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Abstract

Markov models used to analyze transition patterns in discrete longitudinal data are based on the

limiting assumption that individuals follow the common underlying transition process. However,

when one is interested in diseases with different disease or severity subtypes, explicitly modeling

subpopulation-specific transition patterns may be appropriate. We propose a model which captures

heterogeneity in the transition process through a finite mixture model formulation and provides a

framework for identifying subpopulations at different risks. We apply the procedure to

longitudinal bacterial vaginosis (BV) study data and demonstrate that the model fits the data well.

Further, we show that under the mixture model formulation, we can make the important

distinction between how covariates affect transition patterns unique to each of the subpopulations

and how they affect which subgroup a participant will belong to. Practically, covariate effects on

subpopulation-specific transition behavior and those on subpopulation membership can be

interpreted as effects on short-term and long-term transition behavior. We further investigate

models with higher-order subpopulation-specific transition dependence.

Keywords

Mixture Model; Mover Stayer Model; Heterogeneity; Longitudinal Data; Markov Model;
Bacterial Vaginosis

Copyright © 2013 John Wiley & Sons, Ltd.
*Correspondence to: Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy
Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20852, USA.
albertp@mail.nih.gov.

NIH Public Access
Author Manuscript
Stat Med. Author manuscript; available in PMC 2015 August 15.

Published in final edited form as:
Stat Med. 2014 August 15; 33(18): 3204–3213. doi:10.1002/sim.6151.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



1. Introduction

Bacterial vaginosis (BV) is characterized by disturbances in vaginal flora and is associated

with adverse pregnancy outcomes and increased risk of HIV infection and sexually

transmitted diseases [1]. The diagnosis is based on Gram-stained smears assessed using the

Nugent score criterion, which derives an overall score from 0 to 10 corresponding to

increasing severity of bacterial flora imbalance [2]. Most studies classify vaginal flora as a

dichotomous state (i.e., BV versus no BV or abnormal versus normal vaginal flora) and

analyze data with Markov models [3, 4]. However, to better understand dynamic changes in

vaginal flora states by utilizing transient status information, we considered three severity

levels of vaginal microbiome disturbance: normal (0 to 3 points), intermediate (4 to 6

points), and BV vaginal flora state (7 to 10 points). The intermediate state is thought to

provide additional information when considering the natural history of vaginal ecosystem [5,

6].

BV recurrence is common [7], but the etiology of onset and remission is not yet clear.

Interestingly, studies of short-term vaginal flora condition suggest different patterns of

change may exist; a proportion of women rarely experience BV and vaginal statuses of

others remain disturbed at medium to high level, whereas the majority fluctuate across all

severity states [8, 9, 10, 11]. It is thought that those with distinct vaginal flora profile may be

different with respect to their covariate patterns [9, 12]. Therefore, critical to our

understanding of the etiology and avoiding possible adverse sequelae of this condition is

elucidating factors contributing to differences between women with persistence or resistance

for BV over time and those who frequently transition across all states.

To address this, we develop a framework which models the probability of being in each of

the three groups as well as examines covariates for each of the three processes. More

specifically, we utilize a mixture model of three transition processes that captures

heterogeneity in the transition process across individuals and incorporates the ordinal nature

of the level of bacterial flora imbalance. This model is a latent class model with three

mixture components corresponding to groups of subjects who (a) alternate between normal

and intermediate states (i.e., non-BV), (b) fluctuate between intermediate and BV states (i.e.,

abnormal vaginal flora), and (c) shift across all three states.

This mixture of transition processes extends the mover-stayer model introduced by Blumen

et al. [13], which assumes that subjects either never leave their initial state or transition

across states. The mover-stayer approach was previously used to study the natural history of

BV by Sanders et al. [3], but that study was limited by having a small number of follow-up

measurements and treated BV status as dichotomous. In our model, a “stayer” is newly

defined as shifting between two states (either process (a) or (b)), and we apply it to vaginal

flora data obtained from a large number of visits over a two-year period.

There exist statistical procedures for longitudinal categorical data including those by Miller

et al. [14] and Azzalini [15]. Albert [16] proposed a Markov model for ordinal data for a

relapsing-remitting disease by expanding to a state space with both the ordinal state and a

trajectory in the ordinal state process. For bivariate ordered responses, Dale [17] and
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Williamson et al. [18] proposed Global cross-ratio models and global odds ratio models,

respectively. These models were further extended for multivariate ordinal data by

Molenberghs and Lesaffre [19]. Marginalized transition model for longitudinal data was

presented for binary data by Heagerty [20] and ordinal categorical data by Lee and Daniels

[21]. Cook [22] introduced a Markov model with random effects to incorporate

heterogeneity in the transition patterns across individuals. When transition between

unobserved states is of interest, a hidden Markov model (HMM) can be used by assuming a

Markov process between latent states [23]. Our problem shares the idea of latent classes

with HMM but involves biological phenomenon where transition occurs between observed

states (severity levels), not between latent groups (i.e., groups A, B, and C); on the other

hand, a finite mixture of transition processes is suitable for modeling heterogeneity in BV

data, using both the probability of inclusion in a hidden subgroup as well as transition

patterns within a group. We also compare our model with traditional Markov model and

further investigate higher-order dependence structures. Initially, we assume the first-order

transition process within each group, but we relax this assumption by the incorporation of

second-order lag terms or the history of prior responses. We demonstrates our method with

bacterial vaginosis (BV) study data conducted by the Rakai Health Science Program (RHSP)

in southwestern Uganda [24, 25, 26].

Section 2 describes the BV longitudinal data from the RHSP study and presents models and

computational methods. In Section 3, we demonstrate our procedure with RHSP BV data.

We test the goodness of fit of our model to BV data and compare it with traditional Markov

model in Section 3.1. We present inference under the simple Markov model and the

proposed mixture model and discuss the extension of the mixture model with higher-order

lag terms in Section 3.2. Section 3.3 shows simulation results, which indicates that the

proposed method performs well. Section 4 summarizes our findings and provides a

discussion.

2. Data, model formulation, and estimation

Two hundred fifty five postmenarcheal women were followed weekly for 96 weeks for

vaginal microbiome assessment, and 246 subjects with non-missing measurements for HIV

status and partners’ circumcision status at baseline were used for our analyses. Categories of

vaginal flora described in the Introduction as normal, intermediate, and BV are referred to as

states 1, 2, and 3, respectively. Eleven subjects never had BV, and 15 subjects never had

normal vaginal flora. The numbers of women who stayed only in states 1, 2, and 3 are one,

zero, and six, respectively. Sample proportions in states 1, 2, and 3 across all individuals and

follow-up times are 0.44, 0.17, and 0.39, respectively. Figure 1 demonstrates heterogeneity

in the transition process and provides visual evidence for the proposed three-group mixture

model. We now introduce the traditional Markov model and compare it with the mixture

model.

2.1. Traditional Markov model

A traditional first-order Markov model, referred to as Model 1, is given as
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(1)

where there are three states, Xit and Yit are the covariates and the ordinal outcome for the ith

person at the tth time point, respectively. And I(Yi(t−1) = 2) and I(Yi(t−1) = 3) denote indicators

of the outcome at the previous week being at state 2 or 3, respectively, i = 1, …, N, and t =

1, …, T where T=96.

The parameter τ is the effects of covariates and τ5, and τ6 are those for lag terms at state 2 or

3, respectively. Large values of τ, τ5, and τ6 are associated with an increase of vaginal flora

severity levels. This model adopts a cumulative logit link function that utilizes the

proportional odds assumption [27] to model the intrinsic ordering between response

categories. It assumes that the odds ratios between the lowest and all higher levels of the

response variable are the same as those between the next collapsed lowest level and all

higher levels for each covariate.

2.2. Mixture transition model

The mixture transition model provides a richer framework designed to reflect the

heterogeneous nature of the population, and we refer to it as Model 2. This model specifies

that the population consists of three groups of women. Subjects who fluctuate between

normal and intermediate states (states 1 and 2) are classified as group A. Those who persist

with intermediate vaginal flora state and BV (states 2 and 3) are group B. Participants who

stay at state 1 or state 2 for the entire study period are included in group A whereas those

who are at state 3 at all weeks in group B. The remainder of the cohort, referred to as group

C, represents women who transition across all three states. Note that factors for

distinguishing groups A and B from group C are associated with long-term effects for

resistance and persistence over two years (i.e., over the whole period of the study), whereas

predictors for switching between BV statuses relate to short-range effects on weekly

transitions. In an attempt to describe covariates consistent with long-term and short-term

transition patterns, we model explanatory variables associated with group membership and

factors for increasing Nugent score severity level within group membership. Let Gi be the

true group membership variable for the ith person, where Gi = A, B, and C for groups A, B,

and C, respectively. The parameter wiA denotes P(Gi = A), the probability of the ith person

belonging to group A. The parameters wiB and wiC are defined similarly for groups B and C,

respectively. We incorporate the relationship of group membership with covariates with a

polychotomous logistic model

(2)

where Zi is a vector of covariates for the ith person, and m = A and B for groups A and B,

respectively. The parameters λA and λB characterize covariate dependence for the

probability of being in groups A and B over two years, respectively. Large positive

estimates of  and λm suggest a high probability of being in group m rather than group C.
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We now propose parameterization for the transition models that describe each of the three

groups. For individuals whose true group membership is A, their responses are described as

(3)

while those for group B are modeled by

(4)

where Xit denotes a vector of covariates and α5 and β5 describe the first-order transition

dependence in groups A and B, respectively. The model for subjects whose vaginal flora

states could potentially move across all three states (group C) is specified with a

proportional odds parameterization to exploit the ordinal nature of the outcome as

(5)

where j represents the two states. Positive estimates for α, β, and γ translate to short-term

covariate effects on the increased odds for exacerbation in imbalanced vaginal flora. The

dependence of vaginal microbiome states on prior measurements is modeled with α5, β5, and

(γ5, γ6) in groups A, B, and C, respectively. This model reduces to Model 1 if proportions of

both group A and group B are zero.

For the second-order models which will be discussed in Section 3.2, lag terms two weeks

prior to the measurements are added and equations (3), (4), and (5) are modified as

For building a likelihood, we introduce a variable Oi to classify participants based on their

observed BV state sequences. The random variable Oi = 1 if the observed BV state of the ith

person is always either 1 or 2 while their true membership Gi could be A or C. In a similar

way, Oi = 2 for those who were never observed to be in state 1 and their true membership

could be B or C. Oi = 3 if subjects visited all three states and their true membership Gi is

always C. Then, the likelihood for the ith subject has the form
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(6)

where θ is a vector of all parameters for groups A, B, and C. We obtained maximum

likelihood estimates of parameters with the Nelder-Mead algorithm. And the estimation was

performed using only the observed data, which implicitly assumes missing at random

(MAR). Model 1 can be estimated using any package for proportional odds regression such

as R or SAS. We implemented log likelihood function in R and optimized it with the

“optim” function for both Model 1 and Model 2. The log likelihood function for Model 2 is

given in the appendix. The Hessian matrix was numerically evaluated in the algorithm and

used to calculate asymptotic standard errors for hypothesis testing.

3. Analysis of the RHSP BV data

The proposed models are fit with the RHSP longitudinal study data on vaginal flora changes.

Having provided graphical support for the presence of heterogeneity in Figure 1, we present

more formal evidence for the mixture model in Section 3.1 and Section 3.3. Parameter

estimates and their interpretation as well as the examination of dependence on prior BV

history follow in Section 3.2.

3.1. Test of fit for mixture model

We assessed the fit for Model 2 to BV data in two ways due to missing observations in

covariates as well as responses. First, we performed the test of fit using the base model

including intercepts since the expected value for the test can be calculated in the absence of

covariates. Based on the likelihood function equation (6), the expected transition count

under the mixture model can be extended from that under the traditional Markov model

(Model 1). More specifically, under Model 1, Et,kl the expected transition number from state

k at time (t − 1) to the state l at time t can be calculated as P(Yt = l|Y(t−1) = k)Nt,k where Nt,k

represents the number of individuals in state k at time (t − 1). However, expected transition

differs across groups under the mixture model as the transition probability depends on group

membership. Since the true membership is unknown, we first partitioned the data according

to variable Oi and computed observed and expected transitions within each partition. For

example, for those with Oi = 1, their true group membership (Gi) could be A or C, therefore,

their expected count of transitions within each membership group are calculated and

averaged considering their group probabilities (wiA and wiC). In other words, for those with

Oi = 1, Et,kl is  where  is expected transition counts for group m.

Similarly, Et,kl is estimated as  if Oi = 2. For the rest of subjects whose Oi

= 3, Et,kl is equal to . Then, the test statistic is
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where  and  represent the observed and expected numbers of transition from state k

at time (t − 1) to the state l at time t for subjects whose Oi = h. The distribution of the test

statistic T under Model 2 was estimated with 1000 parametric bootstrap samples [28]. For

this purpose, data were created without any covariates (but including only lag terms) to

facilitate the calculation of n-step transition probability. The missing data structure was

preserved in bootstrap data generation in order for proper comparison with the test statistic

computed on the actual data. P value was computed as Σq I(Tq > Tobs)/Q, where Tobs and Tq

denote the values of the test statistic for data and the qth bootstrap sample and Q is the

number of bootstrap replications. We obtained a Tobs of 10331.92 and p value of 0.95. The

insignificant goodness of fit test result suggests that the proposed mixture of transition

probabilities in base model adequately fits the BV longitudinal data. Second, the adequacy

of Model 2 was compared with that of Model 1 using the AIC (Akaike information criterion)

in the presence of covariates. AIC values under Model 1 and Model 2 were 25761.52 and

25440.07, respectively. The smaller AIC of Model 2 indicates a better fit of Model 2 than

that of Model 1. Taken together, these results suggest that our model fits well.

3.2. Estimation results

We were interested in elucidating the effects of five covariates on the history of vaginal flora

shifts. Baseline HIV status and self-reported partners’ circumcision status were used in the

analysis as predictors of group membership. Measurements recorded weekly from

participants included current menstruation, recency of sex (within 24 hours), and lag terms

based on the vaginal flora status in the previous week. The estimates, Hessian-based

asymptotic standard errors, and p values of parameters estimated under Model 1 and Model

2 are shown in Table 1 and Table 2, respectively.

All explanatory variables were found to be significant under Model 1. On the other hand,

covariate effects varied across subgroups under Model 2. The estimate of  in Table 2 was

positive and significant, which indicates that HIV-positive women were more likely to be in

group B than group C. That is, HIV-infected subjects were more likely to persist with high

Nugent scores rather than shift across all states. Large p values of  and  imply that

neither HIV infection nor circumcision was a significant factor for distinguishing group A

from C, suggesting that these factors are not related to differentiating normal and fluctuating

long-term conditions. Covariates measured weekly (i.e., current menstruation, recency of

sex, and first-order lag terms) were significantly related to transitioning between states in

groups A and C, but not B. HIV was not associated with temporal fluctuation of vaginal

flora states (see α2, β2, and γ2 in Table 2). Parameter estimates and p values under Model 1

are similar to those for group C in Model 2, which confirms the notion that Model 1 captures

common transition processes of the population (or the majority of women), not identifying

subgroup specific mechanism. For instance, Model 2 estimates suggest that beneficial effect

of circumcision is limited to group C. The estimated proportions of groups A and B, P(Gi =
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A) and P(Gi = B), are 0.032 and 0.032 for HIV-negative subjects and 0.028 and 0.128 for

HIV-positive subjects, respectively, under Model 2. The estimates of P(Oi = 1) and P(Oi =

2) using observed proportion of the corresponding subjects are 0.046 and 0.050 for HIV-

negative participants and 0.037 and 0.148 for HIV-positive participants. Equation (6)

indicates that the differences between expected and observed proportions, 0.014 and 0.018

for HIV-negative subjects and 0.009 and 0.020 for HIV-positive subjects, represent people

whose true group memberships were C but were not observed to visit all possible vaginal

flora states. This suggests that a sizable fraction of women whose observed Nugent scores

fluctuated at normal to intermediate states had the capacity to transition to a BV state. In

other words, transient BV episodes were missed despite very frequent and long-term follow-

up visits of this study. This may be important for future BV trials or other studies assessing

frequently recurring conditions.

We also fitted a mixture transition model of order two. The second-order lag terms were

positively related to increasing severity of vaginal flora states in groups A and C under

Model 2 (data not shown). Parameter estimates and standard errors were similar to those of

Model 2, resulting in similar inferences. To further investigate higher-order dependence

while avoiding computational complexity, we incorporated into the model, in addition to the

first-order lag terms, the proportion of time over the course of the study that each subject

spent in the intermediate or BV state. These summary measures of prior history for BV were

significant for group C under Model 2. This is consistent with the fact that the recurrence

rate of BV is high and indicates that BV levels depend on two or more preceding values.

The inferences for all long-term and short-term covariate effects were similar to those made

with Model 2 containing only the first-order lags, except the long-term effect of HIV in

group B ( ) was not significant.

3.3. Simulation for mixture model

To validate the performance of our method, we conducted simulation under the formulation

of Model 2. Using covariate observation patterns from BV data and parameter estimates

obtained from Model 2 (listed in Table 2), 1000 data sets were generated and fit using

Model 2. Coverage rates of 95% confidence intervals are near the nomial value (Table 2).

Biases, calculated as differences of the mean parameter estimates from corresponding

simulation values, were generally very small except one parameter (  HIV). The large bias

for this parameter seems related to the small sample size of the relevant group and low rate

for HIV in BV data and simulated data; for example, this parameter was estimated from 11

women whose Oi = 1, only one of whom was HIV positive in the original BV data. The

results from this simulation show the good performance of the proposed estimation

procedure when applied to data simulation for the BV dataset.

4. Discussion

Transient shifts in vaginal flora states are common in women and may represent a normal

physiologic process; however, long-term persistence with high Nugent scores may represent

a pathologic process that differs from normal fluctuation. Our model has provided a new

perspective on the etiology of BV by distinguishing factors for a transient severity shift from
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those for long-term persistence. The ordinary Markov model does not provide insight into

this issue. Moreover, the validity of our results is substantiated by the findings in literature.

For example, menstruation is associated with short-term fluctuation across vaginal flora

states under Model 2 and it has been reported that BV occurrence is transient around the

time of menses [11, 10].

The results of this study demonstrate the advantage of using our rich model. First, it detects

differential effects of covariates in each group, revealing different mechanisms for vaginal

flora changes across subpopulations. Second, this method is useful for identifying groups of

subjects who may be at increased risk of adverse outcomes. Note that our model could be

also utilized as a general framework to identify potential target subpopulation for treatments

and intervention methods of other diseases. Third, our model has a better fit than the

traditional Markov model according to the AIC and a good performance was demonstrated

with simulation and bootstrap-based test. Moreover, the mixture transition model is less

restrictive than the ordinary Markov model, as the dependence assumption is required only

within each group, rather than for the whole population. We adapt the basic mixture

transition model to incorporate higher-order dependence by increasing the order of lag terms

or including the prior proportions of visits to each of the vaginal flora states as a summary of

the prior BV history. Other higher-order transition models could be used for the group-

specific models [29].

Our mixture transition model may be favored over other approaches when research focuses

on characterizing both long-term and short-term changes in the longitudinal transition

patterns. Our model is flexible in principle and may further be modified to accommodate

other research questions by adding processes that stay at only one state. Corresponding to

the BV example where disease severity is often treated as trichotomous, we formulated the

model with a state space of three ordinal stages. For other applications, this modeling frame

could be extended to incorporate more than three ordinal states. Our model does not allow

changing membership over time since investigating factors for long lasting resistance or

persistence is critical. But the method may be modified to allow moving from one class to

another, when it is appropriate for research problems. Additionally, random effects can be

incorporated to this mixture transition model. However, incorporating random effects in

each subgroup model (i.e. groups A, B, and C) will result in very complex estimation and

make the interpretation of parameter estimates difficult. The extension of our model to a

mixture hidden Markov model may provide additional insight on the underlying biological

processes. It may account for measurement error in the outcome, which could be beneficial

in our setting considering that it involves histological exam of biological sample.
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APPENDIX

Log likelihood for the ith person under Model 2 is given by
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where

, and , h = A, B, and C.
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Figure 1.
Longitudinal changes in vaginal flora states. Follow-up time is marked on the x axis. Each

row represents the status of vaginal flora of an individual over 96 weeks. Blue, red, and

black colors correspond to BV states 1, 2, and 3, respectively, and white spots represent

missing measurements (summarized in the right bar).
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Table 1

Estimates, standard errors (SE), and p values for parameters for Model 1. HIV and circumcision are the

indicators of HIV infection and the circumcision of subjects’ partners. Lag (state 2) and lag (state 3) are

indicator variables for vaginal flora states at the previous week, corresponding to state 2 and state 3,

respectively. Intercepts 1 and 2 refer to η1 and log(η2−η1) in equation (1).

Parameter Estimate SE P value

τ1 Circumcision −0.12 0.04 <0.01

τ2 HIV 0.14 0.06 0.02

τ3 Menstruation 0.70 0.06 <0.01

τ4 Recency of sex 0.33 0.05 <0.01

τ5 Lag (state 2) 1.74 0.05 <0.01

τ6 Lag (state 3) 3.30 0.04 <0.01

Intercept 1 1.27 0.03 <0.01

Intercept 2 0.09 0.02 <0.01
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Table 2

Estimates, standard errors (SE), and p values for parameters obtained under Model 2. Intercepts 1 and 2 denote

δ1 and log(δ2−δ1) in equation (5).

Parameter Estimate SE P value

 Intercept

−3.38 0.45 <0.01

 Circumcision

0.78 0.65 0.23

 HIV

−0.01 1.05 0.99

 Intercept

−3.38 0.45 <0.01

 Circumcision

0.20 0.67 0.76

 HIV

1.50 0.71 0.03

α0 Intercept −3.04 0.26 <0.01

α1 Circumcision 0.34 0.29 0.24

α2 HIV −1.38 0.96 0.15

α3 Menstruation 1.96 0.41 <0.01

α4 Recency of sex 1.08 0.33 <0.01

α5 Lag (state 2) 1.51 0.37 <0.01

β0 Intercept 2.51 1.11 0.02

β1 Circumcision −0.14 0.60 0.82

β2 HIV −0.39 0.65 0.55

β3 Menstruation −0.50 0.98 0.61

β4 Recency of sex −0.19 0.74 0.80

β5 Lag (state 3) 1.41 1.05 0.18

γ1 Circumcision −0.11 0.04 <0.01

γ2 HIV 0.10 0.06 0.10

γ3 Menstruation 0.67 0.06 <0.01

γ4 Recency of sex 0.30 0.05 <0.01

γ5 Lag (state 2) 1.68 0.05 <0.01

γ6 Lag (state 3) 3.12 0.04 <0.01

Intercept 1 1.18 0.03 <0.01

Intercept 2 0.10 0.02 <0.01
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Table 3

Parameter value used for simulation, bias, and coverage rate for each parameter. Intercepts 1 and 2 denote δ1

and log(δ2−δ1) in equation (5).

Parameter Simulation Value Bias Coverage

 Intercept

−3.384 −0.021 0.959

 Circumcision

0.775 −0.047 0.985

 HIV

−0.013 0.548 0.923

 Intercept

−3.382 −0.020 0.959

 Circumcision

0.200 0.010 0.977

 HIV

1.500 0.071 0.964

α0 Intercept −3.044 0.017 0.951

α1 Circumcision 0.344 0.007 0.951

α2 HIV −1.379 0.135 0.933

α3 Menstruation 1.962 −0.008 0.964

α4 Recency of sex 1.078 −0.011 0.946

α5 Lag 1 week (state 2) 1.508 −0.022 0.953

β0 Intercept 2.509 −0.041 0.937

β1 Circumcision −0.136 0.072 0.952

β2 HIV −0.387 0.031 0.952

β3 Menstruation −0.503 0.080 0.964

β4 Recency of sex −0.190 0.113 0.971

β5 Lag 1 week (state 3) 1.411 −0.057 0.949

γ1 Circumcision −0.115 0.000 0.951

γ2 HIV 0.098 −0.008 0.963

γ3 Menstruation 0.673 −0.013 0.955

γ4 Recency of sex 0.301 0.004 0.947

γ5 Lag 1 week (state 2) 1.684 −0.007 0.953

γ6 Lag 1 week (state 3) 3.120 0.007 0.943

Intercept 1 1.182 −0.009 0.940

Intercept 2 0.095 0.002 0.952
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