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Abstract

Mononuclear phagocytes comprise a mobile, broadly dispersed and highly adaptable system that

lies at the very epicenter of host defense against pathogens and the interplay of the innate and

adaptive arms of immunity. Understanding the molecular mechanisms that control the response of

mononuclear phagocytes to apoptotic cells and the anti-inflammatory consequences of that

response is an important goal with implications for multiple areas of biomedical sciences. This

review details current understanding of the heterogeneity of apoptotic cell uptake by different

members of the mononuclear phagocyte family in humans and mice. It also recounts the unique

role of the Tyro3 family of receptor tyrosine kinases, best characterized for Mertk, in the signal

transduction leading both to apoptotic cell ingestion and the anti-inflammatory effects that result.
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2. INTRODUCTION - THE IMPORTANCE OF MONONUCLEAR PHAGOCYTE

UPTAKE OF APOPTOTIC CELLS

Clearance of apoptotic cells is important during embryonic development and in the

maintenance of immunological self-tolerance 1, but becomes crucial during the resolution of

infection 2-5. During successfully controlled infections, large numbers of leukocytes die by

apoptosis 6-8, and their prompt, efficient clearance by tissue macrophages safely disposes of

the proteolytic enzymes that they contain. Tissue repair is hastened by mediators released by

macrophages during apoptotic cell ingestion 9-13, which include transforming growth factor-

β (TGF-β), platelet activating factor (PAF), prostaglandin E2 (PGE2) and interleukin

(IL-)10 14-17. In a contact-dependent fashion that is incompletely understood, macrophage

recognition of apoptotic cells also suppresses production of inflammatory cytokines,

including tumor necrosis factor-alpha (TNF-α), granulocyte-macrophage colony stimulating
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factor, IL-1β, IL-12 and IL-18 18-23. However, these same anti-inflammatory mediators

released during apoptotic cell ingestion by macrophages have properties that can

compromise host defenses against pathogens and promote fibrosis 24, 25. By contrast, if

apoptotic cells are not promptly ingested, they progress to a late apoptotic stage that is

similar to necrosis, lose membrane integrity, and disintegrate 26. Necrotic cells and late

apoptotic cells drive maturation of immature dendritic cells and hence T cell activation 27-29.

Inflammation can be perpetuated when fragments of late apoptotic cells, notably those

containing High Mobility Group Box-1 protein, bind to Toll-like receptor-4 (TLR4), better

known as the receptor for purified lipopolysaccharide (LPS), thereby activating NF-κB 9, 30.

Uningested late apoptotic cells also release nucleosomes, which are formed in vivo

exclusively by chromatin digestion during apoptosis. Nucleosomes are a major immunogen

for autoantibodies in systemic lupus erythematosus 31-35 and are implicated in

atherogenesis 36-38. Thus, efficient apoptotic cell clearance contributes centrally to

protective adaptive immunity, appropriate resolution of innate inflammation, and the

prevention of autoimmunity.

Macrophage-independent mechanisms for apoptotic cell clearance exist 39-42. Epithelial

cells in the thymus and in the involuting female breast avidly ingest cells undergoing

apoptosis in their respective organs 43-46. Lung epithelial cells and fibroblasts ingest

apoptotic cells in vitro (albeit less efficiently than do macrophages) 47-49. Although the

overall importance of apoptotic cell uptake by these cell types in vivo is unproven, it is

plausible that they contribute significantly in the absence of overt inflammation. However,

during steady state in most organs, and certainly during inflammation, mononuclear

phagocytes are believed to clear most apoptotic cells. These considerations imply that

understanding the molecular mechanisms controlling the response of mononuclear

phagocytes to apoptotic cells and its consequences is an important goal with implications for

multiple areas of biomedical sciences.

This review details the current understanding of heterogeneity of apoptotic cell uptake by

different members of the mononuclear phagocyte family, and the central role in that process

of one family of receptor tyrosine kinases (RTKs), the Tyro3 family. Because portions of

this subject have been reviewed previously 50-53, emphasis will be on recent developments

and their potential implications for human health and disease, and on unresolved questions.

We also discuss why Tyro3 RTKs are so crucial for the signal transduction leading both to

ingestion and to the anti-inflammatory effects that result.

3. HETEROGENEITY OF APOPTOTIC CELL UPTAKE BY MONONUCLEAR

PHAGOCYTES

Mononuclear phagocytes are a heterogeneous group of hematopoietic cells that inhabit every

organ 54-56. In the most general of terms, the mononuclear phagocyte system consists of

circulating monocytes, tissue macrophages and dendritic cells. Except for the plasmacytoid

dendritic cell subset, all appear to derive from a common precursor 57, 58.
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3.1. Monocytes

Monocytes begin their journey by emigrating from the bone marrow into the blood in a

fashion that depends on CC chemokine receptor 2 (CCR2) under both normal and

inflammatory conditions 59, 60. CCR2 binds several CC chemokines, include CCL2

(formerly known as MCP- 1), a chemokine that specifically induces monocyte chemotaxis.

Monocytes circulate briefly before migrating to tissues where they differentiate into

macrophages or dendritic cells 61. Some controversy persists regarding the potential of

individual monocytes to differentiate into these two differentiated mononuclear phagocyte

types; this controversy relates to the issue of monocytes subsets.

There is a long history of attempting to subdivide monocytes into subsets that possess

different capacities for migration and subsequent differentiation. Human monocytes

comprise two principal subsets, a majority “classical” CD14high CD16- population and a

“non-classical” or “proinflammatory” CD14low CD16+ population 55, 62, 63; a third, very

minor double-positive subset has also been identified 64. The CD16- subset, but not the

CD16+ subset of human monocytes can differentiate in vitro into osteoclasts 65. In a model

of reverse-transendothelial migration 66, the monocytes that developed characteristics of

dendritic cells were predominately CD16+ 67. However, both subsets of human monocyte

could differentiate into dendritic cells in culture when stimulated by cytokines 68. The

degree to which each of these monocyte subsets gives rise to other specialized mononuclear

phagocyte cell types in non-lymphoid tissue is incompletely characterized.

Evidence from a transgenic model system suggests that circulating monocytes in mice also

comprise two distinct phenotypes. These phenotypes can be distinguished based on their

expression of two surface molecules, the CX3C chemokine receptor CX3CR1, which is the

unique receptor for the chemokine CX3CL1 (fractalkine), and the Gr-1 epitope found on the

Ly-6C/G family of glycosylphosphatidylinositol-linked molecules on myeloid cells. These

two monocyte phenotypes are, respectively, a short-lived CX3CR1low CCR2+ Gr-1high

subset that can be recruited to sites of inflammation, and a longer-lived CX3CR1high CCR2−

Gr-1low “resident subset” that constitutively migrates to a variety of tissues in a CX3CR1-

dependent fashion 69. The CX3CR1high monocyte subset was recently shown to crawl along

vascular endothelia in a fashion that depends on LFA-1 (CD11a/CD18), permitting them

very rapid entry into sites of inflammation 70. Importantly, CX3CR1 expression also

distinguishes the two main subsets of monocytes in the rat 71, and in humans, where the

CD14low CD16+ population expresses higher levels 69. Thus, an emerging paradigm holds

that mammalian monocytes can be divided into separate lineages distinguishable by their

level of expression of CX3CR1.

Sunderkotter et al. modified this concept somewhat 72, in a study that analyzed murine

monocytes using the ER-MP20 monoclonal antibody, which specifically recognizes only

Ly-6C, a macrophage-specific protein, and not Ly-6G, which is also expressed by other

myeloid cells. Because the previous study by Geissman et al. 69 had defined Gr-1 expression

using the monoclonal antibody RB6-8C5, which recognizes an epitope common to Ly-6G

and Ly-6C 73, direct comparison between the two studies is difficult. Sunderkotter et al.

showed that Ly-6Chigh monocytes were recent bone marrow emigrants, which could be
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recruited to sites of inflammation, and that they gave rise to the more mature Ly-6Clow

monocytes, which had lost this ability 72. The Ly-6Clow subset also preferentially expressed

CD11c and the anti-adhesive molecule CD43. They further showed a continuum of Ly-6C

expression between Ly-6Chigh and Ly-6Clow subsets, with a transient Ly-6Cintermediate

population. These data imply a developmental rather than parallel lineage relationship

between the two monocyte phenotypes. In other studies, both the Gr-1high (Ly-6C/Ghigh) and

the Gr-1low murine monocyte subsets were originally reported to be able to differentiate into

dendritic cells in vivo, but their ability to differentiate into macrophages in vivo was

unknown. A later study focusing on the pulmonary mononuclear phagocyte system

confirmed that both monocyte subsets could differentiate into lung dendritic cells, but that

only Gr-1low monocytes had the potential to differentiate immediately into lung

macrophages 74.

The ability to ingest apoptotic cells is gained as monocytes differentiate within tissues.

Monocytes freshly isolated from the human peripheral blood have very limited capacity to

ingest apoptotic cells 75, 76. Incubation in serum or in TGF-β induces some ability for human

monocytes to ingest apoptotic cells, generally with a marked dependence on CD36 and

vitronectin 77. Because differentiation of monocytes into the wide variety of macrophages

and dendritic cells found in individual organs appears to be under complex and likely unique

regulation, these seminal data will need re-examination as the conditions for organ-specific

differentiation are defined. Like most other aspects of monocyte biology in the mouse, the

capacity of murine peripheral blood monocytes to ingest apoptotic cells is largely unknown,

due to the difficulty in isolating sufficient numbers of this cell type at high purity. To

investigate whether monocytes newly recruited to a site of inflammation contribute to

apoptotic cell clearance, we used in situ vital-staining of resident tissue macrophages in a

well-characterized model of CD4 T cell– dependent lung inflammation 78. Compared to

resident alveolar macrophages, monocytes recruited to the lung ingested apoptotic cells

poorly, whereas they avidly ingested immunoglobulin-opsonized particles. In this antigen-

driven, non-infectious model system, overall numbers of resident alveolar macrophages did

not change significantly over the course of the response and the majority of recruited

monocytes did not become long-term residents. By contrast, in LPS-induced lung

inflammation, Maus et al. found high alveolar macrophage turnover and persistent

replacement by immigrating monocytes 79. These differences in results likely relate to the

degree to which the inflammatory process induces apoptosis of resident tissue macrophages,

a characteristic feature of some infections 80-88

3.2. Resident tissue macrophages

The phenotype of resident macrophages in different organs obviously differs very markedly,

spanning the range from hepatic Kuppfer cells to microglial cells of the central nervous

system. Resident tissue macrophages derive ultimately from hematopoietic precursors, but

there is evidence that in the absence of inflammation in some organs, their numbers are

sustained primarily by local proliferation 89-92. In the mouse, the resident peritoneal

macrophage is often taken to be the “generic” macrophage, due to the ease of its isolation.

Peritoneal macrophages bind apoptotic cells readily by means of multiple receptors and

ingest apoptotic cells fairly avidly, making them an ideal reference cell type. In peritoneal
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macrophages and likely in most mononuclear phagocyte cell types, a crucial signal for

ingestion is stereospecific recognition of externalized phosphatidylserine (PS) on the

apoptotic cell surface 93, 94 via one or more receptors that are blocked, in mice, by

monoclonal antibody 217 95. The biochemical nature of stereospecific PS recognition

remains elusive 96.

Other than the peritoneal macrophage, the most thoroughly studied resident macrophage is

probably the alveolar macrophage, the principal resident phagocyte of the lungs. Resident

alveolar macrophages show markedly reduced apoptotic cell uptake in vitro relative to

resident peritoneal macrophages (in the mouse) 97, 98 or relative to alveolar macrophages

harvested from rabbits three days after the induction of immune-complex-induced injury 75.

The reduced phagocytosis in alveolar macrophages was attributable in part to decreased

adhesion of the apoptotic cells 98, as well as to markedly decreased expression of protein

kinase C (PKC) βII, the sole isoform of PKC required for apoptotic cell uptake 99. Although

the pulmonary collectin surfactant protein A increased apoptotic cell ingestion by alveolar

macrophages 100, 101, the effect was minor and did not increase ingestion by alveolar

macrophages to the levels seen using peritoneal macrophages 98. Human resident alveolar

macrophages also show low capacity to ingest apoptotic cells 102-105. Interestingly, resident

human alveolar macrophages also have very decreased expression of PKC βII, relative to

monocytes 106.

Some data on this issue also exist for microglia, the resident mononuclear phagocyte of the

central nervous system. Microglial cells from surgically resected normal human or rat brains

ingested autologous apoptotic cells, which they bound using CD36 and recognize via

externalized PS 3, 107, 108. Little is currently known about apoptotic cell uptake by resident

macrophages in other tissues, especially for humans.

Mature tissue macrophages can also assume a variety of activation states that have been

characterized as classical activation in response to interferon-gamma, and alternative

activation (reviewed in 109, 110). The capacities of macrophages in these different activation

states to ingest apoptotic cells has received only scant attention 111. Polarized macrophages

(induced in vitro from human peripheral blood CD14+ monocytes supplemented with

Granulocyte-Colony Stimulating Factor) showed increased ability to bind and ingest

apoptotic cells, and unique ability to ingest cells in the early stages of apoptosis 112.

Additional studies examining this issue via polarization of resident tissue macrophages from

various organs would contribute to the understanding of specific disease states.

3.3. Dendritic cells

Dendritic cells are a heterogeneous population of antigen-presenting cells with complex

ontogeny, but distinct dendritic cells subsets can be identified based upon anatomic location,

migratory pathways, and specific immunological function 113. In the resting state, two major

dendritic cells lineages can be distinguished: conventional dendritic cells and plasmacytoid

dendritic cells. Conventional dendritic cells were previously called myeloid dendritic cells, a

term that is falling from usage since it was found that conventional dendritic cells can

develop from both myeloid and lymphoid precursors 114.
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Conventional dendritic cells display a characteristic stellate morphology and participate in

classical dendritic cell functions including uptake, processing, and presentation of antigens

to naïve and memory T cells. Shortman and Naik divide conventional dendritic cells into

“lymphoid-tissue-resident” and “migratory” populations 113. Lymphoid-tissue-resident

conventional dendritic cells include three subsets within the spleen or lymph nodes (CD4+/

CD8−, CD4−/CD8+, and CD4-/CD8-) and up to four additional conventional dendritic cells

populations in the thymus. Migratory dendritic cells include epidermal Langerhans cells 115

and the interstitial dendritic cells of non-lymphoid organs, including the dermis, liver, and

the intestinal, respiratory and reproductive tracts. In response to inflammatory stimuli,

migratory conventional dendritic cells travel in a CCR7-dependent manner to draining

lymph nodes, where they present antigen to naïve T cells.

Whilst migratory conventional dendritic cells are exiting peripheral tissues during

inflammation, in the mouse they are replaced by inflammatory dendritic cells that are

derived from CX3CR1lo CCR2+ Gr-1+ inflammatory monocytes (as described above) and

possibly from CD11c+ dendritic cell precursors in the blood. Gene-targeting has confirmed

the essential role of the chemokine receptor CCR2 in the recruitment of inflammatory

dendritic cells to the skin, spleen and lungs 116-118. Inflammatory dendritic cells resemble

resting migratory conventional dendritic cells in phenotype, although it is uncertain whether

they also migrate to regional nodes to sustain antigen presentation, or are predominately

active within the inflamed tissues. The latter possibility is supported by experiments in mice

showing dendritic cell-dependent local production of TNF-α and inducible nitric oxide

synthase in response to Listeria monocytogenes 59 and by promotion of tissue-specific TH1

polarization by IL-12 production in response to Cryptococcus neoformans (Osterholzer et

al., manuscript submitted).

The efficiency and functional consequence of the uptake of apoptotic cells by conventional

dendritic cells depends not only on the dendritic cells subset, but also on the micro-anatomic

location and context in which the apoptotic cell is encountered (i.e., resting vs. inflammatory

conditions) 119. Uptake of apoptotic cells within lymphoid structures (including lymph

nodes and the thymus) and by immature migratory conventional dendritic cells without

simultaneous stimulation via pathogen recognition receptors is believed to contribute

crucially to maintenance of T-cell tolerance 120-126. This concept has been challenged

recently by the finding that apoptotic cells derived from polyclonally-activated peripheral

blood mononuclear cells (PBMC), but not those from resting PBMC, could induce

maturation of human monocyte-derived dendritic cells 127. In contrast, uptake of a late

apoptotic cell (or necrotic cell) induces conventional dendritic cells to mature 122, 128, to

migrate to local lymph nodes (for migratory dendritic cells), and to stimulate T cell

activation. Although this process may enhance host defense against microbial antigens, it

also risks presentation of self antigens to T cells in a stimulatory context and the subsequent

generation of autoimmunity.

Plasmacytoid dendritic cells comprise an independent dendritic cell lineage 129-131. Formed

primarily in the bone marrow, these dendritic cells take up residence in both lymphoid and

non-lymphoid organs. They produce large amounts of type-1 interferon in response to a

variety of microbial stimuli and are, therefore, particularly important to anti-viral immunity
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(although conventional dendritic cells also may serve a role). Whether plasmacytoid

dendritic cells participate in the clearance of apoptotic cells has not been established.

Dalgaard et al. compared the ability of myeloid dendritic cells and plasmacytoid dendritic

cells to ingest apoptotic leukemic cells and concluded that plasmacytoid dendritic cells do

not contribute to apoptotic cell uptake 132. However, Hoeffel et al. demonstrated that

plasmacytoid dendritic cells acquisition of antigens from cells undergoing viral-induced

apoptosis promoted cross presentation to CD8+ T cells 133. Whether these were late

apoptotic cells (and thus more stimulatory than the leukemic apoptotic cells studied by

Dalgaard et al.) cannot be determined.

4. THE TYRO3 FAMILY OF RTKs

The mammalian Tyro3 family consists of three closely related receptor tyrosine kinases

(RTKs) that are involved in apoptotic cell uptake and immunomodulation. The three

individual family members have acquired a variety of names, reflecting their initial

independent identification by multiple laboratories. Table 1 lists the names used in this

review (Tyro3, Axl and Mertk), together with common synonyms and identifiers for the

human and murine genes. Variable amounts of all three RTKs are expressed by normal and

malignant cells of neural, lymphoid vascular and reproductive origin 134. Tyro3 family

members were originally identified for their transforming ability when over-

expressed 135-139, and as such, can be considered protooncogenes. Indeed, this concept has

been supported by over-expression in both murine and human systems, and several human

cancers over-express Mertk (summarized in 140). All three RTKs are involved in

megakaryocytopoiesis and platelet aggregation 140-142. Because blockade of Tyro3 RTKs

inhibits thrombosis without enhancing bleeding, this activity is under intense scrutiny from

the pharmaceutical industry. Axl is also implicated in natural killer cell differentiation and

vascular remodeling 143. It is likely that the complete range of properties of this interesting

molecular family remains undefined.

4.1. Structure & function of Tyro3 RTKs

Tyro3 family RTKs are defined by a unique shared sequence (in single letter amino acid

code, KWIAIES) within their kinase domain. Tyro3 is prominently expressed in the

developing brain, as well as in adult kidney, testis and ovary, and by both human pulmonary

artery endothelial cells and osteoclasts. Axl appears to be the most widely distributed

member of the family, due to its expression in cell lines of epithelial, mesenchymal and

hematopoietic origins as well as non-transformed cells 135. Mertk was originally named c-

mer due to its expression in monocytes, epithelial cells, and reproductive tissue 144.

Tyro3 RTKs are single-pass type 1 transmembrane proteins with characteristic extra- and

intracellular modular structures. All three appear to be heavily glycosylated; Mertk has 13

potential N-linked glycosylation sites. The extracellular region of each RTK includes two

amino terminal immunoglobulin motifs followed by two more membrane proximal

fibronectin type-III motifs. Immediately after molecular cloning of these RTKs, it was

suggested that these motifs might participate in cell-cell or cell-matrix interactions 137. Axl

was shown to mediate homophilic binding leading to cell aggregation when over-expressed

in S2 cells 145, but to date, there is no direct in vivo experimental evidence for this attractive
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possibility. The alternative possibility, that these motifs contribute to binding of Tyro3

RTKs in cis to other macrophage cell surface receptors, is supported by evidence for a

pairing of Axl (but not Tyro3 or Mertk) with the IL-15Rα chain 146. This interaction

required the extracellular portion of Axl and was present in the absence of ligand

stimulation. Treatment with IL-15 induced tyrosine phosphorylation of both Axl and

IL-15Rα , and activation of the phosphatidylinositol-3 kinase (PI-3K)-Akt pathway,

indicative of the functional nature of this heterologous receptor pairing. These data illustrate

the capacity of Tyro3 RTKs to serve as signaling molecules in association with other

receptors, a possibility to which we will return.

All three Tyro3 family RTKs are receptors for the serum protein growth arrest-specific gene

6 (Gas6), whereas only Tyro3 binds protein S. Both Gas6 and protein S are vitamin K-

dependent soluble factors that can bind externalized PS 147-149, the hallmark of an apoptotic

cell. Binding of these soluble factors provides a means by which Tyro3 family RTKs could

contribute to apoptotic cell recognition. However, Biacore assay has shown that the

association of Mertk with Gas6 is of lower avidity than that of Axl and Tyro3 147. This

finding suggests that Mertk may depend to a greater degree than other family members on

association with other apoptotic cell-binding receptors to initiate apoptotic cell ingestion.

One way in which this could occur is via heterodimerization of Mertk with other Tyro3

RTKs, as has recently been suggested 150. The spatial relationships of Axl binding to Gas6

was recently clarified by analysis of crystal structure at 3.3Å resolution of a minimal human

Gas6-Axl complex. Results revealed an assembly of 2:2 stoichiometry, in which the two

immunoglobulin-like domains of Axl were cross-linked by the first laminin G-like domain

of Gas6, without direct Axl-Axl or Gas6-Gas6 contacts. This study also found major and

minor Gas6 binding sites on Axl, and showed that both binding sites were required for

productive transmembrane signaling. Interestingly, only the minor Gas6 binding site is

highly conserved in Tyro3 and Mertk 151.

The complexity of ligand-binding by Tyro3 RTKs is increased by the finding that soluble

Axl can be generated by ADAM10-dependent cleavage, and is found in high concentration

in mouse serum in association with Gas6 152. Although no such soluble forms of murine

Tyro3 or Mertk were detected in that study, a soluble form of human Mertk was predicted

based on an alternatively spliced RNA transcript 137. Soluble Mertk was recently found to

be produced by multiple human macrophage cell types, and to inhibit both macrophage

clearance of apoptotic cells and platelet aggregation 140.

4.2. Difference in Tyro3 RTK expression among mononuclear phagocyte subsets

Tyro3 family RTKs were first suspected to contribute to apoptotic cell clearance based on

observations in two separate systems: gene-targeted mice lacking expression of all three

RTKs, which showed blindness and massive apoptotic cell accumulation in the spleen 134;

and positional cloning of a gene involved in retinitis pigmentosa in rats 153, 154, which

identified a spontaneous mutation in Mertk. Blindness in the rats proved to result from

defective ingestion of photoreceptor outer segments by retinal pigment epithelial cells, a

process closely akin to apoptotic cell uptake 155. The central role of these RTKs in apoptotic

cell uptake was thereafter rapidly and conclusively confirmed using the gene-targeted mice.
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Triple knockout mice lacking all three Tyro3 RTKs developed a severe lymphoproliferative

disorder characterized by auto-immunity and widespread thrombosis associated with anti-

phospholipid antibodies 156. Mice lacking Mertk expression showed accumulation of

uningested apoptotic thymocytes after injection of dexamethasone, and reduced clearance of

labeled apoptotic cells from the spleen and thioglycollate-treated peritoneal cavity,

following intravenous and intraperitoneal injection, respectively 157.

Of the three Tyro3 RTKs, monocytes appear to express mRNA only for Mertk, the family

member most restricted to the mononuclear phagocyte lineage 137, 138. Using flow

cytometry, we found that mononuclear phagocytes freshly-recruited to the lungs express

only very low amounts of Mertk 78. This observation, in agreement with unpublished data

from Behrens et al. 158, is not necessarily at odds with the original finding that Mertk could

be detected on circulating human monocytes, as that earlier data relied on RT-PCR 137.

Tissue resident macrophages may differ in expression of individual Tyro3 RTKs {e.g.,

resident murine alveolar macrophages appear to express all three receptors, whereas resident

peritoneal macrophages from unstimulated mice express only MerTK (unpublished

observation)}, although this subject has not been defined for many organs in either mice or

humans. In the primary tissue macrophages for which it has been examined, dependence on

Mertk for apoptotic cell uptake is significant 78, 98, 157, whereas the role for Tyro3 and Axl

appears more minor 150. To our knowledge, expression of Tyro3 RTKs and their

contribution to apoptotic cell uptake have not been examined in relation to polarized states

of macrophage activation in either species.

The role of Tyro3 RTKs in apoptotic cell uptake by murine dendritic cells has been

investigated by two groups. Behrens et al. found that splenic dendritic cells of both

conventional (CD11c+, CD11b+) and CD8αα+ subsets expressed Mertk, whereas the

absence of Mertk+ cells in B cell zones of the spleen argued against expression by follicular

dendritic cells 158. In that study, bone marrow-derived dendritic cells from Mertk-deficient

mice showed no impairment in uptake of apoptotic cells. Similarly, Mertk was shown by

Seitz et al. to be unnecessary for apoptotic cell uptake by bone marrow-derived dendritic

cells and splenic dendritic cells. By contrast, they found reduced apoptotic cell ingestion by

bone marrow-derived dendritic cells, splenic dendritic cells, and to a lesser degree

thioglycollate-elicited peritoneal exudate macrophages from mice lacking either Axl, Tyro3

or both RTKs 150. There are currently no data on this subject in humans or in resident

dendritic cells from mucosal surfaces in mice.

The differential capacity of tissue macrophages versus dendritic cells to ingest apoptotic

cells 50 has important consequences for immunoregulation. For example, because immature

dendritic cells but not macrophages can induce a specific cytotoxic T cell response after

ingesting virally-infected apoptotic cells 120, development of specific anti-viral immunity

depends on the cell type of the mononuclear phagocyte that ingests the infected apoptotic

cells.
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5. TYRO3 RTKS AS SIGNAL-TRANSDUCING ELEMENTS DURING

APOPTOTIC CELL UPTAKE

5.1. Basics of signal-transduction during apoptotic cell uptake

Apoptotic cell recognition by mononuclear phagocytes activates an intracellular signaling

cascade leading to efficient apoptotic cell engulfment. This engulfment process was

originally believed to be similar to phagocytosis triggered by Fc receptors (FcR), and the

two processes do share some characteristics, such as dependence on PI-3K and

phospholipase C γ (PLC γ) 159, 160. However, both biochemical and morphological

differences between uptake of the two types of particles are now appreciated. PKC βII is

uniquely required for apoptotic cell ingestion 99, which differs from the PKC isoform

requirements for macrophage phagocytosis of other particles 161, 162. Apoptotic cell

ingestion does not require the cytoplasmic tyrosine kinase Syk 163, which is essential for

FcγR-mediated ingestion 164, 165. FcR-mediated uptake involves “membrane zippering” 166,

whereas apoptotic cell uptake has been show to involve macro-pinocytosis, leading to

formation of spacious phagosomes 112, 167, 168 (although this point has been

contested 169-171). The unique features of the apoptotic cell engulfment process have earned

it a new term, “efferocytosis” (from effero — to carry to the grave) 172.

Because absence or inhibition of Tyro3 RTKs has no effect on FcR-mediated phagocytosis,

to understand their role in apoptotic cell clearance it is helpful to consider the minimal

signaling pathways essential for that process, which are strictly conserved between worms

(such as Caenorhabdiis elegans) and mammals (Fig. 1). Genetic analysis in C. elegans 173

has identified two crucial epistatic pathways. One pathway consists of the cell surface

receptor ced-1 (likely mammalian homolog: lipoprotein receptor-related protein, also known

as CD91), the intracellular adapter ced-6 (GULP), and the ATP-binding cassette transporter

ced-7 (mammalian homolog recently shown to be ABCA7 174). The other pathway consists

of the adaptor protein ced-2 (mammalian homolog CrkII), the adaptor protein ced-5

(Dock180), the Rho family GTP-binding protein ced-10 (Rac1), and the Rho family GTP-

binding protein ced-12 (ELMO) 175-177. The ced-1, -6, -7 pathway also acts genetically

upstream of ced-10 in worms 178, but the biochemical point of connection between the two

pathways is not yet established.

The ced-2, -5, -10, -12 pathway (CrkII-Dock180-Rac-ELMO in mammals), which is entirely

intracellular, is required for actin cytoskeleton restructuring during phagocytosis. This

pathway is regulated by RhoG, which increases apoptotic cell engulfment, and RhoA, which

decreases it 179. In keeping with this finding, RhoG and its exchange factor TRIO were

found to interact with ELMO, promoting Rac1 activation and cytoskeletal

reorganization 180. However, exactly how this intracellular pathway interacts with the many

surface receptors involved in apoptotic cell engulfment remains incompletely defined. Until

recently, the only known link was with the αvβ5 integrin, which must interact with the

p130Cas-CrkII-Dock180 complex for apoptotic cell internalization 181. It was also known

that inhibitors of protein tyrosine kinases blocked apoptotic cell uptake 159, 181 by both

dendritic cells, which use αvβ5 integrin, and macrophages, which use αvβ3 integrin 121.
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5.2. Features of Tyro3 RTKs that facilitate signal transduction

The properties of Tyro3 family members (reviewed in 53) imply that they could interact with

many other macrophage molecules to transduce signals during apoptotic cell ingestion.

Besides their tyrosine kinase activity, such properties include their ability to serve as cell

surface receptors for soluble PS-binding proteins, their multiple extracellular motifs

reminiscent of adhesion molecules, and their intracellular multi-ligand domain. Such a

signaling role is supported by several types of data.

First, prompt and specific tyrosine phosphorylation of Mertk itself is induced by exposure to

apoptotic cells (for macrophages) or outer rod segments (for retinal pigment epithelial

cells) 160, 182 . This finding matches the suspected mechanism of activation of most RTKs

by ligand-induced oligomerization, typically dimerization. Oligomerization yields an active

kinase via auto-transphosphorylation of tyrosines in the kinase activation loop or

juxtamembrane region 183. Indeed, a chimeric molecule containing the transmembrane and

intracellular domains of Mertk showed ligand-inducible tyrosine autophosphorylation 184.

RTK tyrosine phosphorylation is also needed to form binding sites within the intracellular

multi-ligand domain for SH2-domain containing proteins.

Second, the intracellular multi-ligand domain of Tyro3 family RTKS have been shown to

bind many signaling intermediaries known or suspected to be involved for apoptotic cell

engulfment. For example, interaction of Tyro3 with its ligand protein S recruits Src 185, and

the p85 subunit of phosphatidylinositol-3-OH kinase (PI-3K) 186, which is required for

apoptotic cell ingestion 159. Axl can bind PI-3K, PLC γ, Grb2, Src, and others, presumably

via their SH2 domains. Axl also binds C1-TEN (C1 domain-containing phosphatase and

TENsin homologue), a protein without other currently identified partners 187, 188.

Third, dimerization of Mertk during apoptotic cell recognition leads to activation of

downstream mediators. One example is the tyrosine phosphorylation of PLC γ 160, a key

signaling event that leads to formation of inositol 1,4,5 trisphosphate and diacylglycerol,

which are essential for cytoskeletal rearrangements. Similarly, ligand-dependent activation

of Mertk on human monocytes induces phosphorylation and release from MerTK of the

guanine exchange factor Vav1, and subsequent activation of the RhoA family members

Rac1, Cdc42 and RhoA 189. This constitutive, SH2-dependent, but phosphotyrosine-

independent interaction between Mertk and Vav1 is unusual. The cytoplasmic domain of

Mertk has also been shown to be able to tyrosine phosphorylate PI-3K, Shc and Grb2 190. It

is likely that ligand-induced oligomerization occurs during apoptotic cell recognition by

other Tyro3 family receptors, but there is also potential for ligand-independent

dimerization 151, 191.

Mertk so far appears unique in its ability to alter the cytoskeleton on apoptotic cell binding

through small G protein regulators of cytoskeletal dynamics such as Rac1, Cdc42 and

RhoA 184. The Birge laboratory has shown that Mertk activation (by Gas6 or via a

constitutively active Mertk construct) induces Src-mediated phosphorylation of focal

adhesion kinase (FAK), which in turn recruits FAK to the αvβ5 integrin. The ultimate result

is Rac1 activation via the 130CAS-CrkII-Dock180 complex 192. This finding is important

because it indicates involvement of Mertk in the classical apoptotic cell signaling pathway
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(Fig. 1). Conversely, during ingestion of photoreceptor outer segment fragments by retinal

pigment epithelial cells, phagocytosis and signaling involving MerTK were abolished by

absence either of αvβ5 integrin or of the apoptotic cell-binding soluble factor milk fat

globule-EGF-factor 8 (MFG-E8), which bind αvβ5 integrin but not Mertk 193. Taken

together, these findings imply that neither Mertk nor αvβ5 integrin can be considered simply

to be downstream of the other. Instead, the two molecules appear to cooperate to mediate

apoptotic cell recognition. It is likely that Mertk interacts with additional transmembrane

molecules, e.g., we have recently found evidence that scavenger receptor A I/II (CD204) is

essential for optimal activation of MerTK and subsequent signaling required for apoptotic

cell ingestion by murine macrophages (Todt et al., submitted).

5.3. What's so special about Tyro3 RTKs?

A wide variety of macrophage surface receptors from unrelated molecular families have

been implicated in apoptotic cell ingestion 10, 101, 194-203. Why so many receptors are

involved in this process is unresolved. One viewpoint holds that redundancy is essential to

safeguard such a crucial process. This explanation is supported by macrophage recognition

of ICAM-3 on apoptotic neutrophils but not lymphocytes 204, 205. Alternatively, Gregory

and Devitt have suggested that this redundancy increases the flexibility of the system, by

allowing a more specific response to the context in which the apoptosis occurs 206. Multiple

low-affinity receptor-ligand interactions may jointly serve as a high avidity complex, similar

to the immunological synapse formed between T cells and antigen-presenting cells.

A corollary of this viewpoint, that receptors from different molecular families could serve

different and fundamentally unique functions, is particularly relevant to the Tyro3 RTKs.

Among the bewildering array of receptors implicated in apoptotic cell uptake, the evidence

for involvement of many comes only from antibody blocking experiments that did not

distinguish between a role in apoptotic cell adhesion and a signaling role essential for

ingestion 167. Importantly, adhesion of apoptotic cells to a variety of murine tissue

macrophages and macrophage cell lines is not inhibited by function-blocking monoclonal

antibody against Mertk 98; whether this is the case for Axl and Tyro3 in other mononuclear

phagocyte subsets is unknown. Normal tethering of apoptotic cells is seen in macrophages

and dendritic cells from Mertk deficient mice and in macrophages from transgenic mice

lacking MFG-E8, both of which show highly defective in vivo apoptotic cell

clearance 157, 207. Further support for an essential signaling role for Tyro3 RTKs comes

from the observation that an overt autoimmune phenotype results from deletion of only a

subset of the many genes implicated in apoptotic cell clearance. Intriguingly, Tyro3 RTKs

are among them 134, 208, along with MFG-E8 209, serum amyloid P-component, C1q, C4 and

IgM 176.

Tyro3 RTKs, especially Mertk, also appear to contribute to the immunosuppressive effect of

apoptotic cell engagement. Mice lacking Mertk surface expression displayed

hypersensitivity to LPS in vivo that could be largely reversed by anti-TNF-α. Relative to

peritoneal exudate macrophages from wild-type mice, peritoneal exudate macrophages from

these mutant mice over-produced TNF-α and showed increased and sustained binding of

NF-kB to the TNF-α promoter 210. Splenic dendritic cells from triple-mutant mice lacking
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expression of all three Tyro3 RTKs exhibited markedly increased expression of major

histocompatibility complex class II molecules and CD86 after in vitro LPS stimulation 156.

Mertk is also required for apoptotic cell-induced inhibition of NF-kB activation by LPS in

murine bone marrow-derived dendritic cells 211. Collectively, these findings could imply

that signals emanating from Tyro3 RTKS (or possibly just Mertk) intersect signals arising

from the TLR4/CD14 complex. This exciting possibility clearly merits additional study.

Interestingly, Ebola and Marburg viruses use Tyro3 RTKs to gain cell entry 212, which has

been suggested to contribute to the dysregulation of the immune system and vascular

endothelium seen during infection with these highly pathogenic filoviruses.

A significant increase in the understanding of how Tyro3 RTKs contribute to the

immunomodulatory effect of apoptotic cells came from the recent finding that activation of

Axl by Gas6 or apoptotic cells induces Twist proteins 1 and 2 213, which are basic helix-

loop-helix transcriptional repressors that inhibit production of TNF-α and other NF-κB-

dependent inflammatory cytokines 214. In a separate study, the typical anti-inflammatory

response in macrophages ingesting apoptotic cells was not seen when the target was itself a

macrophage induced to apoptosis by free-cholesterol loading (but not by ultraviolet

irradiation or exposure to oxidized low density lipoproteins) of elicited murine peritoneal

macrophages 215. In this case, there was induction of TNF-α and IL-6 that was reduced in

the absence of Mertk, but not of CD91, another receptor implicated in apoptotic cell uptake.

Inflammatory cytokine release required cell-cell contact and the ERK 1/2 signaling pathway,

but neither apoptotic cell ingestion nor the TLR adapter MyD88. These findings implicate

Mertk as a potential therapeutic target in late in atherosclerotic plaques.

6. CONCLUSIONS

Given the complex ontogeny of tissue macrophages and dendritic cells, it is simplistic to

make broad generalizations about apoptotic cell uptake of these two cell types without

reference to their source and its state of inflammation. The phenotype of tissue macrophages

and dendritic cells residing in different organs has probably been selected during evolution

to provide an optimal balance between the potentially immunosuppressive effects of

apoptotic cell ingestion (relative to that organ's exposure to pathogens) and the potentially

damaging effects of delayed apoptotic cell clearance. Differences in expression by

mononuclear phagocytes of the Tyro3 RTKs, and possibly differences in the association of

Tyro3 RTKs with other receptors, are undoubtedly a significant component of this

evolutionary process. By contrast, monocytes recruited into these tissues appear to start out

largely without ability to ingest apoptotic cells, and hence appear to be highly malleable by

the environment to which they are recruited.

The essential role of Tyro3 family RTKs in apoptotic cell uptake by mononuclear

phagocytes likely results because they can perform two crucial functions simultaneously: (a)

providing assembly points for a broad range of signaling intermediaries; (b) activating

multiple molecules crucial for actin cytoskeleton restructuring. Tyro3 RTKs probably also

contribute to form the phagocyte:apoptotic cell synapse because they are cell surface

receptors for soluble PS-binding proteins, and possibly because their extracellular motifs can

interact with adhesion molecules on the apoptotic cell, or with other receptors on the
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phagocyte surface. Because Tyro3 RTKs appear to be unique among receptors for apoptotic

cells in displaying this range of contributions, we hazard the prediction that they will prove

to be the central “trigger” through which the apoptotic cell ingestion process is initiated.

Until the factors controlling differentiation of specific macrophage and dendritic cell subsets

from monocytes are better defined, results from analyses of mononuclear phagocyte cell

lines and in vitro-manipulated monocytes must be validated against the actual behavior of

macrophages and dendritic cells in different tissues and in various disease states. This

validation process, far from being “descriptive”, is a crucial step in the translation of basic

science into approaches that can be tested in clinical research. A robust molecular

understanding of apoptotic cell clearance by specific subsets of mononuclear phagocytes

holds great promise for novel therapeutic approaches to most chronic diseases.
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LPS lipopolysaccharide
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PKC protein kinase C
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PS phosphatidylserine
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TGF-β transforming growth factor-beta
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Figure 1. Schematic diagram of the epistatic pathways of essential genes for apoptotic cell
clearance in worms, with presumed mammalian homologs
The engulfing cell (for C. elegans) or macrophage is shown in outline, and the apoptotic cell

(AC) is in gray. The names of C. elegans genes are shown in black letters and those of the

corresponding mammalian genes are in blue letters. The proteins of the CED-1/CED-6/

CED-7 pathway are shown in red. Note that CED-7 must be present on both the apoptotic

cell & the engulfing cell. The proteins of the CED-2/CED-5/CED-10/CED-12 pathway are

in green. Arrows indicate actin cytoskeleton-driven membrane reorganization leading to

engulfment. Adapted from 175
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