Skip to main content
. Author manuscript; available in PMC: 2014 Oct 9.
Published in final edited form as: KDD. 2012;2012:1095–1103. doi: 10.1145/2339530.2339702

Table 3.

Comparison of our proposed approaches (cFSGL and nFSGL) and existing approaches (Ridge and TGL) on longitudinal MMSE and ADAS-Cog prediction using MRI features (M) in terms of normalized mean squared error (nMSE), average correlation coefficient (R) and mean squared error (MSE) for each time point. 90 percent of data is used as training data.

Ridge TGL cFSGL1 cFSGL2 cFSGL3 nFSGL1 nFSGL2
Target: MMSE

nMSE 0.548 ± 0.057 0.449 ± 0.045 0.428 ± 0.052 0.400 ± 0.053 0.395 ± 0.052 0.412 ± 0.054 0.408 ± 0.056
R 0.689 ± 0.030 0.755 ± 0.029 0.772 ± 0.030 0.790 ± 0.032 0.796 ± 0.031 0.788 ± 0.031 0.792 ± 0.031

M06 MSE 2.269 ± 0.207 2.038 ± 0.262 2.117 ± 0.209 2.069 ± 0.209 2.071 ± 0.213 2.149 ± 0.194 2.181 ± 0.201
M12 MSE 3.266 ± 0.556 2.923 ± 0.643 2.900 ± 0.629 2.803 ± 0.662 2.762 ± 0.669 2.835 ± 0.662 2.793 ± 0.659
M24 MSE 3.494 ± 0.599 3.363 ± 0.733 3.125 ± 0.612 3.016 ± 0.624 3.000 ± 0.642 3.031 ± 0.604 2.979 ± 0.546
M36 MSE 4.003 ± 0.853 3.768 ± 0.962 3.456 ± 0.766 3.302 ± 0.781 3.265 ± 0.803 3.263 ± 0.785 3.211 ± 0.786
M48 MSE 4.328 ± 1.310 3.631 ± 1.226 2.857 ± 0.892 2.787 ± 0.871 2.871 ± 0.884 2.780 ± 0.855 2.766 ± 0.826

Target: ADAS-Cog

nMSE 0.532 ± 0.095 0.464 ± 0.067 0.444 ± 0.059 0.404 ± 0.055 0.391 ± 0.059 0.386 ± 0.060 0.381 ± 0.057
R 0.705 ± 0.043 0.747 ± 0.033 0.765 ± 0.032 0.791 ± 0.026 0.803 ± 0.024 0.809 ± 0.023 0.809 ± 0.023

M06 MSE 5.213 ± 0.522 4.820 ± 0.489 4.779 ± 0.421 4.543 ± 0.374 4.451 ± 0.340 4.458 ± 0.354 4.428 ± 0.351
M12 MSE 6.079 ± 0.775 5.813 ± 0.697 5.605 ± 0.622 5.363 ± 0.595 5.230 ± 0.589 5.183 ± 0.597 5.136 ± 0.617
M24 MSE 7.409 ± 1.154 6.835 ± 1.052 6.893 ± 0.950 6.456 ± 0.974 6.249 ± 0.996 6.174 ± 0.943 6.153 ± 0.911
M36 MSE 7.143 ± 1.351 6.938 ± 1.363 6.475 ± 1.135 6.101 ± 1.071 5.928 ± 1.064 5.819 ± 0.945 5.879 ± 0.972
M48 MSE 6.644 ± 2.750 6.000 ± 2.738 5.767 ± 2.189 5.751 ± 2.081 5.980 ± 1.979 5.889 ± 1.848 5.837 ± 2.160