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(Bacl(ground: Proteins have adopted negative design to diminish aggregation.
Results: The replacement of Lys-35 by Leu increases the amyloidogenicity of the 26 —57 segment of TTR as well as the entire

Conclusion: Lys-35 is as a gatekeeper residue in TTR, and its protective effect is suppressed by heparin.
Significance: The elucidation of the principles that govern protein aggregation is helpful for the design of strategies against

N

J

Protein aggregation into 3-sheet-enriched amyloid fibrils is
associated with an increasing number of human disorders. The
adoption of such amyloid conformations seems to constitute a
generic property of polypeptide chains. Therefore, during evo-
lution, proteins have adopted negative design strategies to
diminish their intrinsic propensity to aggregate, including
enrichment of gatekeeper charged residues at the flanks of
hydrophobic aggregation-prone segments. Wild type transthy-
retin (TTR) is responsible for senile systemic amyloidosis, and
more than 100 mutations in the TTR gene are involved in famil-
ial amyloid polyneuropathy. The TTR 26 -57 segment bears
many of these aggressive amyloidogenic mutations as well as the
binding site for heparin. We demonstrate here that Lys-35 acts
as a gatekeeper residue in TTR, strongly decreasing its amy-
loidogenic potential. This protective effect is sequence-specific
because Lys-48 does not affect TTR aggregation. Lys-35 is part
of the TTR basic heparin-binding motif. This glycosaminogly-
can blocks the protective effect of Lys-35, probably by neutral-
ization of its side chain positive charge. A K35L mutation emu-
lates this effect and results in the rapid self-assembly of the TTR
26 —57 region into amyloid fibrils. This mutation does not affect
the tetrameric protein stability, but it strongly increases its
aggregation propensity. Overall, we illustrate how TTR is yet
another amyloidogenic protein exploiting negative design to
prevent its massive aggregation, and we show how blockage of
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conserved protective features by endogenous factors or muta-
tions might result in increased disease susceptibility.

Amyloid deposits have been associated with pathological
states such as Alzheimer and Parkinson diseases and familial
amyloid polyneuropathy (FAP),”> among others (1-3). In these
diseases, a specific soluble protein or peptide undergoes struc-
tural changes, forming aggregation-prone, -sheet enriched
species, which constitute the building blocks for amyloid fibril
formation. Toxicity in these diseases arises either by the loss of
function of the aggregated protein(s) or by a gain of toxic func-
tion associated with the presence of fibrils themselves or prefi-
brillar assemblies, which, as suggested by several studies, are
cytotoxic (4-6).

The aggregation of proteins into amyloid fibrils has been pro-
posed to be an intrinsic property of polypeptide chains, and
indeed an increasing number of proteins unrelated to disease
are being shown to form amyloids in vitro (7, 8). This reflects
the fact that structural and sequential determinants of protein
folding overlap significantly with those promoting intermolec-
ular aggregation (9—12). Therefore, during evolution, proteins
have adopted negative design strategies to counter the unavoid-
able aggregation propensity of certain sequence stretches by
incorporating -sheet breakers at structurally critical positions
(13, 14), avoiding the presence of 3-strands on the edge of pro-
tein structures (15) or placing gatekeeper residues at the flanks
of aggregation-prone segments (16 -18). Gatekeeper residues
counteract aggregation by the repulsive effect of their charges
(Arg, Lys, Asp, and Glu), by the entropic penalty on aggregation
due to their large and flexible side chains (Arg and Lys), and by
the incompatibility with the B-sheet structure of the aggregates

3 The abbreviations used are: FAP, familial amyloid polyneuropathy; SSA,
senile systemic amyloidosis; TEM, transmission electron microscopy; TTR,
transthyretin; Th-T, Thioflavin T; PK, proteinase K; SEC, size exclusion chro-
matography; TFE, trifluoroethanol.
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FIGURE 1. Structural and sequential features of the TTR 26 -57 region. On
the left, the tetrameric TTR structure is displayed with the B-strands B, C, and
D, comprising residues 26-57, highlighted in red (Protein Data Bank entry
1F41). On the right is shown the 26 -57 peptide sequence used in the present
study and the monomer of TTR with lysines 35 and 48 colored in green and
yellow, respectively.

(Pro). The impact of gatekeeper residues on the aggregation
tendency of proteins can be large; a single substitution of a
hydrophobic residue by a Lys suffices to fully convert a highly
aggregation-prone protein into a soluble variant (19).

Transthyretin (TTR) is a homo-tetrameric protein of 56 kDa
produced in the liver and in cerebrospinal fluid. TTR is associ-
ated with at least two amyloidoses: senile systemic amyloidosis
(SSA) and FAP. SSA is caused by massive deposition of aggre-
gates of wild type TTR (WT-TTR), mainly in the heart, whereas
FAP is caused by deposition at peripheral nerves and tissues of
aggregates that are composed of more than 100 different auto-
somal TTR variants (20, 21). Aggregation of TTR is triggered by
low pH (22, 23) and initiated by the dissociation of tetramers
into partially unfolded monomers, which are inherently aggre-
gation-prone (23-25). At present, liver transplantation is the
only treatment for FAP. Tafamidis, a drug that kinetically sta-
bilizes the T'TR tetramer, has been approved in Europe to treat
V30M FAP patients. However, little is known about the efficacy
of tafamidis in non-V30M FAP as well as in other TTR-related
amyloidoses, involving cardiac and neurological manifestations
(1, 26). Thus, additional studies are necessary to unravel the
precise mechanism of TTR aggregation and to develop effective
therapies for these pathologies.

Here we combined in silico and in vitro analyses to explore
whether TTR exploits gatekeeper residues to modulate its pro-
pensity to form aggregates, focusing on the predictably amy-
loidogenic 26 —57 stretch comprising strands B, C, and D (Fig. 1,
red strands). Several studies have shown that strands C and D
participate in the interchain contacts that lead to fibril forma-
tion in TTR (27-29). Many FAP mutations map to strands C
and D, including V30M and L55P, the most widespread and
aggressive TTR variants, respectively (30, 31). Despite these
features, we show here that, surprisingly, this region displays
a low propensity to aggregate in vitro. We identify Lys-35 as
a gatekeeper residue responsible for this behavior because
the mutation K35L within a synthetic TTR 26 —57 peptide or
in the complete tetrameric protein yields a large increase in
amyloidogenicity.

Heparin promotes fibrillation of WT-TTR and co-localizes
with the protein in the heart tissue of SSA patients (32). This
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proamyloidogenic effect depends on its binding selectively to a
basic motif among residues 24 -35 of strand B (32). Accor-
dingly, we show that heparin bypasses the gatekeeping effect of
Lys-35. Thus, our results demonstrate that TTR exploits nega-
tive design strategies to diminish its intrinsic propensity to
aggregate and that perturbation of these protective features can
trigger its amyloidogenic potential.

EXPERIMENTAL PROCEDURES

AGGRESCAN, TANGO, and AMYLPRED?2 Analysis—The
intrinsic aggregation and amyloid formation propensities were
evaluated for the wild type TTR sequence and the K35L and
K48L variants, either in the context of the complete protein
sequence or considering the isolated TTR 26 —57-derived pep-
tides. These analyses were performed with the AGGRESCAN,
TANGO, and AMYLPRED2 algorithms, employing default
settings.

Peptide Synthesis—The three peptides studied here were pur-
chased from Genemed Synthesis with a purity of 99.9%. The
peptide compositions were confirmed by MALDI-TOF/TOF
mass spectrometry.

Protein Expression and Purification—WT-TTR and the
K35L-TTR mutant were expressed and purified as described
previously (31). Protein concentration was determined by
absorbance spectroscopy using an extinction coefficient of
7.76 X 10* M~ " cm ™" at 280 nm.

Peptide Aggregation—Desired amounts of lyophilized pep-
tides were weighted and dissolved on a known volume of Mil-
li-Q water for preparation of fresh 1 mm stock solutions just
before the aggregation experiments. Peptide concentration was
also confirmed by spectroscopy, measuring the absorbance of
the stock solutions at 280 nm and using an extinction coeffi-
cient of 5690 M~ ' cm™'. The concentration used for aggrega-
tion experiments was 100 uM in all assays. Buffers were named
as buffer pH 5.0 (100 mm MES, 100 mm KCl, pH 5.0) and buffer
pH 7.5 (50 mm Tris, 100 mm KCI, pH 7.5). Samples were incu-
bated without agitation at 25, 37, and 50 °C. The aggregation
kinetics were followed by measuring the suspension turbidity
(at 330 nm) along the kinetics or at the indicated reaction time
points using a UVI-Vis Mini-1240 Shimadzu spectrophotome-
ter (Shimadzu).

WT peptide aggregation was also studied in the following
buffers: 10 mm HCI, 5 mm SDS (buffer 1); 10% acetonitrile
(buffer 2); 50% TFE (buffer 3); 50% DMSO (buffer 4); 10 mm
HCI, 20% TFE (buffer 5); 200 mm sodium acetate, pH 5.0 (buffer
6); and 5 mMm Triton X-100 (buffer 7).

Thioflavin T (Th-T) Binding Assay—Th-T binding was used
to probe amyloid formation on the samples. Peptide samples
were diluted to 5 uM in a Th-T solution in 5 mMm sodium phos-
phate, pH 8, resulting in a final Th-T concentration of 20 um.
Excitation was set to 450 nm, whereas emission was collected
from 400 to 600 nm. Five individual scans were averaged for
each measurement using a K2 spectrofluorometer (ISS Inc.).
The intensity of the spectra at 482 nm was used as an indicator
of the extent of amyloid material. Specifically, in Figs. 54 and
8B, the suspensions containing the aggregated material (12 or
18 h of aggregation, respectively) were centrifuged at 11,000
rpm for 15 min, the pellets were resuspended in buffer, and
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equal amounts of aggregates were mixed with Th-T to measure
binding.

Full-length TTR Aggregation Assay—3.5 um WT-TTR and
K35L-TTR native proteins were incubated under quiescent
conditions in 200 mM sodium acetate, 100 mm KCl, pH 4.4, at
37 °C. After 72 h, samples were vortexed, and their turbidity
(330 nm) was monitored on a UVI-Vis Mini-1240 Shimadzu
spectrophotometer (Shimadzu).

Circular Dichroism (CD) Measurements—Samples of the
three peptides (WT, K35L, and K48L) were prepared immedi-
ately before measurements at a concentration of 100 um by
dissolving the stock solution on buffer pH 5.0 or 7.5. CD spectra
were recorded at the indicated times, scanning from 260 to 190
nm on a Jasco 810 spectropolarimeter thermostated at 25 °C.
Each spectrum results from the accumulation of 10 scans.
When aggregation of the WT peptide was performed in 10 mm
HCI, 5 mm SDS (buffer 1), CD measurements were also col-
lected at the same conditions.

Transmission Electron Microscopy (TEM)—Aggregated sam-
ples were diluted to 10 uMm in Milli-Q water. 5 ul of suspension
were absorbed onto 200-mesh carbon-coated copper grids for 5
min and then blotted to remove excess material. Negative stain-
ing was performed by adding 5 ul of 2% (w/v) uranyl acetate.
Samples were dried on air for 3 min. The grids were imaged
with a Jeol 1200 electron microscope (Jeol Ltd.) operating at a
60 kV acceleration voltage.

Proteinase K (PK) and Trypsin-limited Proteolysis for Deter-
mination of Amyloid Fibril Core—Samples of K35L peptide
fibrils grown in buffer pH 5.0 at 25 °C for 3 h were centrifuged
for 15 min at 11,000 rpm. The pellet was carefully resuspended
in the same volume of PBS, pH 7.0. Digestion was initiated by
adding PK or trypsin at a final concentration of 2 ug/ml. PK
proteolysis was stopped after 5, 30, or 60 min by the addition of
PMSF to attain a final concentration of 5 mm. 50 ul of the
digestion mixture were immediately diluted into 200 ul of PBS,
pH 7, containing 9 M urea and incubated for 2 h to allow dena-
turation of the remaining aggregates. The trypsin reaction was
quenched by the addition of 1% TFA. TFA at this concentration
is effective in both inactivating this enzyme and completely
resolubilizing the remaining aggregates (33). Digestion prod-
ucts were separated by a Superdex peptide (GE Healthcare),
and elution was followed by recording absorbance at 214 nm.
The resistant core was considered to be a peak for which no
change in intensity was detected along the digestion reaction.
The peaks were collected, and the solvent was removed by cen-
trifugal evaporation. The resulting pellets were resuspended in
0.1% TFA and further concentrated using ZipTip pipette tips
(Millipore). Samples were then mixed with the same volume of
a-cyano matrix and spotted immediately for mass spectrome-
try analysis. Spectra were collected using an Ultraflex Speed
MALDI-TOF/TOF system (Bruker Daltonics). Data were
extracted and exported using the program mMass.

Size Exclusion for Oligomeric State Characterization—The
oligomeric state of K35L peptide at 0, 5, 10, 15, and 30 min after
initiation of the aggregation reaction in buffer pH 5.0 at 25 °C
was evaluated using SEC by injecting 50 ul of each sample onto
a Superdex 75 column (GE Healthcare) coupled to a HPLC
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system (Shimadzu). Sample elution was followed by absorbance
at 280 nm.

Fibril Characterization by FTIR—Aggregated samples were
centrifuged for 15 min at 11,000 rpm. The resulting pellets
were resuspended in D,O and lyophilized overnight. Samples
were analyzed by attenuated total reflection-FTIR spectroscopy
using a Magna 550 FTIR spectrophotometer (Nicolet)
equipped with a mercury cadmium telluride detector. Infrared
(IR) spectra were obtained by co-adding 256 interferograms
collected with 2 cm ™' resolution and apodized with a Happ-
Genzel function. Determination of peak positions and curve
fitting were performed with the OMNIC (Nicolet) and GRAMS
(Galactic) software, respectively. Integral intensities of the sec-
ondary structure elements were calculated by analysis of the
amide I vibrational mode of the infrared spectrum. Fourier self-
deconvolution of the IR spectra was performed with a resolu-
tion enhancement factor of 1.8 and a bandwidth of 15 cm ™ *.

Seeding Experiments—Seeding of the K35L peptide aggrega-
tion kinetics were assayed by adding known amounts of nuclei
solution (K35L peptide suspension previously aggregated for 20
min at pH 5.0 in buffer pH 5.0 at 25 °C) or 2% (v/v) sonicated
mature fibrils to freshly prepared samples of peptide at 100 um.
The percentage of nuclei indicated on the experiments was cal-
culated as v/v. The aggregation kinetics of the K35L peptide
under different seeding conditions were followed by recording
turbidity at 330 nm over time.

Aggregation in the Presence of Heparin—The effect of heparin
on WT peptide aggregation was evaluated by incubating sam-
ples of peptide in buffer pH 5.0 or pH 7.5 in the presence of low
molecular weight heparin at 10, 20, or 30 uM final concentra-
tion. The peptide concentration was fixed at 100 um. The
aggregation kinetics were followed by recording the turbidity of
the samples at 330 nm. A sample of the peptide incubated in the
absence of heparin was used as a negative control. In the case of
the full-length TTR (WT and K35L, 3.5 uMm), 35 um heparin was
employed.

High Hydrostatic Pressure-induced Denaturation—Pressure-
induced denaturation of WT- and K35L-TTR (full-length pro-
teins) was followed by recording tryptophan emission spectra
between 300 and 400 nm after excitation set to 280 nm. Pres-
sure was applied with increments of 200 bars, using a K2 spec-
trofluorometer (ISS) coupled to a high pressure cell described
previously (34). For spectrum recording, the sample was
allowed to equilibrate for 15 min after each pressurization step.
The degree of denaturation of the protein was evaluated using
the center of spectral of mass of the tryptophan emission at
each pressure.

RESULTS

The Aggregation Propensity of the TTR 26-57 Segment Is
Intrinsically Low but Can Be Artificially Induced by Additives—
Initially, we incubated the peptide encompassing residues
2657 of wild type human TTR (WT peptide) at 100 uM in a
large variety of experimental conditions, including extreme pH
(2.0-12.0), high temperatures (up to 60 °C), and high salt con-
centrations (up to 500 mm KCI). However, we could not detect
any significant peptide aggregation as monitored by light scat-
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FIGURE 2. Characterization of the WT peptide aggregation. A, the WT peptide was incubated at 100 um at room temperature with different buffers and
aggregation monitored by turbidity at 330 nm (inset). Turbidity was normalized by the initial values obtained for each sample. The constitution of each buffer
is as follows: 10 mm HCI, 5 mm SDS (buffer 1); 10% acetonitrile (buffer 2); 50% TFE (buffer 3); 50% DMSO (buffer 4); 10 mm HCl, 20% TFE (buffer 5), 200 mm sodium
acetate, pH 5.0 (buffer 6); and 5 mm Triton X-100 (buffer 7). B shows the Th-T binding assay performed with the sample incubated on HCI-SDS buffer at different
times. Th-T fluorescence was obtained by exciting the samples at 440 nm and collecting the emission from 400 to 600 nm. The intensity at 482 nm was used to
probe amyloid formation. The inset shows examples of Th-T fluorescence emission spectra. C and D, secondary structural changes during the aggregation
kinetics in HCI-SDS as monitored by CD, showing the transient population of a-helical conformers at initial aggregation times (C) and the conversion toward
a B-sheet-rich conformation at 24 h (D). TEM was performed with samples aggregated in SDS for 3 h (E), 5 h (F), 10 h (G), 24 h (H), 72 h (/), and 21 days (J). All bars

in the images represent 1 um. Error bars, S.E.

tering, Th-T binding, or electron microscopy (EM) in any of
these conditions (data not shown).

To force aggregation of this peptide, we used seven buffers
containing different additives (acetonitrile, TFE, SDS, Triton
X-100, and DMSO) and monitored the extent of aggregation by
turbidity after 120 h (Fig. 24, inset; see the figure legend for
buffer constitution). All of them were effective in inducing pep-
tide aggregation to some extent. However, the most pro-
nounced aggregation effects were observed when the peptide
was incubated in the presence of 50% DMSO (buffer 4), 50%
TFE (buffer 3), 10% acetonitrile (buffer 2), and 10 mm HCl and
5 mm SDS (buffer 1). The latter condition was chosen for a
better characterization of the aggregation process of W'T pep-
tide. As seen in Fig. 2A (filled circles), in this condition, aggre-

SASBMB

OCTOBER 10, 2014 +VOLUME 289+-NUMBER 41

gation of WT peptide presented a lag phase of ~8 h in duration
followed by an exponential growth phase that levelled off at
~80 h, when turbidity increased 20-fold. It is interesting to note
that a non-ionic surfactant, such as Triton X-100 (buffer 7), did
not induce a substantial induction on the aggregation of the
WT peptide, which suggests that charged surfactants are nec-
essary for this effect.

In order to probe the amyloid character of the detected
aggregates of WT peptide in HCI-SDS (buffer 1), aggregation
kinetics measuring Th-T were performed (Fig. 2B). For this,
peptide aliquots were withdrawn during the aggregation kinet-
ics and mixed with Th-T, and the fluorescence spectra were
recorded (Fig. 2B, inset). It is possible to see an increase in
fluorescence emission at 482 nm over time, suggesting forma-
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FIGURE 3. In silico predictions of WT-TTR and 26-57 peptide amyloid propensity. The presence of hot spots of aggregation was predicted using
AGGRESCAN for the entire TTR sequence (A) or for the peptides WT, K35L, and K48L (B). The horizontal bar in Aindicates the localization of the peptides studied
here in the context of TTR full-length sequence. The global aggregation propensity of WT, K35L, and K48L peptides was predicted using TANGO (C). The default

parameters of the algorithms were used for all of the predictions.

tion of amyloid aggregates. And, again, a nucleation phase in
the first ~5 h was noticed, followed by an exponential growth
phase.

We monitored simultaneously the change in the secondary
structure content of the peptide using far-UV CD (Fig. 2, C and
D). Although the peptide comprises the B, C,and D B-strands in
the context of the intact protein, in the absence of additives, it
exhibited a main peak at 200 nm, characteristic of an unstruc-
tured conformation (filled circles in both panels). The presence
of SDS induced a progressive shift of the spectrum toward that
of an a-helix, with two negative signals at 208 and 222 nm. This
conformational transition was observable immediately after
dilution in SDS, indicating a fast induction of a-helical con-
tacts. At later times, 1, 2, and 3 h after dilution, the intensity of
these peaks increased (Fig. 2C).

Incubation in this buffer for 24 h resulted in a dramatic shift
in the spectrum, which now presented a single intense negative
peak at 216 nm, indicating a transition toward formation of
B-sheet-enriched conformations (Fig. 2D). The negative inten-
sity of this peak continued to increase after 48 and 72 h.

We used TEM to confirm the morphological properties of
the aggregates formed upon incubation for 3, 5, 10, 24, and 72 h
and 21 days in SDS (Fig. 2, E-J, respectively). After 3 h of aggre-
gation (nucleation phase, where a-helical species are present),
we could not see any aggregated material in suspension (Fig.
2E). At 5 and 10 h (end of the lag phase), amorphous aggregates
were formed, and they responded for the majority of the species
present (Fig. 2, F and G). At longer incubation times, fibrillar
structures were observed, but they became well structured only
after prolonged incubation (Fig. 2, H-J); unfortunately, the high
viscosity of the sample after prolonged incubation prevented
spectroscopic analysis of the peptide conformation at these
stages.

Lys-35 Is Predicted to Act as Gatekeeper Residue in WT
Peptide—The rationalization of protein aggregation reactions
has made it possible to develop computational algorithms able
to predict the aggregation propensity of polypeptide chains
with good accuracy. AMYLPRED?2 is an algorithm that exploits
11 of these individual programs to provide consensus predic-
tions (35). To our surprise, seven of the predictors coincided to
indicate that the region between Ile-26 and Arg-34 has a signif-
icant aggregation propensity when considered in the context of
the full-length protein (Fig. 34) as well as in the 26 —57 peptide
(Fig. 3B). Therefore, we speculated that there must be addi-
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tional sequential/conformational contributions that counter-
balance the intrinsic aggregation tendency of this sequence,
allowing the WT peptide to remain soluble in aqueous solution.
Protein evolution exploits gatekeeper residues to confront
the unavoidable aggregation propensity of certain protein
sequences. Thus, the presence of two consecutive charged
lysine residues adjacent to an aggregation-prone region has
been shown to prevent amyloid formation in Src homology 3
domains, whereas mutation of one of these residues to leucine
triggers their aggregation (7, 36, 37). Interestingly, the residue
in position 35 in WT peptide is a lysine, which together with
arginine at position 34 places two positively charged residues
flanking the predicted aggregation-prone region (Fig. 1). To
test whether Lys-35 might act as a gatekeeper residue as lysine
does in Src homology 3 domains, we virtually mutated this res-
idue to Leu and assessed the theoretical impact of the mutation
on the peptide aggregation propensity using the above-men-
tioned algorithms. They consistently predicted an extension of
the aggregation-prone region to include Leu-35 (Fig. 3B). Both
the AGGRESCAN and TANGO (38, 39) programs predicted a
significant increase in the aggregation propensity of the peptide
upon K35L mutation (Fig. 3, Band C). To ensure that this effect
was sequence-specific and not only attributable to a change in
the net charge of the peptide, we exploited the presence of an
additional Lys residue at position 48 in the peptide and simu-
lated its mutation to Leu. According to both AGGRESCAN and
TANGO, the K48L mutation would have a negligible effect on
the aggregation of the peptide (Fig. 3, B and C).
Conformational Properties of TTR 26 —57 Peptides—To vali-
date the above described predictions, we synthesized two addi-
tional peptides encompassing TTR residues 2657 bearing
either the K35L or the K48L substitution and compared their
properties experimentally with those of the wild type sequence.
To evaluate the secondary structure content of the three
sequences, we conducted far-UV CD experiments at pH 5.0 and
7.5. The peptide samples were prepared at 100 uMm in the cor-
responding buffers at 25 °C. The initial spectra were recorded
immediately after dilution of the peptides. In these conditions,
all of the peptides exhibited spectra consistent with essentially
unordered conformations, displaying an intense negative peak
ataround 200 nm at both pH values (see spectra in empty circles
or dashed lines in Fig. 4, A-C). However, only K35L exhibited
dramatic spectroscopic differences upon incubation for 120
min at 25 °C (Fig. 4B). In excellent agreement with the predic-
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pH 5 (squares) and pH 7.5 (continuous line), and their CD spectra were recorded. Shown are end points of aggregation reactions of the three peptides at 100 um
for12hatpH 7.5 (D) or pH 5.0 (E) at 25 °C (black bar), 37 °C (light gray bar), and 50 °C (dark gray bar) as measured by absorbance at 330 nm. F, TEM images of the
aggregates of K35L formed at pH 5.0 at 25, 37, and 50 °C (from left to right, respectively). Bars, 1 or 0.5 wm, as indicated. Error bars, S.E.

tions, the peptide K35L displayed a spectrum with a negative
peakat 216 nm at both pH values, indicating a transition toward
a B-sheet-rich structure (Fig. 4B), whereas the WT (Fig. 4A) and
the K48L (Fig. 4C) peptides remained in a random coil-like
conformation.

Amyloid Properties of TTR 26 —57 Peptides—To compare the
aggregation properties of the WT, K35L, and K48L peptides, we
incubated them at 100 M for 12 h at 25, 37, and 50 °C at pH 7.5
(Fig. 4D) or pH 5.0 (Fig. 4E). Aggregation, as measured by tur-
bidity at 330 nm, varied drastically among the three sequences.
The K35L peptide solution underwent a large increase in tur-
bidity upon incubation at both pH values, indicating the forma-
tion of macromolecular aggregates at different temperatures.
The largest turbidity increase was observed at pH 5.0 at all
temperatures and mainly at 50 °C. In contrast, the WT and
K48L peptide solutions remained crystal clear and did not
exhibit any increase in turbidity at any temperature at these two
pH values.

Aggregates formed by the K35L peptide at pH 5.0 at dif-
ferent temperatures were analyzed by TEM. The images
indicate that the reaction temperature affected the macro-
molecular organization of the aggregates, which displayed
different morphologies. Well organized fibrillar structures
characteristic of amyloids were observed at 25 °C, although
some amorphous aggregates were also present. A progres-
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sive coalescence of the aggregates occurred as temperature
increased (Fig. 4F).

FTIR spectroscopy in the amide I region of the spectrum has
proved to be a powerful tool for the investigation of structural
differences in aggregated proteins (40, 41). Experiments were
performed with the insoluble fraction of the samples composed
of the K35L peptide, isolated by centrifugation, and subse-
quently washed with D,O. Fig. 5, A-C, shows the absorbance
FTIR spectra of the aggregated material and the deconvolution
of the spectra into its main contributions. Despite certain con-
formational differences, all aggregates shared the two peaks
characteristic of a B-sheet intermolecular structure at 1620 —
1630 cm ™' and 1690-1695 cm ™' (Table 1).

We used Th-T binding and far-UV CD to further analyze the
conformational properties of these assemblies. Despite their
different macroscopic aspects, the aggregates that formed
when K35L peptide was incubated at different temperatures
bound similar amounts of Th-T (Fig. 54, inset) and displayed a
characteristic B-sheet CD spectrum with a single negative peak
at 220 nm of similar intensity (Fig. 5B, inset).

Itis important to mention that, as we did before with the W'T
peptide (Fig. 2, A and B), we tested several different additives to
foster aggregation of the K48L peptide without success (not
shown). Neither HCI-SDS was effective in this case (data not
shown).
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Temperature Dependence of the Aggregation Kinetics of the
K35L Peptide—We further evaluated the time course of the
K35L peptide aggregation reaction under the conditions
described above by monitoring the changes in turbidity and
Th-T binding with time (Fig. 64, filled and hollow symbols,
respectively). The previously observed temperature depen-
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FIGURE 5. Comparing the secondary structure of the aggregates composed
of K35L peptide as measured by FTIR. 100 um K35L peptide was allowed to
aggregate for 12 hat pH 5.0 at 25 °C (A), 37 °C (B), or 50 °C (C). Dashed lines, decon-
volution of each spectrum (see also Table 1). The insets in A and B show, respec-
tively, Th-T binding assays and CD spectra (continuous, dashed, and dotted lines
are for 25, 37, and 50 °C, respectively) of the aggregates formed at these three
temperatures. a.u., absorbance units. Error bars, S.E.

TABLE 1

Secondary structure content of K35L fibrils
Data were extracted from the deconvoluted FTIR spectra shown in Fig. 5.

dence of aggregation at pH 5.0 was also evident at the kinetic
level. The maximal extent of aggregation was achieved after
~60, 20-30, and 20 min at 25, 37, and 50 °C, respectively. At
25 °C, the aggregation reaction followed a sigmoid curve, and
the same type of kinetics was observed when the peptide was
incubated at 25 °C and pH 7.5 (Fig. 64, inset). In contrast, inde-
pendently of the pH, the aggregation of the peptide at both 37
and 50 °C corresponded to an exponential reaction, without
any detectable lag phase.

Formation of Oligomers in the Aggregation Reaction of the
K35L Peptide—To detect the presence of typical amyloid olig-
omers and their characteristics during amyloidogenesis of the
K35L peptide, we induced its aggregation at pH 5.0 and 25 °C
and monitored the process during the lag phase by SEC (Fig. 6B)
and far-UV CD (Fig. 6C). Aliquots of the reaction were injected
at 5, 10, 15, and 30 min onto a Superdex 75 column, and
the absorbance of the sample was monitored at 280 nm (Fig.
6B). As a control, a sample of the soluble WT peptide at the
same concentration was injected. The main peak, with a reten-
tion time of 24.7 min, corresponds to the soluble peptide, and as
expected, its intensity decreased with incubation time. Two
other peaks were observed on the chromatograms, at 21 and
16.8 min. The peak at 21 min did not evolve with time and was
already present in the control. In contrast, the peak at 16.8 min
was absent in the control, increased with time, and corre-
sponded to a peptide assembly with a molecular mass of ~40
kDa (Fig. 6B, inset). Although there was a notable increase in
the peak related to the aggregates, it is possible that part of these
species is retained inside the column. Analysis of the same reac-
tion by CD (Fig. 6C) showed that the transition from a disor-
dered to a B-sheet-rich structure was fast and already complete
at 45 min (inset) with no additional enhancement of the B-sheet
content at later times.

It is well known that the addition of nuclei or seeds acceler-
ates amyloid formation (42, 43). To test if this was the case for
the K35L peptide oligomeric assemblies, we incubated the pep-
tide at pH 5.0 and 25 °C for 20 min, added different amounts of
this incubated peptide to freshly prepared peptide samples, and
monitored the aggregation reaction by following the changes in
turbidity (Fig. 6D). The presence of 0.5 or 1.0% (v/v) preformed
oligomeric species had a dramatic effect on the aggregation
reaction, and the lag phase was virtually abolished. The high
potency of the oligomeric species to induce aggregation was
evident from the fact that the addition of 0.25% preincubated
peptide sufficed to reduce the lag phase to one-fourth of its
original duration. We also observed an increase in the total

25°C 37°C 50 °C

Wave Wave Wave
Structural assignment number Area number Area number Area

em ™! % em ! % em ™! %
B-Sheets 1692, 1617 9 1691 1 1695 2
B-Sheets 1625 15 1630 9 1628 21
Turns 1677 14 1675 5 1663, 1678 29
Disordered 1640 19 1643 38 1642 18
a-Helix/random 1655 44 1659 47 1653 31
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FIGURE 6. Characterization of the K35L peptide aggregation kinetics. A 100 um concentration of the K35L peptide was incubated at pH 5.0 (A) or pH 7.5
(inset) at 25 °C (circles), 37 °C (triangles), or 50 °C (squares), and absorbance at 330 nm (filled symbols) or Th-T binding (hollow symbols) was followed over time.
B, following aggregation of K35L peptide at pH 5.0, 25 °C by SEC. Samples were withdrawn at 0, 5, 15, and 30 min of aggregation and injected onto a Superdex
75 column, and the absorbance at 280 nm was monitored. Peak 3 (24.7 min) corresponds to the elution of the peptide in the soluble, monomeric state. The
species eluting in peak 1 (16.8 min; details in inset) increased with incubation time. C, CD was used to follow the changes in secondary structure occurring during
fibril formation at pH 5.0 and 25 °C. The inset shows the changes in signals at 200 and 216, which indicate the conversion from random coil to a B-sheet-rich
structure. D, preformed nuclei accelerate aggregation of K35L peptide at pH 5.0 and 25 °C in a concentration-dependent manner (hollow circles, unseeded
reaction; squares, 0.25% nuclei; triangles, 0.5% nuclei; filled circles, 1.0% nuclei (v/v)). E and F, TEM images of the species present at 20 min of the aggregation
reaction (nuclei); G and H, fibrils formed at the end of the aggregation reaction (120 min). Bars, 1 um.

extent of aggregation after 120 min, which was proportional to
the amount of oligomers used in the assay.

We used TEM to monitor the morphology of the species
promoting this seeding effect. As seen in Fig. 6, E and F, they
correspond to small, spherical, and, in a few cases, “wormlike”
aggregates, a morphology consistent with that of the oligomeric
species of other amyloidogenic proteins described in the liter-
ature (44 —46). At the end of the aggregation process of a seeded
aggregation reaction (120 min), the sample presented fibrillar
aggregates (Fig. 6, G and H).
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Importantly, when we tried to seed the aggregation reaction
with different amounts of seeds generated by sonication of
K35L peptide mature fibrils formed at pH 5.0 and 25 °C, we
could not see any accelerating effect (data not shown), which
indicates that at least for this particular peptide, it is the oligo-
mers, and not the fractured mature fibrillar structure, that pro-
vide the template for the initial aggregation steps.

Leu-35 Is Embedded in the Core of K35L Peptide Fibrils—
With the demonstrated importance of substituting Leu for Lys
for the aggregational properties of the region 26-57, we
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TABLE 2
Leu-35 is embedded in the core of K35L peptide fibrils

K35L fibrils formed at pH 5.0 and 25 °C were submitted to limited proteolysis using PK or trypsin. After digestion, the fragments were purified by SEC and sequenced by mass
spectrometry. The sequence of the entire 26 57 peptide before digestions is INVAVHVFRLAADDTWEPFASGKTSESGELHG, where leucine 35 is underlined and the
boldface lysine is the theoretical trypsin cleavage site that is protected in the fibrillar state.

Theoretical Experimental
Protease Protected core mass mass Error
Da Da Da
PK RLAADDTWEPF 1320.4 1320.6 0.2
Trypsin LAADDTWEPFASGKTSESGELHG 2405.5 2405.1 0.4

Full-length TTR
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) or K35L-TTR (hollow circle) were subjected

to high hydrostatic pressure, and tryptophan fluorescence emission was collected to evaluate the extent of dissociation-denaturation. The experiments were
performed at 25 °Cand pH 7.5. B, acid-induced aggregation (3.5 um, pH 4.4, 37 °C for 72 h) of WT-and K35L-TTR in the absence (solid bars) or presence of 35 um
heparin (hatched bars) as followed by absorbance at 330 nm. C-F, TEM images of the aggregates composed of the WT- or K35L-TTR grown in the absence (Cand
E, respectively) or in the presence of heparin (D and F, respectively). Bars, 1 um. Error bars, S.E.

decided to analyze whether Leu-35 was part of the K35L fibril
core. After incubation of K35L peptide for 2 h at 25 °C, the
fibrils were treated with PK or trypsin (2 ug/ml) for 5, 30, and 60
min, and the protected regions were purified by SEC and iden-
tified by mass spectrometry (Table 2). The experimental details
of the fibrils” digestion and purification by SEC are described
under “Experimental Procedures.” We detected a segment
spanning the region 34 — 44 that was not accessible to PK diges-
tion even after 60 min of reaction. It has to be emphasized that
the soluble peptide treated with PK under the same conditions
was completely digested after 5 min (not shown). When the
same experiments were repeated using trypsin as a protease, we
observed a larger but overlapping fragment encompassing res-
idues 35-57, in which Lys-48 (a potential cleavage site), was
protected from digestion (Table 2). Thus, in both cases, Leu-35
mapped to the protected region of the peptide in the fibrillar
state.

K35L-TTR Is as Stable as WT-TTR but Has Enhanced Aggre-
gation Propensity—We addressed the effect of the K35L muta-
tion on the stability of tetrameric TTR. To this end, the wild
type and mutant recombinant proteins were expressed and
purified, and their thermodynamic properties were studied by
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using high hydrostatic pressure as a perturbing tool to induce
dissociation-denaturation of the protein (47, 48). Proteins (1
uM) were incubated at pH 7.5 and 25 °C, and tryptophan fluo-
rescence emission was used as a probe of tetramer integrity (49,
50). As shown in Fig. 74, both dissociation-unfolding curves
overlapped, suggesting that the introduction of a Leu at posi-
tion 35 did not alter the stability of the TTR tetramers. Com-
putational analysis using the FoldX force field (53) also pre-
dicted identical stabilities for the two variants (data not shown).

Next, we analyzed the impact of the K35L mutation on the
aggregation of tetrameric TTR by incubating the WT and
mutant proteins under conditions known to induce TTR amy-
loidogenesis (3.5 um at pH 4.4 for 72 h at 37 °C) (22, 51). As can
be observed in Fig. 7B (solid bars), the aggregation extent of
K35L-TTR was more than twice that exhibited by WT-TTR
under the same conditions, thus recapitulating the peptide
results and reinforcing the role of Lys-35 as a gatekeeper resi-
due even in the context of the full-length protein.

Heparin Bypasses the Gatekeeping Effect of Lys-35 at Mild
Acidic pH—Heparin and heparan sulfate are acidic glycosami-
noglycans. These molecules are formed by unbranched repeat-
ing units of disaccharides and can be sulfated to different
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FIGURE 8. Heparin-induced aggregation of WT peptide is pH-dependent. A and B, 100 um WT peptide was allowed to aggregate at 25 °C for 18 h at pH 5.0
(black bars) or pH 7.5 (gray bars) in the absence or presence of heparin (10, 20, or 30 um as mentioned), and the absorbance at 330 nm (A) or Th-T binding (B)
was evaluated. Cand D, TEM images of the fibrils grown in the presence of 30 um heparin. Bars, 1 and 0.5 um, as indicated. £, WT peptide aggregation kinetics
at pH 5.0 and 25 °Cinduced by increasing heparin concentrations, as followed by absorbance at 330 nm (filled circles, 10 um heparin; triangles, 20 um heparin;
squares, 30 um heparin). Note that WT peptide does not aggregate in the absence of heparin (hollow squares). Error bars, S.E.

extents. Heparan sulfate and especially heparin facilitate TTR
fibrillogenesis in vitro and in vivo, although the exact mecha-
nism underlying this effect is still under debate (32, 52, 53).
Therefore, we investigated whether heparin had any influence
on the aggregation properties of this TTR region. We incubated
the WT peptide at 100 um at pH 5.0 and 7.5 in the absence or
presence of 10, 20, and 30 um low molecular weight heparin and
monitored aggregation by turbidity. Fig. 84 shows the end
points of aggregation after 18 h at 25 °C. The samples incubated
at pH 7.5 did not display any significant aggregation, whereas a
large increase in turbidity was observed at pH 5.0 in a heparin
concentration-dependent manner. As presented above, in the
absence of heparin, the WT peptide did not exhibit any aggre-
gation propensity at pH 5.0 (Figs. 2A (buffer 6) and 8A4). We
used Th-T and TEM to probe the amyloidogenic character of
the aggregates formed in the presence of heparin. As shown in
Fig. 8B, significant Th-T binding could be observed only when
the WT peptide was incubated in the presence of heparin. Ali-
quots of the Th-T-positive aggregates formed in the presence of
30 uM heparin were imaged by TEM (Fig. 8, C and D). The
aggregates displayed the well organized fibrillar structure char-
acteristic of amyloids. Next, we evaluated the time course of the
WT peptide aggregation in the presence of different concentra-
tions of heparin (Fig. 8E). At all heparin concentrations, the
aggregation reaction could be fitted to a sigmoid curve charac-
terized by three kinetic stages: 1) lag phase, 2) exponential
growth phase, and 3) plateau phase. These phases, characteris-
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tic of most amyloid processes, indicate that the presence of
heparin induces the aggregation of the WT peptide through a
nucleation-polymerization mechanism (54, 55).

Next, we investigated whether heparin would increase the
aggregation of wild type and K35L full-length TTR. In accor-
dance with previous studies (32), heparin indeed enhanced the
aggregation of wild type TTR at pH 4.4 (Fig. 7B, hatched bars).
However, this effect of heparin was not observed with K35L-
TTR, suggesting the participation Lys-35 in heparin-TTR inter-
action and aggregation enhancement. TEM shows that the
aggregates grown in the absence or presence of heparin have
the same fibrillar appearance (Fig. 7, C-F).

DISCUSSION

Although WT-TTR is an amyloidogenic protein causing
SSA, here we showed that Lys-35 protects the region 26 -57,
which has a highly amyloidogenic stretch, and even the entire
protein against a massive aggregation, which would render the
SSA an early onset disease. The importance of the 26 —57 region
to TTR aggregation was demonstrated here by the character-
ization of the different conformational and aggregational prop-
erties of the three peptides, namely the 26-57 WT peptide,
26-57 K35L, and 26 —-57 K48L, together with theoretical pre-
dictions. The large increase in B-sheet content and aggregation
propensity promoted by the K35L mutation is sequence-spe-
cific and not due to a nonspecific change in the electrostatic
properties of the WT sequence because the K48L change did
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not have a noticeable impact on these properties (Figs. 3-5).
These data support Lys-35 acting as a gatekeeper residue
that diminishes the aggregation propensity of the adjacent
sequence. In contrast to Lys-48, which is fully exposed, the side
chain of Lys-35 is partially shielded in the native tetrameric
structure, suggesting that this gatekeeping effect might consti-
tute a safeguard mechanism to reduce aggregation in the case
where dissociation occurs and conformational fluctuations
might expose the hydrophobic residues Val-28, Ala-29, Val-30,
Val-32, and Phe-33, all them buried in the native structure.

Three other positive charges are present in the 26 —57 stretch
studied here (His-32, Arg-34, and His-56). Whereas H56L sub-
stitution did not have any impact on the aggregation propensity
of TTR (data not shown), His-32 and Arg-34 are already
included in the highly aggregation-prone region of TTR (region
26 —34; see Fig. 3, A and B). Lys-35 flanks this region, reinforc-
ing its role as a gatekeeper residue, and its substitution by leu-
cine extends the aggregation-prone region (Fig. 3B).

Organic solvents and detergents are used to simulate a spe-
cific cellular environment or to induce a particular protein con-
formation that triggers the formation of aggregates (56 —58).
Interestingly, the formation of amyloid fibrils by the only other
two TTR peptides characterized to date, corresponding to the
A and G strands and comprising TTR residues 10 —20 and 105—
115, respectively, requires the presence of acetonitrile as a co-
solvent (59-61). Here, we showed that co-solvents, such as
acetonitrile, TFE, and DMSO, were effective in accelerating
WT peptide aggregation (Fig. 2A4). The ability of SDS to induce
and stabilize a-helical structure in peptides is well documented
(62), and in agreement, we could force the aggregation of the
WT peptide through a nucleation-polymerization reaction by
the addition of SDS (Fig. 2, A and B). The reaction involved the
formation of a highly helical intermediate in the nucleation
phase (Fig. 2C), which did not bind Th-T (Fig. 2B). TEM at early
time points of the aggregation of the WT peptide in the pres-
ence of SDS showed the absence of any aggregated material,
which suggests that this a-helical intermediate is probably
monomeric (Fig. 2E). An a-helical to B-sheet transition on the
pathway to amyloid formation has been observed previously at
least for the peptide amyloid-B (63). The AGADIR algorithm
(64) predicts a low intrinsic a-helical propensity for this seg-
ment in the context of the complete TTR sequence (data not
shown), suggesting that this conformation is unlikely to be pop-
ulated under physiological conditions, in agreement with the
absence of any detectable conformational transition or aggre-
gation for this TTR region in the absence of additives (Figs. 2
and 4). Interestingly, Triton X-100, a non-ionic surfactant, did
not exert any effect on the aggregation of WT peptide (Fig. 24,
buffer 7), which suggests that charge interactions are necessary
for aggregation induction.

The sigmoidal profile of the aggregation kinetics of the K35L
peptide at 25 °C (Fig. 6A) strongly suggests the existence of a
nucleation process by which small, soluble oligomers or nuclei
are formed prior to the polymerization reaction (42, 43). The
addition of nuclei is generally followed by a strong acceleration
of the aggregation reaction because, despite having a certain
degree of B-sheet structure, these species still display a signifi-
cant hydrophobic exposed surface area able to rapidly sequester
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soluble species to the aggregation pathway (4, 65). These spe-
cies have been shown to be the major cytotoxic agents in many
amyloid diseases (5, 6, 66). Interestingly, although the addition
of these preformed oligomers accelerated the aggregation of
soluble K35L peptide (Fig. 6D), the addition of seeds (sonicated
mature fibrils) did not (not shown). This observation has
important implications for the mechanism of aggregation of the
WT peptide and probably WT-TTR, because it suggests that
the main role of the Lys-35 residue is precluding the population
of small oligomeric species, probably through the repulsive
effect of the two adjacent positive charges (Arg-34 and Lys-35),
because once these small assemblies are populated, they
become very powerful in accelerating the aggregation reaction.
The corollary is that the WT sequence does not aggregate sig-
nificantly simply because it cannot access the oligomeric com-
petent conformation. In this context, any change/co-solvent
that disturbs the gatekeeping action of Lys-35 is expected to
have a large impact on aggregation.

SEC (Fig. 6B) and CD (Fig. 6C) experiments suggested,
respectively, that the nuclei formed during aggregation of K35L
peptide have a molecular mass of ~40 kDa, being rich in
B-sheet structure. Considering the mass of the peptide (~3440
Da), we can assume that the nucleus encompasses ~10-15
units, and, as shown by TEM (Fig. 6, E and F), it presented the
typical morphology previously observed during aggregation of
other amyloidogenic proteins described in the literature
(44— 46).

We confirmed the importance of the hydrophobic character
of Leu-35 and its involvement in the K35L peptide fibril core by
performing digestion reactions with two proteases, followed by
mass spectrometry sequencing (Table 2). As a result of the
digestion of both proteases, the residue Leu-35 is incorporated
into the protected region of the fibrils. The absence of an addi-
tional cleavage after Lys-48 by trypsin might imply either that
the core of the fibril expands up to this region or that the
enzyme was unable to access it due to the proximity of the fibril
core, which would impede docking of this lysine into the trypsin
active site.

The results obtained with the 26 —-57-TTR peptides and dis-
cussed so far point to the role of Lys-35 as a gatekeeper residue
on the TTR sequence. To confirm this hypothesis, we produced
recombinantly and mutated the full-length TTR (K35L-TTR)
and performed classical stability and aggregation assays. In
agreement with what is expected for a gatekeeper residue, it did
not change protein stability (Fig. 7A), allowing correct folding
and function, but when aggregation was triggered by environ-
ment, in this case low pH, it exercised its function, by diminish-
ing propensity for aggregation (Fig. 7B).

How does heparin override the gatekeeper? Glycosaminogly-
cans are naturally abundant in the extracellular matrix and have
been shown to be associated with amyloid deposits in a number
of amyloidoses, and accumulating evidence suggests that they
play an important role in the process of amyloid formation.
Heparan sulfate and especially heparin facilitate, in vitro and in
vivo, TTR fibrillogenesis, although the exact mechanism under-
lying this effect is still under debate (52, 53). Noborn et al. (32)
dissected the TTR sequence in 16 peptides and analyzed their
binding to heparin. Among the peptides tested, only the one
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encompassing residues 24 —35 (PAINVAVHVFRK) was able to
efficiently bind heparin (32). Thus, it was suggested that bind-
ing to this region probably accounts for accelerated TTR fibril-
logenesis in the presence of heparin. This region contains three
basic amino acids in close proximity, His-31, Arg-34, and Lys-
35, whose positive charges are thought to be the main contrib-
utors to heparin binding (67). In particular, the protonation
state of His-31 would account for the pH dependence of the
TTR-heparin interaction, which occurs at mildly acidic condi-
tions (pH 5.0) but not at neutral pH (pH 7.4). Interestingly
enough, the 24 -35 TTR sequence stretch overlaps significantly
with the WT peptide studied here.

Our results show that presence of heparin allows bypassing
of the gatekeeping effect of Lys-35 on WT peptide aggregation
(Fig. 8) as well as on full-length WT-TTR aggregation (Fig. 7B).
In fact, Lys-35 is one of the three basic residues in TTR probably
involved in heparin binding, a property that is not shared by
Lys-48, because the 41-50 TTR fragment does not bind to hep-
arin (32). Binding of heparin will neutralize the charge of both
Arg-34 and Lys-35 and would allow the highly aggregation-
prone region adjacent to these residues to express its intrinsic
amyloidogenic potential. Heparin binds preferentially to disso-
ciated TTR, which suggests that the heparin-binding domain of
TTR is cryptic in the natively folded tetrameric structure (32).
In fact, the residues comprising the B B-strand, including His-
31, Arg-34, and Lys-35, expose less than 25% of their surface to
solvent in the folded state (Swiss- PdbViewer) (68). Thus, the
predicted aggregation-prone region and the heparin-binding
domain overlap significantly, are protected in the native struc-
ture, and would become exposed to solvent only upon interme-
diate formation. In the absence of heparin, Lys-35 prevents the
self-assembly of this protein region both at neutral and at acidic
pH because the substitution of this residue by Leu results in fast
aggregation at physiological temperature at both pH. The gate-
keeping effect exerted by the positively charged side chain of
Lys-35 in wild type TTR is further supported by the existence of
two amyloidogenic, disease-linked, natural mutations in which
the charge of this residue is lost, K35T and K35N (69, 70). In the
presence of heparin, the protective effect of Lys-35 is kept at
neutral pH, where heparin has a negligible affinity for TTR but
is abolished at mildly acidic pH, where it binds this region.
Although much more work is needed, these findings would
open the possibility of designing new potential therapeutic
agents against TTR-related amyloidoses.
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