

0.005

0.01

time (day)

E
C

M
 (g

/m
l)

0 50
0.02

0.04

0.06

0.08

time (day)

Fi
br

ob
la

st
 (g

/m
l)

0 50
0

0.2

0.4

time (day)

M
yo

fib
ro

bl
as

t (
g/

m
l)

0 50
0

2

4 x 10−9

time (day)

TG
F−
β 

(g
/m

l)

0 50
0

1

2

3 x 10−9

time (day)

M
M

P
 (g

/m
l)

0 50
0

0.5

1 x 10−10

time (day)

TI
M

P
 (g

/m
l)

0 50
0

1

2

3 x 10−10

time (day)
P

D
G

F 
(g

/m
l)

0 50
0

0.2

0.4

time (day)

S
ca

r (
g/

m
l)

Fig. 4. Simulation of all variables over a period of 60 d with λPE = 5 × 10−9 and D = 0.2 × 0.2.
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Fig. 5. Comparison of patient data to model simulations for different levels
of interstitial fibrosis based on kidney biopsy. (A) Low fibrosis; the size of
damaged area is 0.4 × 0.4, λPE = 1 × 10−8 d−1. (B) Intermediate fibrosis; the
size of damaged area is 0.5 × 0.5, λPE = 4 × 10−8 d−1. (C) High fibrosis; the
size of damaged area is 0.6 × 0.6, λPE = 8 × 10−8 d−1. Most of the data points
fall near the simulated curves, but there are several outliers expected in
real patients.
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∂G
∂t

−DG∇2G= λGMM|fflfflffl{zfflfflffl}
production

−dGG|fflfflffl{zfflfflffl}
degradation

; [10]

∂Q
∂t

−DQ∇2Q= λQMM|fflfflffl{zfflfflffl}
production

−dQQrQrQ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
depletion

−dQQ|fflfflffl{zfflfflffl}
degradation

; [11]

∂Qr

∂t
−DQr∇

2Qr = λQrMM|fflfflffl{zfflfflffl}
production

−dQrQQQr|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
depletion

−dQrQr|fflfflfflffl{zfflfflfflffl}
degradation

; [12]

∂Tβ

∂t
−DTβ∇

2Tβ = λTβMM|fflfflffl{zfflfflffl}
production

−dTβTβ|fflfflfflffl{zfflfflfflffl}
degradation

: [13]

These cytokines are produced by macrophages (16, 20). In
Eq. 11, MMP is lost by binding with TIMP (second term).

Equation for Scar Density (S). Fibrotic diseases are characterized by
excessive scarring owing to production and deposition of ECM
and disruption of normal, healthy protein cross-linking (36). We
define the scar by the equation

S= λSðρ− ρ*Þ+; [14]

where λS is a constant, but this definition is a simplified charac-
terization of a scar because it does not account for disruption in
protein cross-linking.

Boundary Conditions.We shall simulate the model in a rectangular
domain Ω with an injured area D (Fig. 2) and assume periodic
boundary conditions for all variables.

Initial Conditions. We take

E= constant=E*;  f = constant= f *;  and ρ= constant= ρ*;

and all other variables equal to zero.

Results
The parameter values of the model equations and the tech-
niques used in the simulations are described in Supporting
Information.

Model Validation. To validate the model, we compared the model
simulation with patient data. Urine for cytokine measurement
was collected at the time of kidney biopsy of SLE patients, who
developed clinical signs of kidney involvement, under a protocol
approved by the institutional review board of The Ohio State
University. All patients (n = 47) gave informed consent for
collection and analysis of their urine specimens. The urine was
centrifuged to remove sediment and aliquots of the supernatant
were stored at −80 °C until they were assayed. The biopsies were
read by a blinded renal pathologist, and the degree of interstitial
fibrosis and tubular atrophy was graded in a semiquantitative
fashion. Tubulointerstitial fibrosis involving less than 10% of the
renal cortex was considered mild, fibrosis involving between
10% and 25% of the cortex was considered moderate, and
fibrosis involving over 25% of the cortex was considered severe.
Urine MCP-1 was measured by specific ELISA as we have de-
scribed previously (38). Urine TGF-β was also measured by
specific ELISA obtained from R&D Systems.
We have measured the urine biomarkers MCP-1 and TGF-β

from the three groups of patients: (i) mild fibrosis, (ii) moderate
fibrosis, and (iii) severe fibrosis. The individual patient data
(MCP-1 and TGF-β) for the three groups are given in Supporting
Information and are shown in small circles in Fig. 5.
In Fig. 4 we simulated the mathematical model with λPE = 1 ×

10−8 d−1 and damaged area D = 0.4 × 0.4 for 60 d. For each
time t, we can take the corresponding values of MCP-1 and TGF-β
and draw the curve of MCP-1 to TGF-β evolution; the result is
the (nearly) straight line shown in Fig. 5A; the time variable is
not marked explicitly along the curve. Fig. 5 B and C show
similar curves for larger values of λPE and larger damaged areas
D. The model parameters λPE and damaged areas D as indicated
in the legend of Fig. 5 were chosen to give a good fit with the
experimental data provided the initial fibrosis (mild, moderate,
or severe) is set up appropriately by the choice of λPE and D.
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Fig. 8. Treatment with MCP-1 blockade by a CCR2 antagonist to decrease
macrophage density (K3 = 10 in Eq. 17).
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Indeed, by goodness-of-fit statistics we found that the R2 values,
which measure the correlation between the simulation curves
and the data, were 0.908 (low), 0.961 (intermediate), and 0.968
(high); values closer to 1 indicate better fit.
It is known that MCP-1 and TGF-β are expressed in the kidney

and appear in the urine in a number of disease states associated
with kidney inflammation and fibrosis. Assuming that the urine
reflects tissue expression, the fit established in Fig. 5 validates
the model.

Treatment Studies. In recent years many promising targets of fi-
brosis have been validated in animal studies. Drugs are currently
being developed and even therapeutically used for patients with
nonrenal fibrosis. However, there is currently no effective ther-
apy for renal fibrosis (39, 40). A major obstacle to the de-
velopment of effective therapy for renal fibrosis is the lack of
noninvasive diagnostic tools to assess kidney scarring and mon-
itor therapy. The mathematical model developed in this paper
may be used as a diagnostic tool as well as to monitor renal fi-
brosis during therapy. To illustrate the applicability of this ap-
proach we simulated the effect of treatment over 60 d. Because
treatment rarely begins at the time fibrosis starts in clinical sit-
uations, we correspondingly, in our model, applied treatment
30 d after onset of fibrosis. Additionally, we assumed that the
patient presents with mild interstitial inflammation.
We considered five different potential therapies that target

inflammation or fibrosis: a TGF-β inhibitor, anti-C5 antibodies,
MCP-1 blockade by a CCR2 antagonist, anti-PDGF antibodies,
and MMP administration. Starting with a TGF-β inhibitor, Eq. 13
was changed into

∂Tβ

∂t
−DTβ∇

2Tβ =
λTβMM
1+K1

− dTβTβ; [15]

where K1 represents the amount (or strength) of the drug. To
minimize side effects, we choose the smallest K1 that is required
to stop the fibrosis.
Fig. 6 with K1 = 20 shows the profiles of the decreased Tβ and

the resulting scar progression; notice that the state of a scar
depends primarily on excessive production of ECM, but also
on the disruption of protein cross-linking, so that the initial
slight decrease in ECM in Fig. 6 should not be interpreted as
an actual decrease of the scar. Fig. 6 suggests that to stop the
growth of the fibrotic process by a TGF-β inhibitor the drug
has to be so effective that it reduces the production of TGF-β by
macrophages by a factor of 1=1+K1 = 1=21. Whether such a drug
treatment will remain under the maximum tolerated dose remains
to be explored.
In Fig. 7 we have used anti-C5 to block the initial complement-

mediated inflammation initiated by immune complexes; in this
case, instead of Eq. 9 we have

∂P
∂t

−DP∇2P=
λPEEID
1+K2

+ λPMM

− dPP− dPM
P

KP +P
M;

[16]

with K2 = 50.
Fig. 8 shows the effect of MCP-1 blockade by a CCR2 an-

tagonist; Eq. 4 was replaced by

θ
∂M
∂t

−DM
f∇2M = αðPÞðM0 −MÞ− θ

�
∇ðMχP∇PÞ

1+K3
+ dMM

�
;

[17]

with K3 = 100.
Fig. 9 shows the effect of anti-PDGF Ab, where Eq. 10 was

changed into

∂G
∂t

−DG∇2G=
λGMM
1+K4

− dGG; [18]

with K4 = 1,000.
Fig. 10 shows the effect of MMP injection for ECM turnover

and composition, with K5 = 1:

∂Q
∂t

−DQ∇2Q= λQMMð1+K5Þ− dQQrQrQ− dQQ: [19]

Ref. 39 reviews all of the experimental papers associated with the
above treatments.
The simulations of Fig. 6 show that if we use a TGF-β inhibitor

that reduces its production by macrophages by a factor of
1=21 then fibrosis will not increase during treatment. Similar
conclusions can be drawn from the other treatment simu-
lations; in particular, Fig. 10 shows that the production of
MMP by macrophages needs to increase only by a factor of 2
to stop the progression of fibrosis. Which of these drugs is
“optimal” will depend on their availability, their efficacy, and
their side effects.

Discussion
LN is an autoimmune disease that causes glomerular injury leading
to proteinuria, hematuria, and often impaired kidney function.
As in other forms of glomerulonephritis LN often involves the
tubules and kidney interstitial space, and damage to the tubu-
lointerstitium affects renal prognosis. Tubulointerstitial injury is
thought to begin with interstitial inflammation, which progresses
to interstitial fibrosis and atrophy of the renal tubules. Currently,
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interstitial pathology is assessed with a kidney biopsy, an invasive
procedure that cannot be frequently repeated. It is thus difficult
to follow interstitial injury on a real-time basis. To address this
clinical problem we have developed a mathematical model of the
progress from tubulointerestitial inflammation to fibrosis. The
model was validated by showing that the expression levels of two
biomarkers from LN patients at three different levels of chronic
kidney damage fit with those predicted by the model. To dem-
onstrate how the model may be clinically applied to diagnose
and monitor tubulointerestitial fibrosis, we used the model to
determine how treatment with anti-inflammatory or antifibrosis
drugs, some of which are under development or being tested in
nonrenal fibrosis, affected progression of interstitial injury. Al-
though the model ignored drug delivery issues and potential side
effects, it indicated that such drugs can stop the progression of
renal fibrosis if administered continuously and at appropriate
levels. Interestingly, the model suggests considerable differences
in the relative potencies of the tested drugs necessary to achieve
a therapeutic effect.

The most important use of the model will be to improve the
design of clinical trials for new medications to treat LN. The
simulations from Figs. 6–10 suggest levels of inhibition that are
required for specific antagonists to be effective in attenuating the
inflammation to fibrosis pathway. One of the most difficult
questions in clinical trial design is how to dose a novel ther-
apeutic. Because of limited patient and financial resources
a large dose-ranging study cannot often be done, and so ar-
bitrary choices are made. The model could give a starting
point for an effective dose.
The model can also be used to identify the most vulnerable

segments of the inflammation to fibrosis pathway. Drugs designed
to focus on antagonists to these segments may be the most suc-
cessful therapeutic candidates.
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