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Abstract

Salicinoids are well-known defense compounds in salicaceous trees and careful screening at the population level is
warranted to fully understand their diversity and function. European aspen, Populus tremula, is a foundation species in
Eurasia and highly polymorphic in Sweden. We exhaustively surveyed 102 replicated genotypes from the Swedish Aspen
collection (SwAsp) for foliar salicinoids using UHPLC-ESI-TOF/MS and identified nine novel compounds, bringing the total to
19 for this species. Salicinoid structure followed a modular architecture of a salicin skeleton with added side groups, alone or
in combination. Two main moieties, 29-cinnamoyl and 29-acetyl, grouped the SwAsp population into four distinct
chemotypes, and the relative allocation of salicinoids was remarkably constant between different environments, implying a
highly channeled biosynthesis of these compounds. Slightly more than half of the SwAsp genotypes belonged to the
cinnamoyl chemotype. A fraction synthesized the acetyl moiety alone (,7%) or in combination with cinnamoyl (,2%), and
close to forty percent lacked either of the two characteristic moieties, and thus resemble P. tremuloides in their salicinoid
profile. The two most abundant chemotypes were evenly distributed throughout Sweden, unlike geographical patterns
reported for SwAsp phenology traits, plant defense genes, and herbivore community associations. Here we present the
salicinoid characterization of the SwAsp collection as a resource for future studies of aspen chemical ecology, salicinoid
biosynthesis, and genetics.
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Introduction

Salicinoids, also known as phenolic glycosides [1] or salicylates

[2], are dominant bioactive natural products in the Salicaceae

(Populus and Salix) [3]. Salicinoid diversity ranges from simple

structures like salicin to higher order compounds, such as

cinnamoylsalicortin (Fig. 1). The relationship between herbivores

and salicinoids has mostly involved studies of a few dominant

compounds that repel generalist insect defoliators [3–6] and

mammalian browsers [7,8], attract specialist herbivores [9,10], or

have ambiguous effects on herbivore presence and abundance

[11–13]. Salicinoids vary in their toxicity, alone and in combina-

tion [14], and it has been suggested that they increase in toxicity

with greater molecular complexity [6].

Salicinoids derive from the shikimate-phenylpropanoid pathway

[3], which produces other phenolic compounds, such as

flavonoids, lignins, tannins, and anthocyanins [15,16]. Several of

the genes responsible for specific phenylpropanoid classes have

already been described, including those involved in the biosyn-

thesis of monolignols [17,18], flavonoids [15,16], and condensed

tannins [19,20]. Salicinoid biosynthesis, however, remains poorly

understood [15,16,21,22]. Several evolutionary theories argue that

selection should favor a diverse, random, or unpredictable mix of

defense compounds in plants [23,24]. For compounds, such as

terpenoids, it has been demonstrated that individual profiles and

high diversity at the population level results from only a few key

genes, that are expressed consistently within a genotype but vary

greatly among genotypes [25,26]. Although Populus and Salix
species share many salicinoid compounds, their profiles can also

separate salicaceous trees both inter- [3,27] and intraspecifically

[28,29]. Furthermore, studies of hybridizing species suggest that

inheritance may often be additive with intermediate levels of

phenolic compounds in hybrids [30–32], although examples of

transgressive inheritance also exist in which hybrids express

extreme levels of specific phenolics, including elevated levels of

salicinoid compounds [33]. In a recent study, Abreu et al. [29]

described an unexpected diversity of salicinoids from five

genotypes of European aspen (Populus tremula L.). Besides

salicortin, tremulacin, salicin, and tremuloidin, the signature

salicinoids of the North American sister species P. tremuloides
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[1,28], P. tremula also contained complex salicinoids like 29-

cinnamoylsalicortin, previously only reported for Salix sericea
[34], and 29-acetylsalicin and 29-acetylsalicortin, also found in S.
pentandra [35]. Abreu et al. [29] showed that concentrations of

some of these novel salicinoids in P. tremula matched levels in

other salicaceous systems that share the same compounds and

predicted a minimum of three chemical phenotypes (hereafter

chemotypes) of Swedish aspen [29,36].

Historically, screening work of salicinoids used only qualitative

methods, such as thin-layer chromatography [27,37,38], as

opposed to liquid chromatography-mass spectrometry (LC-MS)

techniques presently used for identification and quantification

[2,29,33,39]. In addition, species specific profiles have often been

based on analyses of a limited number of individuals (e.g.,

[27,37,38]). At the population level, surveying only a few

individuals increases the risk of underestimating natural product

diversity and abundance. In salicaceous species, hidden salicinoids

could thus potentially be a source of reported ambiguous

associations found between phytochemistry and biotic stress agents

[11–13].

With aspen’s highly diverse salicinoid assemblage [29], the large

genetic diversity in Sweden [40], and its complex associated

arthropod communities [41], a careful chemical mapping of a

larger population of P. tremula is warranted. This study presents

an exhaustive identification of salicinoid diversity in 319 individual

Populus tremula trees replicating 102 genotypes from the Swedish

Aspen (SwAsp) collection and evaluates the frequency and

distribution of the chemotypes across the landscape. To assess

the expression in individual trees, salicinoid profiles of the same

genotype were also compared across extreme environments.

Materials and Methods

Salicinoid standards
Salicortin, tremuloidin, and HCH-salicortin standards were

supplied by Prof. R. L. Lindroth and salicyloylsalicin by Prof. S. D.

Mansfield. Salicin and tremulacin standards were purchased from

Sigma-Aldrich (St. Louis, MO, USA), and 29-(E)-, 29-(Z)-

cinnamoylsalicortin, and tremulacin were isolated from P. tremula
[39].

Figure 1. Structural relationship of 19 salicinoids found in the foliage of Populus tremula from the SwAsp collection grouped similar
to the loading plot (Fig. 2b). 1 = new compounds for P. tremula, 2 = compounds with two isomers present but the conformation of the
cinnamoyl group double bond is ambiguous. 3 = 29-(E)- and 29-(Z)-cinnamoylsalicortin.
doi:10.1371/journal.pone.0107189.g001
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Plant material
Two sets of samples were used for this study, consisting of about

ten haphazardly chosen, fully expanded leaves from each of 319

individuals of 102 P. tremula genotypes from two different

environments, belonging to the Swedish Aspen (SwAsp) collection

[29,36,41]. SwAsp consists of aspen trees from a range of latitudes

(56–67uN) throughout Sweden, collected as roots in 2003 and

propagated as genotype replicates. The first greenhouse sample set

included leaves from 98 genotypes with 1–2 individuals per

genotype that had been growing in standard greenhouse

conditions on the Umeå University campus in Umeå, Sweden,

since 2005. In 2007, leaves were picked from the greenhouse trees,

flash-frozen in liquid nitrogen, and stored at 280uC until chemical

analysis (see [29] for details). The second field set, collected in the

summer of 2010, consisted of foliage from 41 genotypes from the

outdoor SwAsp garden at Sävar (,20 km NW of Umeå), 37 of

which were also represented in the greenhouse population. These

trees had been planted in 2004 and at the time of sampling had

reached an average height of 220 cm (ranging from 65–405 cm)

and every genotype was present in the field in replicates of 2–8.

Leaves were harvested and immediately placed in separate glassine

envelopes, frozen in liquid nitrogen while in the field, brought to a

280uC freezer, lyophilized in a pre-chilled chamber, and then

stored at 220uC until chemical analysis. Replicate individuals of

all genotypes currently grow in two common gardens (Ekebo

55.9uN, 13.1uE and Sävar 63.4uN, 20.6uE; see also [36] or [41] for

location details of original populations). In addition, most of the

genotypes are kept in tissue culture at Umeå Plant Science Centre

in Umeå, Sweden, and can be propagated upon request.

Chemical analysis
Samples were analyzed using ultra high performance liquid

chromatography (UHPLC) with UV and electro-spray ionization

time-of-flight mass spectrometry (ESI-TOF/MS) detectors, using

the same instrumental conditions as Abreu et al. [29]. Sample

preparation differed slightly for the two sample sets, using fresh

weight material for the greenhouse and lyophilized foliage for the

field samples. Frozen greenhouse leaf material was ground in

liquid nitrogen using a mortar and pestle. For the 2010 field

samples, we ground the lyophilized leaves on a Retsch (Verder

Group, Haan, Germany) ball mill, placing crushed foliage into

20 ml plastic vials along with two 12.5 mm carbide balls and

shaking them at 60 Hz for 1 minute. For both sample sets,

10.0061.00 mg powder was extracted in 1 ml of cold (4uC)

methanol: chloroform: water (v:v:v), containing deuterated

salicylic acid as an internal standard [29]. After centrifugation in

a chilled centrifuge, 200 ml of the extract supernatant from

greenhouse samples and 100 ml from the field samples was dried in

a speedvac. Just before analysis, the dried greenhouse samples

were reconstituted with 20 ml of methanol and 20 ml of a 0.1% v/v

aqueous formic acid solution and 25 ml of each for the field

samples. Differences in the initial amounts of sample dried and

final reconstitution volumes served to equalize the final salicinoid

concentrations between fresh-frozen and lyophilized leaf tissue,

assuming a ,60 percent difference in water content. Compounds

in the reconstituted plant extracts were separated on a C18

UPLCTM column (2.16100 mm, 1.7 mm) and analyzed by an

Acquity photodiode array detector coupled in line with a LCT

Premier TOF/MS (all from Waters, Milford, MA, USA) as

described in Abreu et al. [29].

MassLynx 4.1 software package (Waters Corp.) allows extrac-

tion of single ion chromatograms (60.15 exact mass unit) from the

total ion chromatogram using the QuanLynx module, and was

used to search for known and theoretical salicinoids using both the

deprotonated ([M-H] -) and formate adduct ([M-H+FA] -) ions

(Table S1 in Material S1). QuanLynx software was used to

integrate the single ion chromatograms and obtain peak areas,

which were normalized with internal standard peak area and

individual sample weight. All peak areas represented the formate

adduct ion, except for salicyloylsalicin, which included both the

deprotonated and formate adduct ion peaks summed, as in Abreu

et al. [29].

Salicinoid identification
Salicortin, tremulacin, salicin, tremuloidin, salicyloylsalicin,

HCH-salicortin, 29-(E)-, and 29-(Z)-cinnamoylsalicortin were

determined using retention times and molecular weight informa-

tion of purified standards injected on the UHPLC-ESI-TOF/MS

[29,39]. The compounds 29-acetylsalicin, 29-acetylsalicortin, and

acetyltremulacin were identified with LC-MS molecular weights

and retention times from previous work [29]. The retention times

of lasiandrin (HCH-29-acetylsalicortin) and HCH-tremulacin were

confirmed with molecular mass and with Salix species known to

have these compounds that were included in the present LC runs

[35,42].

UHPLC with high-resolution tandem mass spectrometry (MS/

MS) was used to determine the structure of novel salicinoids, using

the same chromatographic conditions as Abreu et al. [29]. Peaks

were separated on a Hypersil C18 GOLD column (2.1650 mm,

1.9 mm) using a Thermo Accela LC system coupled to a LTQ

Orbitrap MS (all from Thermo Fisher Scientific, Bremen,

Germany) and centroid mass spectra of negative ions were

collected after collision-induced dissociation (CID) in the LTQ cell

at 35 eV. The deprotonated ion was used for all compounds,

except for cinnamoylsalicin, which was fragmented using the

formate adduct ion.

Statistical analyses
Salicinoid chemotypes were identified using principal compo-

nent analysis (PCA; SIMCA-P+ v. 12.0 [43]). Due to differences in

sampling environment, we used percentages derived from the

normalized peak areas of the 19 salicinoids. To further statistically

examine the differences between compound profiles, SAS software

version 9.1 [44] was used to perform a two-factor multivariate

analysis of variance (MANOVA; PROC GLM function with the

MANOVA statement) using the same data as above, with sample

set (greenhouse or field grown trees) and chemotype (four

chemotypes) as factors. Significant MANOVA tests were followed

up with ANOVAs for individual compounds.

Amounts of the most common and abundant salicinoids

(salicortin and tremulacin) from the field samples were correlated

(PROC CORR) separately for trees either low (TL chemotypes) or

high in 29-cinnamoylsalicortin (CN chemotypes), followed by

Fisher’s Z to determine if the two correlation coefficients differed.

To compute salicinoid clonal repeatability (H2, broad-sense

heritability), we used the R statistical package as described by

Robinson et al. [44,45]. Clonal repeatability was calculated the

greenhouse and the field samples separately, and for the combined

population, when they occurred in replicate of two or more. For all

statistical analyses we insured that variables met assumptions of

normality, applying transformations where necessary.

Results

New salicinoids from P. tremula
In addition to the ten salicinoids described from P. tremula by

Abreu et al. [29], we found nine new compounds after searching

the TOF/MS chromatograms of greenhouse and field foliage

Salicinoids in Populus tremula
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samples for 55 known and theoretical ions (Fig. 1, Material S1).

The new salicinoids included five molecules similar to existing P.
tremula compounds but with an additional HCH (hydroxycyclo-

hexen-on-oyl) moiety, including HCH-salicortin, HCH-tremula-

cin, lasiandrin (HCH-2’-acetylsalicortin), and two isomers tenta-

tively identified as HCH-cinnamoylsalicortin. In addition, we

found the newly described 29-(Z)- and 29-(E)-cinnamoylsalicortin

isomers [29,39] and two salicinoid isomer pairs tentatively

identified as cinnamoylsalicin and acetylcinnamoylsalicortin.

Considering the structure of many other salicinoids [3,39], the

additional acetyl and HCH groups are most likely attached to C-69

of glucose and the new isomer pairs probably contain 29-(Z)- and

29-(E)-cinnamoyl groups, respectively. The UV profiles of the new

compounds showed typical salicinoid spectra (Table 1, Fig S1a

page 4–8 in Material S1). As with these other studies, all new

salicinoids with a cinnamoyl moiety had higher second maxima

(274–279 nm) compared to those without this functional group

(270–274 nm).

The MS/MS spectra of the new P. tremula salicinoids produced

predictable fragments due to similar disassociation mechanisms

(Figure S1b page 9–11 in Material S1). The spectra of all

compounds with an additional HCH group [HCH-salicortin, and

HCH-tremulacin, lasiandrin (HCH-29-acetylsalicortin), and

HCH-cinnamoylsalicortin] had a single dominant fragment due

to the loss of the HCH group (neutral loss of 138) from either the

core salicyl group or from the glucose. For all compounds, the m/z
of this remaining fragment corresponded to their respective

deprotonated salicinoid precursors (salicortin, tremulacin, 29-

acetylsalicortin, and 29-cinnamoylsalicortin, respectively). The

next most common fragment for all HCH-containing salicinoids,

except for HCH-salicortin, also involved loss of the HCH group.

In this case however, the C-O bond of the ether linkage broke

proximal to the HCH moiety. For all compounds, these fragments

were m/z 18 less than breakage of the distal C-O ether bond,

indicating dehydration. While this fragmentation mechanism also

produced a significant ion for HCH-salicortin (m/z 405), its second

most abundant MS/MS fragment arose from cleavage and loss of

most of the cylcohexeneone ring of either of the compound’s HCH

groups. The other HCH salicinoids also had relatively abundant

fragments due to this breakage pattern. In addition, the spectra of

all compounds contained a m/z 405 ion; a secondary fragment

resulting from a combination of a loss of an HCH group combined

with the cleavage of any moiety present at C-29 of the sugar. A

single ion dominated the MS/MS spectra of acetylcinnamoylsa-

licortin, resulting from the loss of the cinnamoyl group.

Subsequent loss of the acetyl moiety led to the appearance of a

deprotonated salicortin ion as the second most abundant ion (m/z
423). Lastly, fragmentation of cinnamoylsalicin with a formate

adduct yielded the deprotonated compound as the primary

fragment. Further dissociation of this structure created ions

corresponding to a cinnamoyl group and to cinnamoyl-b-D-

glucopyranose with subsequent loss of the salicyl moiety.

Chemotypes and compound relationships
All samples contained the signature set of salicinoids in aspen

(salicortin, tremulacin, salicin, and tremuloidin) [1,3,27], and in

agreement with Abreu et al. [29] a subset of the samples also

included novel salicinoids. The salicinoid profiles of SwAsp are

presented by genotype and environment in Material S2. PCA

analysis separated SwAsp trees into four distinct chemotype groups

on the basis of 19 salicinoids with 31.2% of the variation explained

by PC1 and 18.4% by PC2 (49.6% cumulative; Fig. 2). These

chemotypes were mainly defined by the presence of high amounts

of salicinoids with either cinnamoyl moieties (CN, 53% of all

genotypes), 29-acetyl moieties (AC, 8%), both of these moieties

(CN-AC, 2%), or very low amounts of either (37%; Fig. 2a). The

Table 1. UV maxima, theoretical and experimental exact masses, molecular formulas, and main high-resolution MS/MS fragments
of the new salicinoids from Populus tremula.

Compound lmax
m/z [M-H]-

MS/MS fragments (relative
intensity)a

Theoreticalmass LTQ Orbitrap

Mass Formula

HCH-salicortin 218, 271 561.1614 561.1611 C27H29O13 423 (100), 477 (58.3), 405 (40.0),
299 (13.9), 437 (9.7), 339 (7.3), 293
(6.2), 231 (5.5)

HCH-tremulacin 221, 272 665.1876 665.1859 C34H33O14 527 (100), 509 (33.6), 543 (28.6),
405 (14.4), 581 (8.4), 403 (2.8), 389
(1.5), 553 (1.0)

Cinnamoylsalicin 218, 279b, 219, 279c 415.1398 415.1385 C22H23O8 415 (100), 147 (50.9), 309 (39.9),
414 (10.2), 285 (6.6), 509 (6.5), 252
(6.4), 515 (6.4)

Acetylcinnamoylsalicortin 220, 274b, 218, 278c 595.1821 595.1793 C31H31O12 447 (100), 423 (15.9), 567 (5.2),
213 (4.3), 285 (4.1), 267 (4.0), 471
(3.5), 341 (2.9)

HCH-cinnamoylsalicortin 222, 277b 219, 277c 691.2032 691.2023 C36H35O14 553 (100), 535 (28.7), 543 (19.5),
405 (10.2), 484 (6.6), 509 (6.5), 252
(6.4), 515 (6.4)

Lasiandrin 219, 270 603.1719 603.1722 C29H31O14 465 (100), 447 (22.4), 519 (8.5),
561 (5.8), 543 (4.5), 405 (3.6), 341
(3.0), 423 (2.1)

See Fig. S1a in Material S1 for MS/MS spectra.
a = MS/MS performed on deprotonated isomer 2 of cinnamoyl compounds, except for cinnamoylsalicin, which used the formate adduct [M+FA-H]- (experimental mass
m/z 461.1433) of isomer 2; b = isomer 1, c = isomer 2 by UHPLC retention times.
doi:10.1371/journal.pone.0107189.t001
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salicinoid profile of the last ‘‘tremuloides-like’’ (TL) chemotype

resembles that of P. tremuloides [46]. Most of the AC chemotype

trees had very low levels of cinnamoyl-containing salicinoids,

however, five individuals from two genotypes had relatively high

levels of compounds with both of these moieties, resulting in the

separate chemotype designated CN-AC (Fig. 2a). While trees from

particular chemotypes generally grouped together in greenhouse

and field grown trees, the PCA showed some divergence between

the two environments. This was especially evident for individuals

from the CN and CN-AC chemotypes and less so for AC and TL

trees (Fig. 2a).

The loading scatter plot of the 19 salicinoids from P. tremula
showed that most compounds grouped according to specific

chemical moieties (Fig. 2b). The first component (PC1) separated

compounds with a cinnamoyl side chain [29-(E)- and 29-(Z)-

cinnamoylsalicortin and the cinnamoylsalicin, acetylcinnamoylsa-

licortin, and HCH-cinnamoylsalicortin isomers] from compounds

with a benzoyl group (tremulacin, tremuloidin, acetyltremulacin,

and HCH-tremulacin). The second component (PC2) separated

compounds with an 29-acetyl, (29-acetylsalicin, 29-acetylsalicortin,

and lasiandrin) from those with an additional HCH group (HCH-

salicortin, HCH-tremulacin, and HCH-cinnamoylsalicortin).

Chemotype and environment differences, main salicinoid
correlations, and tree origin

The two-factor MANOVA test showed that salicinoid profile

differed for both environment (Wilks’ l = 0.32, F19, 292 = 32.3, P,

0.001), chemotype (Wilks’ l = 0.001, F57, 871 = 154.5, P,0.001),

and their interaction (Wilks’ l = 0.09, F57, 871 = 18.5, P,0.001;

Fig. 3). Individual ANOVA results showed that all salicinoids

differed with chemotype, and all compounds, except salicin, 29-(E)-

cinnamoylsalicortin, isomer 2 of HCH-cinnamoylsalicortin, and

29-acetylsalicin, also differed between environment (Fig. 3; Ta-

ble 2). In general, greenhouse grown trees contained more

salicortin, tremuloidin, acetyltremulacin, and 29-(Z)-cinnamoylsa-

licortin, and field trees contained more tremulacin. For isomer 2 of

HCH-cinnamoylsalicortin the difference between environments

was only apparent due to the interaction of environment with

chemotype. Many other salicinoids interacted between these two

factors, usually due to differing ratios of particular salicinoids in

samples of the different chemotypes, as in the case of both

salicortin and tremulacin. In some instances, the compound

patterns were reversed between chemotypes. For instance, AC and

CN-AC chemotypes had much more 2’-acetylsalicortin in field

grown trees.

Correlations between the amounts of tremulacin and salicortin

in field grown individuals with either low (TL chemotypes;

r = 0.87, P,0.001, N = 49) or high (CN chemotypes; r = 0.93, P,

0.001, N = 83) levels of 29-cinnamoylsalicortin showed strong

positive relationships in both cases (Fig. 4). The patterns were,

however, notably different with CN trees containing considerably

less tremulacin with increasing amounts of salicortin (Fisher’s

Z = 1.71, P,0.05). The relative amounts of these two salicinoids

varied with chemotype from an approximately even relationship of

1 tremulacin: 1 salicortin (in mg g-1) in TL chemotypes to a 1:4

relationship in the CN chemotype.

Trees belonging to the CN and TL chemotypes occurred at sites

throughout Sweden (Fig. 5) and their distribution did not follow a

simple geographic or clinal pattern. The genotypes containing 29-

acetyl compounds (AC and CN-AC) originated from central and

southern Sweden.

Clonal repeatability of salicinoids
Overall, clonal repeatabilities (H2; broad-sense heritability) for

salicinoids in this study were high with the greenhouse population

showing slightly higher values compared to field grown trees

(Table 3). The most notable examples that contributed to this

trend were salicortin, tremuloidin, and the isomer pairs of

cinnamoylsalicin and acetylcinnamoylsalicortin. Both acetyltre-

mulacin and lasiandrin had substantially lower clonal repeatabil-

ities in the greenhouse environment than in the field. In addition,

all salicinoids with higher clonal repeatabilities in the field

contained two HCH moieties.

Discussion

Salicinoid survey of P. tremula
On the basis of literature studies (i.e., [3]), previous salicinoid

analyses [29,39], and theoretical structures, we identified a total of

19 potentially bioactive salicinoid compounds from P. tremula,

adding nine new structures to those already described by Abreu et

al. [29].

Many of these salicinoids are dominant or characteristic for

other species in the Salicaceae [3]. The acetylated compounds 29-

acetylsalicin, 29-acetylsalicortin, lasiandrin, and acetyltremulacin

co-occur in Salix pentandra and S. lasiandra [35,47,48]. HCH-

salicortin (salicortin derivative or disalicortin [49]) and HCH-

tremulacin both occur in S. myrsinifolia [2,49]. HCH-salicortin

was also isolated from P. fremontii and its F1 hybrids with P.
angustifolia [30], and studies with S. sericea found 29-(E)-

cinnamoylsalicortin [31].

Frequencies and distribution of key compounds in
SwAsp

Salicinoid profiles readily divided SwAsp genotypes into four

chemotypes, based upon the presence or absence of specific

moieties. The 29-cinnamoyl moiety defined the most abundant

chemotype with 53 percent representation in SwAsp. In general,

the capability to synthesize cinnamoyl salicinoids appears to be

mostly either present or absent in a genotype and thus accounts for

the strongest division of the population. The ability to add acetyl

moieties appeared less channeled compared to the cinnamoyl

addition, but curiously acetylcinnamoylsalicortin had somewhat

higher clonal repeatabilities in the less stable field environment

(Table 3). Across SwAsp chemotypes we found salicortin,

tremulacin, 29-acetylsalicortin, and the 29-cinnamoylsalicortins as

the dominant salicinoids and when present they usually occurred

in relatively high amounts.

The distribution of SwAsp chemotypes throughout Sweden did

not resemble the clinal structure reported for phenological traits

[36], or the north-south clustering that characterizes inducible

defense genes [50]. The two most abundant chemotype groups

(CN and TL) were evenly distributed among collection sites,

whereas the AC and CN-AC chemotypes mainly originated from

the central and southern part of the country. After the last ice age,

many plants and animals invaded Sweden from both the north

east and the south west and later united in central Sweden (along

Limes Norrlandicus) where they either formed hybrid zones or

distinct subpopulations [51]. Although the postglacial invasion of

aspen in Sweden had weak effects on the genetic differentiation of

neutral markers [52], it could have had local effects on adaptive

traits [40]. Introgression of defense associated genes naturally

occurs in hybrid zones [53,54], and hybrid zones and admixture

populations may also promote novel genotypes [30,32,33,53,54].

Evidence of salicinoid inheritance from hybrid zones includes

additive inheritance of HCH-salicortin by F1 hybrids of P.
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fremontii and P. angustifolia from the P. fremontii parent [30].

Similarly, additive inheritance was found in a P. tremula-alba
hybrid zone for HCH-salicortin and 29-acetylsalicortin, whereas

HCH-tremulacin was trangressive at higher concentrations [33].

The geographical distribution of the AC and CN-AC SwAsp

chemotypes in central and southern Sweden could consequently

mirror fitness properties, recent evolution, or introgression.

Figure 2. PCA results for chemotypes and compound relationship of 19 salicinoids found in the foliage of Populus tremula from the
SwAsp collection. a. Score scatter plot of the first two principle components for 319 individuals from 102 genotypes. Solid symbols = greenhouse
grown trees, open symbols = field grown trees; circles = CN (29-cinnamoyl), diamonds = AC (29-acetyl), squares = CN-AC (29-cinnamoyl/29-acetyl),
and triangles = TL (tremuloides-like) chemotypes. Percentages of clones of the different salicinoid chemotypes in parentheses. b. Loading scatter plot
of the first two principle components for 19 salicinoids.
doi:10.1371/journal.pone.0107189.g002
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Elusive salicinoid biosynthesis
Tsai et al. [16] proposed salicin as the substrate for salicinoid

biosynthesis, but studies using labeled compounds could not

confirm this suggestion [21] and the biosynthetic route of

salicinoids remains poorly understood [15,16,21,22]. Confirming

the work by Abreu et al. [29], we found strong correlations

between amounts of 29-acetylsalicin and 29-acetylsalicortin, as well

as associations between cinnamoyl-containing salicinoids. The

dynamics of salicinoid pools thus appear to depend on the

presence or absence of characteristic chemotype moieties and the

relative abundance of common salicinoids vary between chemo-

types. For example, the concentration of tremulacin is generally

lower in CN chemotype individuals compared to the TL

chemotype (Fig. 4). This may reflect competition for salicortin as

a substrate for addition of either a cinnamoyl or benzoyl group for

synthesis of 29-cinnamoylsalicortin or tremulacin, respectively.

Figure 3. Percentages (± SE) of 19 salicinoids from greenhouse (solid bars) and field (open bars) grown Populus tremula trees from
the SwAsp collection of the four identified chemotypes, CN (29-cinnamoyl), AC (29-acetyl), CN-AC (29-cinnamoyl/29-acetyl), and TL
(tremuloides-like)]. I1 and I2 = isomer 1 and 2, respectively, based upon UHPLC retention times.
doi:10.1371/journal.pone.0107189.g003

Table 2. F and P values from the two-factor ANOVA comparing percentages of individual leaf extract salicinoids from Populus
tremula trees of four chemotypes (CN, AC, CN-AC, and TL), grown in two environments (greenhouse and field), and their interaction
(E*Ct).

Compound Environment Chemotype E*Ct

df = 1 df = 3 df = 3

F P F P F P

Salicortin 17.0 ,0.001 90.1 ,0.001 8.2 ,0.001

Tremulacin 60.5 ,0.001 436.8 ,0.001 3.8 0.011

Salicin 0.4 0.508 10.0 ,0.001 0.8 0.497

Tremuloidin 22.6 ,0.001 71.8 ,0.001 3.8 0.010

HCH-salicortin 10.9 0.001 22.6 ,0.001 2.3 0.081

HCH-tremulacin 25.8 ,0.001 67.2 ,0.001 1.1 0.335

Salicyloylsalicin 26.9 ,0.001 14.8 ,0.001 2.4 0.066

Acetyltremulacin 22.0 ,0.001 35.2 ,0.001 1.5 0.225

2’-(Z)-Cinnamoylsalicortin 4.9 0.028 28.5 ,0.001 4.5 0.004

2’-(E)-Cinnamoylsalicortin 0.2 0.645 456.4 ,0.001 0.9 0.458

Cinnamoylsalicortin (I1) 17.4 ,0.001 282.1 ,0.001 6.0 0.001

Cinnamoylsalicortin (I2) 178.2 ,0.001 317.2 ,0.001 288.7 ,0.001

Acetylcinnamoylsalicortin (I1) 14.9 0.000 21.3 ,0.001 16.7 ,0.001

Acetylcinnamoylsalicortin (I2) 17.4 ,0.001 38.7 ,0.001 30.5 ,0.001

HCH-cinnamoylsalicortin (I1) 7.6 0.006 607.4 ,0.001 21.9 ,0.001

HCH-cinnamoylsalicortin (I2) 3.2 0.073 855.5 ,0.001 2.7 0.048

2’-Acetylsalcortin 17.0 ,0.001 90.1 ,0.001 8.2 ,0.001

2’-Acetylsalicin 2.4 0.126 123.5 ,0.001 1.5 0.223

Lasiandrin 18.8 ,0.001 27.2 ,0.001 2.7 0.048

I1 and I2 indicate isomers 1 and 2, respectively, designated by UHPLC retention times. See Figure 3 for corresponding data.
doi:10.1371/journal.pone.0107189.t002
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The composite structure of the salicinoids could further suggest

that relatively few enzymes are involved in their biosynthesis.

Keeling and Bohlmann [26] and Degenhardt et al. [25] have

demonstrated how a few key genes that are differently but

consistently expressed result in unique terpenoid profiles in

individual conifers, creating high terpenoid diversity at the

population level. Although at a lower diversity, the salicinoids of

SwAsp may be biosynthesized according to a similar strategy.

Association studies relate specific traits to genetic patterns [55],

and could potentially be a promising way to get insight into the

salicinoid biosynthesis. Thus, rather than relating single com-

pounds to gene sequences, association studies may benefit from

grouping the compounds on the basis of presence and absence of

specific salicinoid moieties (see also [54]).

Salicinoid profile stability and implications for chemical
ecology

Salicinoid composition of individual trees across environments

with very different growth histories showed overall high heritabil-

ities, confirming that both salicinoid quality (composition) and

quantity (abundance) is likely to be highly channeled in aspen, and

thus relatively stable in different environments [29,56]. Interest-

ingly, we found that the most represented group in SwAsp, the CN

chemotype, also showed the largest plasticity of salicinoids in

response to environmental differences. This suggests an elevated

level of plasticity in cinnamoyl-containing salicinoid expression

and a potential fitness advantage. Salicinoid toxicity to herbivores

has been attributed to the HCH moiety, even at low concentra-

tions [3,14,57]. Most of the newly described salicinoids in this

study contain one or two HCH groups, and the high heritability of

the HCH containing compounds in field samples supports that

they may be emphasized in more challenging environments

(Table 3). Lindroth et al. [14] found that tremulacin greatly

reduced herbivore survival and performance and suggested that

the benzoyl group synergizes the toxic effect of the HCH group.

Similarly, the cinnamoyl and acetyl groups may also synergize the

effects of the HCH moiety on relevant molecules (29-cinnamoyl-

salicortin and 29-acetylsalicortin).

Given the apparent stability of salicinoid profiles in P. tremula
and the clearly defined chemotypes, the SwAsp collection

represents an ideal system for the study of chemical-ecological

interactions. With almost the entire collection in tissue culture, and

with the present robust salicinoid profiling (Material S2), we can

propagate our chemotypes to specifically test properties of

resistance and tolerance to various kinds of associated herbivores

and fungi [13,45]. In conclusion, we observed a striking division of

aspen into four chemotypes, some of which co-occur across

latitudes. These chemotypes differ in the dominant moieties and

future studies are needed to explore their relative bioactivity,

especially including the new dominant compounds (29-cinnamoyl-

salicortins and 29-acetylsalicortin) that are poorly studied. We

Figure 4. Relationship between the two most abundant
salicinoids, tremulacin and salicortin, in field grown Populus
tremula trees for chemotypes low (TL; solid circles) or high (CN;
open circles) in 29-cinnamoylsalicortin.
doi:10.1371/journal.pone.0107189.g004

Figure 5. Salicinoid chemotypes of Populus tremula trees (the
SwAsp collection) collected from ten locations throughout
Sweden. White = CN (29-cinnamoyl), light gray = AC (29-acetyl), dark
gray = CN-AC (29-cinnamoyl/29-acetyl), and black = TL (tremuloides-
like). Bar height corresponds to the number of individuals of each
chemotype.
doi:10.1371/journal.pone.0107189.g005
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further suggest that ecological studies, both locally and across

latitudes, must take P. tremula’s salicinoid diversity into account.

Supporting Information

Material S1 Salicinoid identification: Exact masses of 55

salicinoid compounds (Table S1), Literature references (List
S1), UV spectra of nine new salicinoids found in the P. tremula
foliage (Fig. S1a), and high-resolution MS/MS (Fig. S1b).

(DOCX)

Material S2 Average percentages of 19 salicinoids from the

foliage of different Populus tremula clones (Clone), grown in two

different environments (Evir: GH = greenhouse, Sävar = field)

and mg g21 for field trees. Chemo = chemotype: CN = 29-

cinnamoyl, AC = 29- acetyl, CN-AC = 29-cinnamoyl/29-acetyl,

and TL = tremuloides-like. Salicinoids: 1 = salicortin, 2 =

tremulacin, 3 = salicin, 4 = tremuloidin, 5 = HCH-salicortin,

6 = HCH-tremulacin, 7 = salicyloylsalicin, 8 = 69-acetyl-tremu-

lacin, 9 = 29-(Z)-cinnamoylsalicortin, 10 = 29-(E)- cinnamoylsali-

cortin, 11 = cinnamoylsalicin I1, 12 = cinnamoylsalicin I2, 13 =

acetylcinnamoylsalicortin I1, 14 = acetylcinnamoylsalicortin I2,

15 = HCH-cinnamoylsalicortin I1, 16 = HCH-cinnamoylsalicor-

tin I2, 17 = 29-acetylsalicortin, 18 = 29-acetylsalicin, 19 =

lasiandrin (HCH-2’-acetylsalicortin). I1 and I2 = isomers 1 and

2, respectively.

(DOCX)
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