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Abstract

Due to their small size, lower cost, short reproduction cycle, and genetic manipulation, rodents

have been widely used to test the safety and efficacy for pharmaceutical development in human

disease. In this report, MRI cholangiography demonstrated an unexpected rapid (<5 min) biliary

elimination of gadolinium-perfluorocarbon nanoparticles (approximately 250 nm diameter) into

the common bile duct and small intestine of rats, which is notably different from nanoparticle

clearance patterns in larger animals and humans. Unawareness of this dissimilarity in nanoparticle

clearance mechanisms between small animals and humans may lead to fundamental errors in

predicting nanoparticle efficacy, pharmacokinetics, biodistribution, bioelimination, and toxicity.
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Background

Many years ago (around 1998), our laboratories began to study the use of 250 nm

paramagnetic perfluorocarbon nanoparticles (NP) in rats. In these early studies, biliary

excretion of these paramagnetic particles was observed a few minutes after intravenous

injection, enabling the creation of MR cholangiograms, perhaps the first ever made using

nanotechnology1. The accumulation of NP in the intestines of rodents was observed

innumerable times over subsequent years, but this biodistribution pattern was not

appreciated in numerous larger animal models including rabbits2, 3. The objective of this

communication is to share these observations with the nanocommunity as well as some of

the key scientific literature beginning in the late 1950’s that previously explored the issue of

colloidal clearance in rodents, larger animals, and humans.

Materials and Methods

Preparation and characterization of perfluorocarbon NP

Paramagnetic perfluorocarbon NP were prepared as previously reported4. The emulsions

were comprised of 40% (v/v) of perfluorooctylbromide (PFOB; Elf Atachem, specific

gravity 1.93 g/ml), 2% (w/v) of a surfactant commixture, 1.7% (w/v) glycerin and deionized

nanopure water representing the balance. The surfactant mixture consisted of 78 mole%

high-purity (>95%) egg yolk phosphatidylcholine, 2 mole% phosphatidylethanolamine, and

20 mole% of the lipophilic gadolinium chelate diethylene-triamine-pentaacetic acid-bis-

oleate (Gd-DTPA-BOA; Gateway Chemical Technologies). PFOB, glycerin, and the

surfactant commixture were pre-blended with sonication and microfluidized at 14,000 PSI

for 4 minutes (Microfluidics, Newton, MA, USA). PFOB particles in example 2 were

produced with 20% v/v PFOB and excluded Gd-DTPA-BOA from the surfactant mixture,

which was replaced with high purity (>95%) egg yolk phosphatidylcholine on an equimolar

basis. Nominal particle sizes were 220±80nm using dynamic light scattering (Malvern

Instruments, Malvern, PA) with a polydispersity index <0.2.

MR imaging—All animal studies were conducted in accordance with a protocol approved

by the Animal Care and Use Committee of our Institutes

In example 1, 200 g female rats (rnu/rnu) were anesthetized by intraperitoneal (IP) injection

of 100 mg/kg ketamine and 10 mg/kg acepromazine. Anesthesia was maintained by

administering 25 mg/kg ketamine and 2.5 mg/kg acepromazine IP via a 20-gauge catheter

(JELCO, Tampa, FL) every 30 minutes or as needed. Gd-DTPA PFOB NP were injected via

tail vein at a dose of 0.05 mmole Gd/kg. MR images were taken before and immediately

after injection over a time course of 1 hour. To this end, a Signa 1.5T clinical magnet

(General Electric Medical Systems, Milwaukee, WI) was used equipped with a 5-inch

circular surface coil and a field of view of 13 cm. A 3D time-of-flight (TOF) spoiled

gradient echo (SPGR) sequence was used to obtain coronal images with the following

parameters: Echo time (TE)=minimum, flip angle=45 degrees, slice thickness=1.0 mm,

matrix=256×192, and number of averages=10. In example 2, PFOB NP were injected via

tail vein into a 100 g male Harlan rat at 1.0 ml/kg and allowed to circulate for 2 hours prior

to imaging. High-resolution 1H/19F MR images were acquired at 3T (Philips Achieva) using
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an in-house, custom dual-tuned open birdcage transmit-receive coil5, 6. Simultaneous

3D 1H/19F imaging was used employing a novel steady state ultrashort echo time (UTE)

technique (TE/TR=0.1 ms/1.96 ms) with the frequencies set to the resonance of 1H and the

CF2 groups of the PFOB spectrum (representing 12 of 17 total 19F nuclei)7. Using a highly

oversampled 3D radial readout scheme, the reconstructed image datasets have a nominal

resolution of 1.25 mm3,8.

Results

In example 1, T1-weighted TOF MR imaging of rats given Gd-DTPA PFOB NP revealed an

unexpected rapid biliary excretion. This was appreciated as an MR biliary cholangiogram at

5 minutes following intravenous injection (Figure 1). At baseline, the heart, liver, spleen,

and vasculature were not apparent but the gastrointestinal system could be observed

secondary to the presence of digesta. One minute post-injection, the blood pool was

opacified with NP, clearly revealing the heart, aorta,, and large peripheral vasculature.

Highly vascularized organs, such as the liver and spleen, also became visible. Five minutes

post-injection, the biliary flow of the injected NP could be clearly appreciated passing from

the liver along the common bile duct into the small intestine. The anatomical lack of a gall

bladder in the rat was apparent, as these animals do not possess this organ.

In the second example, PFOB NP were injected via tail vein into a rat and simultaneous

dual 1H/19F MR images were obtained as a 3D stack. Figure 2 presents 4 sequential coronal

images of that acquisition. At two hours, a low-level blood pool signal (i.e., colorized green)

was appreciated within the cardiac ventricles. As expected, PFOB particles were heavily

biodistributed into the liver, producing intense signal in that organ. Consistent with the

gadolinium-enhanced images in Figure 1, an abundance of 19F rich PFOB was localized in

the small intestines. A tubular 19F-rich reference standard of PFOB NP suspended in agarose

is seen on the animal’s right. Collectively, these images strongly suggest that entire NP are

passing directly and rapidly into the biliary tree and their constituents are flowing into the

intestines after i.v. injection.

Discussion

In the present report, rapid biliary excretion of relatively large PFOB NP (~250nm) was

observed with T1-weighted 3D TOF and dual 1H/19F UTE MR imaging techniques. In man,

NP less than 5–6 nm can be bioeliminated through the kidneys and urine, but are otherwise

they are retained primarily by the clearance organs belonging to the mononuclear phagocyte

system (MPS) until degraded into smaller constitutive elements, which may be metabolized

further or eliminated directly via bile, urine, or respiration.9–12 Although the rapid transit of

large, otherwise vascular-constrained particles into the bile and gut was never observed with

MRI previously, the scientific appreciation of this phenomena occurred over a century ago.

In 1958, Hampton13 referenced the 1881 work of Rütimeyer who intravenously

administered particles of cinnabar in rodents and reported their distribution into Kupffer

cells, hepatic cells, and bile. Hampton further noted that these early results were later

corroborated by Müllendorf in 1916 and Weatherford in 1956 using colloidal dyes and India
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ink, respectively. Hampton found that colloidal particles (8% HgS in 500 μl or 25% ThO2,

Thorotrast) injected intravenously localized to the liver and spleen with transmission

electron microscopy (TEM). Within the liver, they were found in Kupffer cells, hepatocytes,

and the biliary tree. Particles phagocytosed by Kupffer cells were retained in those cells

indefinitely; whereas particles endocytosed by hepatocytes were transported rapidly into the

biliary system. Since systemic protein coating could influence the handling of the particles

in the liver, Hampton performed biliary retrograde infusions of Thorotrast colloidal

particles. TEM revealed that the particles transited in reverse through hepatocytes into the

space of Disse. Some of the Thoratrast was sequestered in Kupffer cells while much passed

into the circulatory system. Other evidence of NP excretion into rodent bile and feces

include silica particles from 50–200 nm14, citrate-coated silver particles (~8 nm)15, and iron

oxide core high-density lipoproteins (~10 nm)16.

In contradistinction to rodents, Juhlin reported in 196017 that fluorescent spherical

hydrophilic particles of methyl methacrylate injected intravenously in rabbits did not transit

effectively into the bile. A 192 mg intravenous injection of particles (20 to 110 nm)

produced a minimal biliary concentration of 0.05–0.40 mg/ml during the first minutes after

i. v. injection. Fluorescent particles in the range of 60–140 nm were not appreciated in the

bile. Further, particles 200–800 nm in diameter were not found in the bile despite a ~10-fold

increase in injected dose (1,200 mg).

Rodents are frequently used to characterize the pharmacokinetics, pharmacodynamics,

biodistribution, and bioelimination of nanomedicines for basic science and IND regulatory

purposes. While these models offers a wealth of research opportunity, the data achieved with

nanotechnology must be viewed with an appreciation for the impact of rapid biliary

clearance. Rapid excretion of particles along with their therapeutic or imaging payloads

substantially lowers the toxicity burden imposed on the animal and can leave a better

impression of biosafety than exists. Allometric scaling18 to project pharmacokinetic data

from rodents to man may be inappropriate, since the concept of shape scaling implies that

the physiological pathways are conserved. Non-metabolizable particles greater than the renal

threshold can pass into the feces of rodents leading to potentially false conclusions of high

bioelimination and safety.

In summary, we have presented MRI examples of rapid biliary secretion of relatively large

PFOB NP. While the MR cholangiogram using NP may have been the first ever produced in

1998, the recognition that particles can be excreted into the feces via bile in rodents dates

back to the 1950s, with the early insights published in the late 19th century. Today, given the

rapid expansion of nanomedicine research, it is incumbent upon us to recognize and adjust

to the potential translational issues that the use of rodent preclinical models pose on

assessments of nanomedicine safety and efficacy studies.
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Figure 1.
3D TOF MR cholangiogram in a rat following intravenous injection of gadolinium-

functionalized PFOB NP. (A) Baseline image showing no evidence of vasculature or

common bile duct. (B) 1 min post-injection, the blood pool as seen in the heart, aorta

(arrow), and peripheral vasculature have strong T1-weighted positive contrast from the NP

that are still constrained within the vasculature. H=heart, L=liver. (C) Within 5 min, the NP

are rapidly excreted through the common bile duct (arrows), reflecting the rapid shunt of

contrast from the liver into the small intestine. (D). After 10 min the small intestine contains

most of the contrast, that is passed on to the large intestines at 30 min (E) and 60 min (F).
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Figure 2.
(A–D). Sequential 3D overlayed 1H/19F MR images of a rat 120 min following intravenous

injection of PFOB NP. NP accumulated in the liver and intestines.
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