Skip to main content
. Author manuscript; available in PMC: 2014 Oct 9.
Published in final edited form as: KDD. 2012;2012:1095–1103. doi: 10.1145/2339530.2339702

Table 4.

Comparison of our proposed approaches (cFSGL and nFSGL) and existing approaches (Ridge and TGL) on longitudinal MMSE and ADAS-Cog prediction using MRI+META features (M+E) in terms of normalized mean squared error (nMSE), average correlation coefficient (R) and mean squared error (MSE) for each time point. 90 percent of data is used as training data.

Ridge TGL cFSGL1 cFSGL2 cFSGL3 nFSGL1 nFSGL2
Target: MMSE

nMSE 0.404 ± 0.056 0.320 ± 0.044 0.310 ± 0.042 0.311 ± 0.042 0.312 ± 0.043 0.308 ± 0.046 0.303 ± 0.046
R 0.788 ± 0.032 0.839 ± 0.027 0.842 ± 0.026 0.841 ± 0.026 0.840 ± 0.026 0.839 ± 0.027 0.843 ± 0.027

M06 MSE 2.188 ± 0.194 1.943 ± 0.161 1.918 ± 0.155 1.912 ± 0.153 1.907 ± 0.149 1.935 ± 0.150 1.906 ± 0.149
M12 MSE 2.744 ± 0.638 2.366 ± 0.722 2.355 ± 0.716 2.356 ± 0.713 2.357 ± 0.711 2.374 ± 0.696 2.326 ± 0.707
M24 MSE 3.113 ± 0.560 2.821 ± 0.664 2.790 ± 0.653 2.823 ± 0.656 2.875 ± 0.675 2.766 ± 0.601 2.730 ± 0.604
M36 MSE 3.150 ± 0.517 2.933 ± 0.657 2.851 ± 0.635 2.878 ± 0.640 2.905 ± 0.646 2.755 ± 0.550 2.792 ± 0.523
M48 MSE 3.639 ± 0.959 3.544 ± 1.136 3.233 ± 1.070 3.098 ± 1.013 2.956 ± 0.924 2.942 ± 0.928 2.961 ± 0.969

Target: ADAS-Cog

nMSE 0.314 ± 0.036 0.278 ± 0.034 0.238 ± 0.033 0.233 ± 0.035 0.235 ± 0.035 0.238 ± 0.035 0.243 ± 0.035
R 0.840 ± 0.015 0.868 ± 0.016 0.882 ± 0.013 0.886 ± 0.014 0.886 ± 0.014 0.884 ± 0.015 0.880 ± 0.013

M06 MSE 3.972 ± 0.415 3.560 ± 0.469 3.566 ± 0.380 3.553 ± 0.375 3.617 ± 0.362 3.659 ± 0.356 3.535 ± 0.403
M12 MSE 4.365 ± 0.469 4.080 ± 0.598 3.742 ± 0.394 3.678 ± 0.389 3.659 ± 0.393 3.739 ± 0.367 3.742 ± 0.430
M24 MSE 6.028 ± 1.128 5.888 ± 1.641 5.226 ± 1.201 5.115 ± 1.277 5.122 ± 1.338 5.111 ± 1.222 5.257 ± 1.337
M36 MSE 5.824 ± 1.076 5.639 ± 1.339 4.871 ± 0.894 4.747 ± 0.957 4.712 ± 1.002 4.737 ± 0.917 5.055 ± 1.033
M48 MSE 6.192 ± 2.327 6.337 ± 2.487 5.133 ± 1.499 5.065 ± 1.446 5.103 ± 1.527 4.968 ± 1.339 5.404 ± 1.802