
The structure of a conserved Piezo channel domain reveals a
novel beta sandwich fold

Aron Kamajayaa,b, Jens Kaiserb,c, Jonas Leeb,d, Michelle Reidb, and Douglas C. Reesb,d,*

aBiochemistry and Molecular Biophysics Graduate Option, California Institute of Technology,
Pasadena, CA 91125 USA

bDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena,
CA 91125 USA

cBeckman Institute, California Institute of Technology, Pasadena, CA 91125 USA

dHoward Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125 USA

Summary

Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed

of subunits containing over 2000 amino acids, without recognizable sequence similarity to other

channels. Here, we present the crystal structure of a large, conserved extramembrane domain

located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a

novel beta sandwich fold. The structure was also determined of a point mutation located on a

conserved surface at the position equivalent to the human PIEZO1 mutation found in Dehydrated

Hereditary Stomatocytosis (DHS) patients (M2225R). While the point mutation does not change

the overall domain structure, it does alter the surface electrostatic potential that may perturb

interactions with a yet-to-be identified ligand or protein. The lack of structural similarity between

this domain and any previously characterized fold, including those of eukaryotic and bacterial

channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive

channels.

Introduction

The ability to translate environmental cues (chemical, electrical, and mechanical) into

intracellular signals is crucial to the functioning of all cells. Although membrane protein

receptors for many of these environmental signals have been identified, our understanding of

the receptors for mechanical signal transduction remains incomplete. The best characterized

models of mechanotransduction are bacterial mechanosensitive (MS) channels that protect

cells from osmotic downshock (Levina et al., 1999). In multicellular eukaryotes,
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mechanosensitive channels are proposed to be involved in diverse physiological and

developmental processes, such as somatosensory and auditory detection, change in blood

osmolarity, muscle stretch, and others (Chalfie, 2009). The identity of the MS channels

involved in these physiological processes remains contentious, however.

A notable exception to the unknown molecular identities of eukaryotic mechanosensors is

provided by the Piezo family of mechanosensitive channels (Coste et al., 2012). Piezo was

first identified through an siRNA knock-down screen and was shown to be necessary and

sufficient for mechanically-activated currents (Coste et al., 2010). Piezos have been found in

both multicellular and unicellular eukaryotes with the exception of yeast (Coste et al., 2010;

Prole and Taylor, 2013). A striking characteristic of Piezo is the significant size, with all

characterized homologs (human, mice, and Drosophila) containing over 2000 amino acids;

moreover, mouse PIEZO1 has been demonstrated to form a tetrameric complex

corresponding to a total molecular weight for the channel of ~1 MDa (Coste et al., 2012).

No sequence similarities have been recognized between Piezo and other types of channels,

nor have internal sequence repeats within the Piezo subunit been detected. PIEZO1 can be

inhibited by a general blocker of mechanosensitive channels, GsMTx4 (Bae et al., 2011),

and is shown to be sensitive to ruthenium red (Coste et al., 2010; Coste et al., 2012). Piezo

channels are involved in several physiological processes, such as maintaining normal cell

density in zebrafish and mammalian epithelial tissue (Eisenhoffer et al., 2012), mediating

mechanical nociception in Drosophila larvae (Kim et al., 2012), and light touch in Rohon-

Beard neurons in zebrafish (Faucherre et al., 2013). In humans, point mutations in PIEZO1

have been identified in patients suffering from Dehydrated Hereditary Stomatocytosis

(DHS), an autosomal dominant hemolytic anemia disease (Zarychanski et al., 2012;

Albuisson et al., 2013; Andolfo et al., 2013). In addition, inactivation of PIEZO1 in lung

epithelial cells causes integrin-independent amoeboid cell migration (McHugh et al., 2012).

Understanding the gating mechanism of Piezo will enrich our current knowledge of how

mechanical cues are converted into intracellular signals. A challenge in developing a gating

model for Piezo arises from the absence of any structural information on the channel. Both

the large size and the eukaryotic nature of Piezo create formidable technical challenges to

the direct crystallographic analysis of the intact channel. The substantial size suggests,

however, that the channel likely consists of smaller domains that may be more amenable to

study. Here, we present the crystal structure at 2.5 Å resolution of a Piezo channel soluble

domain designated CTL2 (C-Terminal Loop 2), located just before the last transmembrane

helix and the C-terminal tail. This loop is predicted to be the largest soluble domain that is

conserved across Piezo homologs. Moreover, there is accumulating evidence that the C-

terminal portion of Piezo, including the CTL2, is involved in the gating kinetics of the

channel. One of the human PIEZO1 point mutants found in DHS patients (M2225R) maps

onto this loop and is shown to exhibit a delayed activation as well as slower inactivation

(Bae et al., 2013a). A combination of a naturally-occurring mutation (M2225R) and an

artificial mutation (R2456K in the C-terminal loop following the last transmembrane helix)

in a human PIEZO1 double mutant construct eliminates the inactivation of the channel (Bae

et al., 2013b). We also present the structure of C. elegans PIEZO CTL2 domain carrying a

point mutation (M31R) at the equivalent position to the mutation found in DHS patients
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(M2225R). These structures establish that CTL2 adopts a novel beta sandwich fold, and the

absence of structural similarity between this domain and any previously characterized fold,

including those of eukaryotic and bacterial channels, serves to highlight the distinctive

nature of the Piezo family of eukaryotic mechanosensitive channels.

Results

Construct selection

As a starting point for structural analysis of the Piezo channel, we targeted large, well-

conserved extramembrane loops. To gain a broad overview of the threading of Piezo protein

through the membrane, we used multiple topology prediction webservers: TMHMM2

(Sonnhammer et al., 1998), Phobius (Kall et al., 2007), TOPCONS (Bernsel et al., 2009),

TMPred (Hofmann and Stoffel, 1993), and SMART (Schultz et al., 1998). Although similar

trends were evident, different algorithms predicted different numbers of transmembrane

helices (between 30 and 40) for all characterized Piezos and there were differences in the

predicted orientation of some of the extramembrane loops (Fig. 1). For our structural study,

we selected a Piezo loop that satisfied the following criteria:

1. it is consistently predicted by all the topology-prediction algorithms used,

2. it is larger than 100 amino acid residues,

3. it is conserved across the Piezo family.

Under these constraints, we identified a predicted soluble domain corresponding to mouse

PIEZO1 residues 2210 – 2453. These residues form an extramembrane loop preceding the

last predicted transmembrane helix that we designate as the C-terminal loop 2 (CTL2)

domain. The orientation of CTL2 could not be conclusively defined by the bioinformatics

analysis, although 3 of the 4 topology prediction webservers predict that this domain is

located in the extracellular environment (Fig. 1). An alignment of Piezo homologs using

MAFFT (Fig S1; (Katoh et al., 2002)) reveals that CTL2 contains over 200 amino acid

residues with a calculated molecular weight between 24 – 32 kDa, making CTL2 the largest

conserved loop among the predicted loops of the Piezo channel. In addition, the Phyre2

webserver (Kelley and Sternberg, 2009) predicts that CTL2 has well-defined secondary

structure (Fig S2). Therefore, we selected CTL2 for crystallographic analysis.

Architecture of the C. elegans CTL2 domain

Following a screen of various Piezo orthologues (see Materials and Methods), the C. elegans

CTL2 domain was found to be amenable for crystallographic analysis. The structure of wild

type C. elegans CTL2 establishes that this domain is organized around a core of three beta

sheets flanked by two pairs of helices with overall dimensions of ~60 Å × 40 Å × 30 Å (Fig

2). The secondary structure observed in the crystal structure generally matches that predicted

by the Phyre2 webserver (Fig S2). The three beta sheets are arranged such that sheet 1

(strands 1, 2, 5, 6, with strands numbered from the N-terminus) is nearly parallel to sheet 2

(strands 3, 4, 11, 8), and perpendicular to sheet 3 (strands 7, 9, 10).
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To identify whether any protein of known structure shares a similar fold with CTL2, we

used SSM (Krissinel and Henrick, 2004) as well as the DALI server (Holm and Rosenstrom,

2010) to perform a structure-based alignment. None of the identified proteins exhibited close

similarities to CTL2 (Max z-score: 2.8). Most of these candidate proteins possess a beta

sandwich fold composed of two beta sheets; this is different than our Piezo soluble domain

structure that consists of three beta sheets. However, if we consider sheet 1 and sheet 2 of

CTL2 as the beta sandwich core with the rest of the protein as connectors, we obtain a two

beta sheet sandwich core with a 2D connectivity diagram illustrated in (Fig S3a). A

comparison between the Piezo loop structure and the identified proteins did not reveal any

significant connectivity similarity (Fig S3b). Subsequently, we explored the structural

classification database CATH (Sillitoe et al., 2013) for two-sheet beta sandwich containing

proteins (CATH ID: 2.60). Examination of the strand order in the beta sheets of these

proteins failed to identify any close matches between CTL2 and previously solved

structures. Therefore, we conclude that Piezo C-terminal soluble domain exhibits a novel

beta sandwich fold.

Regions of potential functional significance were identified from the patterns of residue

conservation evaluated with the programs ProFunc (Laskowski et al., 2005a, b) and ConSurf

(Ashkenazy et al., 2010). Both programs identified the most highly conserved region of

CTL2 as consisting of the solvent exposed surface of sheet 1 (Fig 3). The higher

conservation observed in the ProFunc analysis reflects the use of 50 of the closest homologs

to C. elegans CTL2, while the ConSurf analysis was based on the broader set of Piezo

homologues selected from those used to generate Fig S1. Consequently, while the same

qualitative trends are observed with both programs, ProFunc found a higher residue

conservation at this patch compared to calculation done by ConSurf.

Structure of M31R C. elegans PIEZO CTL2 domain variant

The single substitution in human PIEZO1 of methionine 2225 to arginine has been linked to

the disease Dehydration Hereditary Stomatocytosis (DHS) (Zarychanski et al., 2012). From

the multiple sequence alignment of Piezo homologs, we determined that M31 of the C.

elegans PIEZO CTL2 construct, located in strand 2 of sheet 1, is equivalent to residue

M2225 in human PIEZO1 (Fig. S4). Intriguingly, this residue is located in the conserved

surface region of CTL2 (Fig. 3). The M31R C. elegans mutant CTL2 protein crystallized in

a distinct crystal form from the WT domain and the structure was solved by molecular

replacement. Overall, the structure of the mutant CTL2 is similar to the WT structure with

some minor rearrangements (RMSD Cα = 1.3 Å overall, with 0.7 Å for residues in α-helices

and β-strands (Fig. 4a)). In C. elegans PIEZO CTL2, M31 is spatially adjacent to a

neighboring arginine residue, R94 (Fig. 4b). The most significant change in the M31R

mutant CTL2 structure is the shift of the R94 sidechain ~3 Å away from R31, presumably

due to electrostatic repulsion (Fig. 4b,c, Fig S5). However, R94 in C. elegans PIEZO loop is

not conserved in the multiple sequence alignment (Fig. S4). R94 aligns to a glutamate

residue that is primarily conserved in the vertebrate Piezo1 and Piezo2. Even though the C.

elegans PIEZO CTL2 does not have a glutamate at this position, there are three glutamates

in proximity to M31: E30, E32, and E98. This results in a net acidic local environment

surrounding M31 in the C. elegans PIEZO.
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Discussion

As a starting point for the structural analysis of Piezo, we have identified a predicted

extramembrane domain designated as CTL2 (C-terminal Loop 2) as a promising target for

three reasons. (1) There is a moderate degree of sequence conservation in this region

through all Piezo homologs, which may imply its significance in the general protein

function. (2) We were looking for a target loop with at least 100 amino acids because larger

domains are more likely to have a stable core structure. With ~250 residues, CTL2 is the

largest conserved loop found among Piezo homologues. Moreover, the boundaries at which

this loop starts and ends as defined by different topology prediction methods are similar,

simplifying the design of our constructs. (3) A point mutation in the CTL2 domain of human

PIEZO1 is found in DHS patients. Removal of this loop, together with the last

transmembrane segment and the C-terminal tail, severely impaired the inactivation kinetics

of the channel (Bae et al., 2013a), leading to an increased ion influx that may contribute to

the disease phenotype (Albuisson et al., 2013; Andolfo et al., 2013; Zarychanski et al.,

2012).

The model of CTL2 establishes that the region forms a compact domain containing a beta

sandwich with three sheets. The CTL2 fold is apparently unrelated to any other family of

proteins, including the β sheet domains present in other eukaryotic channels, specifically the

extracellular domains of the two eukaryotic ion channels of known structure (Jasti et al.,

2007; Kawate et al., 2009), ASIC (CATH ID: 2.60.470.10) and P2X4 (CATH ID:

2.60.490.10). There is no evidence from either structure of the wild type or M31R mutant

that this domain forms a tetramer that might help stabilize the oligomeric state of the intact

channel. Mutating the conserved methionine residue into arginine (M31R), corresponding to

a human DHS mutation (M2225R), does not cause a significant conformational change in C.

elegans PIEZO CTL2 domain, suggesting that the effect of this mutation may be to more

subtly perturb conformational energetics through changes in electrostatics, or perhaps to

interfere with the ability to interact with other domains by changing the interface region.

In conclusion, we have described the first structural characterization of a domain of a

eukaryotic mechanosensitive channel, the CTL2 domain of C. elegans PIEZO. We have

shown that this extramembrane region forms a stable domain that adopts a previously

uncharacterized beta sandwich fold. The functional role of this domain in the context of the

full length channel remains unclear. In view of the monomeric nature of the CTL2 domain,

it is unlikely to mediate tetramerization of the full length channel. As this domain is

generally conserved across Piezo homologs, it may have a general role such as mediating

proper intracellular trafficking, tethering the intact channel to one or more proteins, or

binding of a ligand; the search for binding partners is currently under investigation. The lack

of structural similarity between this domain and any known protein fold, including those of

eukaryotic and bacterial channels, reinforces the lack of recognizable sequence homology

between Piezo and other channels, and highlights the distinctive nature of this enigmatic

family of eukaryotic mechanosensitive channels.
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Experimental Procedures

Protein cloning and expression

The CTL2 regions from the mouse PIEZO1, mouse PIEZO2, human PIEZO1, Drosophila

PIEZO and C. elegans PIEZO orthologues were cloned into a pET21 vector between the

NdeI and XhoI restriction sites, generating a construct with a C-terminal 6xHis tag. The

plasmid DNA was transformed into BL-21 gold E. coli cells (Stratagene). Cells were grown

in Terrific Broth medium until reaching an OD600 of 1.0, when 1 mM IPTG was added.

Protein induction was carried on overnight at 20 °C. The CTL2 of C. elegans PIEZO

(GenBank ID: 392900032) was found to be best suited for structural analysis; the protein

and nucleotide sequences of the coding region for this construct are:

MSLLNQIGTISMPEKVTLRISIEGYPPLYEMEAQGSNHDNAELGMIKPDQLASLNQA

LTDSYTTRDTNSILRSRMSVSYLKGYTYEDILIVRFRPESEIYWPISQDSRNAMIDKLS

RNTSVNFEVSLEFTRPYDPNENAALKHSKSWLVPISLDMTIRAKIQSALRGDPGHPIL

IPQSIPAFIQVPNQGELTLPTSIGNTIINDGNPRINTTGMEKSDEARAWFDSLTLNLEQ

GKSQNEKMWIATSEHPGDQNAKLWIKTANTTYSGRPYLQVVGFIDRAFPSLEHHHH

HHATGTCGCTACTCAATCAAATCGGAACTATCAGTATGCCAGAAAAAGTTACGT

TGAGGATTTCGATTGAAGGATATCCACCACTTTACGAGATGGAGGCACAAGGAA

GTAATCACGATAACGCTGAACTTGGAATGATAAAACCTGATCAATTGGCATCTT

TGAATCAAGCATTGACGGATAGTTACACGACACGAGACACTAATTCTATTTTAA

GATCAAGAATGTCTGTATCATATCTGAAAGGATACACATATGAGGATATTCTGA

TTGTGCGATTCCGTCCAGAATCTGAAATTTATTGGCCGATTTCACAGGATTCGAG

AAATGCGATGATCGATAAATTGAGCCGAAACACGTCAGTCAATTTTGAAGTATC

TCTGGAATTCACTCGGCCATATGATCCAAATGAAAACGCTGCTTTAAAACATTC

GAAATCGTGGCTTGTTCCAATCTCCCTGGATATGACGATTCGAGCAAAAATTCaa

AGTGCTCTCCGAGGAGATCCAGGTCATCCGATTCTCATTCCACAGTCAATTCCTG

CGTTTATTCAAGTTCCAAATCAAGGAGAATTGACCCTTCCAACATCAATCGGAA

ATACTATTATCAATGACGGAAATCCACGGATTAATACGACCGGGATGGAAAAAT

CAGACGAAGCTCGGGCTTGGTTCGACTCGTTAACCTTGAATCTCGAACAAGGAA

AATCGCAAAACGAGAAAATGTGGATCGCCACATCCGAACATCCAGGAGACCAA

AATGCGAAACTCTGGATAAAGACTGCAAATACGACGTATTCGGGAAGGCCGTA

CCTTCAAGTTGTCGGATTTATTGATAGAGCATTCCC

ATCACTCGAGCACCACCACCACCACCACTGA

Protein residue numbers are assigned according to their position in this CTL2 construct.

Protein purification

Cells were homogenized in lysis buffer (20 mM Tris-HCl pH 8.0, 50 mM NaCl, lysozyme,

DNAse, PMSF) at a ratio of 1 g cells/10 mL of buffer. Cells were lysed using a

microfluidizer (Microfluidics, Model M-110L), and the lysate was centrifuged to remove

insoluble material. The protein was purified in three steps. First, lysate was run through a

NiNTA column, washed with 40 mM imidazole for 15 column volumes, and eluted with 250

mM imidazole. Next, the eluate from the NiNTA column was run through a Superdex-200

16/60 column (GE Healthcare), and the corresponding peak fraction was collected. Finally,

the resulting protein fraction was run through an anion exchange column, HiTrap Q
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Sepharose FF (GE Healthcare), to obtain the final protein preparation. The identities of the

purified wild type (WT) and M31R variant proteins were confirmed by mass spectrometry.

Crystallization & model refinement

WT CTL2 was crystallized by the sitting drop vapor diffusion method against a reservoir

containing 0.1 M phosphate-citrate buffer pH 4.0, 26% PEG1000, and 0.2 M Li2SO4 at 20

°C in a 96-well plate, at a ratio 0.2 μL protein to 0.2 μL reservoir drop, using intelli sitting

drop crystallization plates (ArtRobbins). The protein concentration was 10–12 mg/mL. WT

CTL2 crystals appeared after 18 hrs and grew to maturation after 3 days to approximate

dimensions of 50 μm × 50 μm × 150 μm. M31R CTL2 was crystallized against a reservoir

containing 0.1 M phosphate-citrate buffer pH 4.8, 30% PEG3350, and 0.2 M Li2SO4 at 20

°C using similar procedures. These crystals grew more slowly than the WT crystals.

A heavy atom derivative of the WT CTL2 crystals was prepared by soaking in 10 mM

potassium tetranitroplatinate (II) for three days, followed by back-soaking in the mother

liquor for 2 hrs. Protein crystals were flash frozen in the presence of Fomblin Y 16/6 oil

(Sigma), and were sent to the Stanford Synchrotron Radiation Lightsource (SSRL).

Diffraction data were collected at SSRL beamline 12-2 equipped with a PILATUS 6M PAD
detector

Diffraction patterns were indexed and integrated using iMOSFLM (Battye et al., 2011) from

the CCP4 software package (Potterton et al., 2003) and XDS (Kabsch, 2010). The integrated

data was scaled using SCALA (Evans, 2006). Phases for the WT CTL2 were obtained

experimentally by Single-wavelength Anomalous Dispersion (SAD) phasing based on the

platinum derivative. Five platinum sites were located, and electron density maps were

generated using Autosol (Terwilliger et al., 2009) from the PHENIX suite (Zwart et al.,

2008). Phases for the M31R CTL2 structure were generated with PhaserMR (McCoy, 2007)

by molecular replacement using the WT structure. Model building was done in Coot

(Emsley and Cowtan, 2004), and the structure refinements were done using Refmac5

(Murshudov et al., 2011). The final molecular structures were displayed using PyMOL

(Schrodinger, 2010).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A conserved loop of the Piezo channel is identified that forms a stable domain.

• The structure of this domain reveals a novel beta sandwich fold.

• The novel fold highlights the distinctive nature of the Piezo channel family.

• A disease related mutation in this domain has minimal structural consequences.

Kamajaya et al. Page 11

Structure. Author manuscript; available in PMC 2015 October 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. Membrane topology of mouse PIEZO1 as predicted by various membrane topology
prediction algorithms
Depending on the membrane topology prediction algorithm, mouse PIEZO1 is predicted to

have 30 to 40 transmembrane segments. The numbers of amino acids (aa) for the larger

predicted loops are indicated. The loop of interest, CTL2 (red box), is predicted to be

extracellular by 3 of the 4 topology prediction algorithms. Since mouse PIEZO1 is the most

extensively characterized Piezo channel, it is used to illustrate the topology predictions;

Diagrams are drawn using TOPO2 (Johns) http://www.sacs.ucsf.edu/TOPO2/). See also

Figure S1.
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Figure 2. Structure of the wild type C. elegans CTL2 domain
The structure of the wild type Piezo CTL2 is colored in a rainbow scheme, progressing from

the N-terminus (blue) to C-terminus (red). Front view (left): The loop is oriented so that the

connections to the putative transmembrane helices are positioned toward the bottom. The β-

strands are numbered sequentially from the N-terminus. Top view (right): the front view,

rotated 90° around the horizontal axis. See also Figures S2 and S3.
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Figure 3. Residue conservation analysis of CTL2
(A) Surface representation of the WT CTL2 domain (marine blue) is oriented in similar

fashion to the one displayed in Figure 2 (left side). The N and C terminus are labeled, with

the residues colored in light gray. (B) Surface conservation representation from the closest

Piezo homologs as calculated by ProFunc (Laskowski et al., 2005a, b) and displayed on the

WT CTL2 domain structure. (C) Surface conservation representation from representative

Piezo homologs taken from broad branches of eukaryotic kingdom (Fig S1) as calculated by

ConSurf (Ashkenazy et al., 2010). The left panels of B and C show the surface of CTL2

upon ~+90° rotation along the y-axis from the view in A, dominated by the solvent exposed

surface of sheet 1, while the right panel shows the surface of CTL2 upon -90° rotation from

A (180° from the left panels). Surface conservation is colored in a rainbow gradient scheme

in such a way that the least conserved region is colored in blue and the most conserved

region is colored in red. M31R is located at the conserved sheet 1 surface of CTL2 displayed

in the left panels. See also Figures S2 and S4.
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Figure 4. Superposition of wild type and M31R substituted CTL2 domains
(A) Superposition of the wild type (pink) and M31R substituted (blue) CTL2 structures. The

position of residue 31 is highlighted in yellow (circled). (B, C). The M31R mutant structure

is displayed in blue and the WT structure is displayed in pink; this substitution is

accompanied by a modest re-arrangement of the R94 side chain. See also Figure S4 and S5.
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Table 1

Data collection and refinement statistics of the wild type and mutant CTL2 domains.

Data set Wildtype CTL2 CTL2 M31R

Protein Data Bank number 4PKE 4PKX

Data collection statistics

Space group H 3 2 P 1 21 1

a, b, c (Å) 72.59, 72.59, 241.6 45.18, 37.25, 73.56

β, β, γ (°) 90, 90, 120 90, 91.58, 90

Wavelength (Å) 1.0716 1.0332

Resolution (Å)a 33.09 – 2.45 (2.57 – 2.45) 38.97 – 2.54 (2.68 – 2.54)

No. of unique reflection a 9377 (1211) 7746 (887)

Mean (I/sigma I) a 17.7 (3.0) 28.4 (11.2)

Completeness a 99.9% (100%) 93.6% (75.4%)

Average multiplicity a 10.1 (10.6) 3.1 (2.8)

Anom. Completeness a 99.9% (99.9%)

DelAnom. correlation between half-sets a 0.915 (0.061)

R-merge a 0.093 (0.810) 0.028 (0.085)

Matthew Coefficient 1.951 1.92

Refinement statistics

Resolution 31.17 – 2.50 33.23 – 2.54

Average B factor (Å2) 83.9 38.6

Rwork/Rfree (%) 22.81/23.84 21.79/25.91

Rmsd bonds (Å) 0.006 0.004

Rmsd angles (°) 1.23 0.97

Ramachandran plot (%)

Favored 97.5 98.2

Outliers 0 0

Rotamer outliers (%) 5.9 2.9

Molprobity clashscore 13.8 12.8

Molprobity overall score 2.34 1.97

a
Values in parentheses represents the highest resolution shell
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