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Abstract

Lung cancer remains the leading cause of cancer deaths in the US with .150,000 deaths per year. In order to more
effectively reduce lung cancer mortality, more sophisticated screening paradigms are needed. Previously, our group
demonstrated the use of low-coherence enhanced backscattering (LEBS) spectroscopy to detect and quantify the micro/
nano-architectural correlates of colorectal and pancreatic field carcinogenesis. In the lung, the buccal (cheek) mucosa has
been suggested as an excellent surrogate site in the ‘‘field of injury’’. We, therefore, wanted to assess whether LEBS could
similarly sense the presence of lung. To this end, we applied a fiber-optic LEBS probe to a dataset of 27 smokers without
diagnosed lung cancer (controls) and 46 with lung cancer (cases), which was divided into a training and a blinded validation
set (32 and 41 subjects, respectively). LEBS readings of the buccal mucosa were taken from the oral cavity applying gentle
contact. The diagnostic LEBS marker was notably altered in patients harboring lung cancer compared to smoking controls.
The prediction rule developed on training set data provided excellent diagnostics with 94% sensitivity, 80% specificity, and
95% accuracy. Applying the same threshold to the blinded validation set yielded 79% sensitivity and 83% specificity. These
results were not confounded by patient demographics or impacted by cancer type or location. Moreover, the prediction
rule was robust across all stages of cancer including stage I. We envision the use of LEBS as the first part of a two-step
paradigm shift in lung cancer screening in which patients with high LEBS risk markers are funnelled into more invasive
screening for confirmation.
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Introduction

Lung cancer remains the leading cause of cancer deaths in the

US with over 150,000 deaths per year (86,930 males and 72,330

females) [1]. While localized lung cancer is curable through

surgical resection, the insidious nature of the disease means that its

symptoms only become apparent in the advanced and hence

incurable stages. This is a major factor behind the dismal 16% 5

year survival rate of patients diagnosed with lung cancer,

underscoring the need for screening to identify the pre-symptom-

atic population. Given that the at-risk population is easily

identifiable (current/former smokers constitute ,90% of lung

cancer patients), it should be feasible to develop a pre-screening

test that assesses their risk of developing cancer. However, this risk

group is dauntingly large, encompassing approximately one

quarter of the entire adult population.

Previous attempts to screen the at-risk population have been

plagued by lack of sensitivity for lung cancer (i.e., chest X-ray or

sputum cytology). Recently, there has been considerable excite-

ment with the much more sensitive low dose computed

tomography scans (LDCT). Indeed, in the landmark National

Lung Cancer Screening Trial (NLST) of 53,439 patients there was

,20% reduction in lung cancer mortality for the LDCT group

compared to chest X-ray. This served as the impetus for a variety

of groups (including the US Preventive Services Task force) to

recommend screening high risk populations. Unfortunately, while

the sensitivity of LDCT was excellent (93.8%) the specificity was

only 73.4% compared to chest X-ray with specificity of 91.3% [2].

The problems associated with this modest specificity are accen-

tuated by the low prevalence of lung cancer (1.1%) despite the use

of very stringent inclusion criteria (age 55–74, $30-pack-years or

quit smoking within the last 15 years). Thus, the key metric in a

screening test, the positive predictive value (PPV) was a dismal

3.8%. In other words, the vast majority of positive tests were in

fact false positives. Moreover, 27.3% of first round tests had some

positive results, obligating further testing (radiographic or invasive
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procedures) with all the incumbent costs, patient worry and

potential complications. In order to mitigate the harms associated

with a low PPV, it is critical to enrich the population undergoing

LDCT with those patients who are most likely to harbor lung

cancer.

Our multi-disciplinary group focuses on bridging the gap

between biomedical optics and cancer screening risk stratification.

Our approach has centered on identifying at-risk patients through

application of field carcinogenesis (also known as field of injury,

field effect, field defect, etc.). Field carcinogenesis is the well-

established proposition that the genetic/environmental milieu that

leads to neoplastic transformation should be detectable diffusely

throughout the field of injury. Focal tumors can then emerge from

the field through final stochastic events (i.e., mutations in the

critical tumor suppressor gene/proto-oncogene). The corollary of

these diffuse genetic/epigenetic events is structural alterations

occurring on the micro and nano-scale (e.g., high order chromatin

compaction, cytoskeletal alterations, extracellular matrix reorga-

nization, etc). In order to detect such micro/nano-scale alterations

we invented a novel technology, low coherence enhanced

backscattering technology (LEBS) that specifically targets changes

in structures between 20 nm and 3 microns in size [3–5]. Given

that many of these changes are larger than the diffraction limit of

light, the mucosa appears histologically normal. Thus, LEBS can

detect the intracellular (i.e., cytoskeleton, ribosomes, mitochon-

dria, and nucleus) and extracellular (i.e., collagen matrix cross-

linking) alterations known to altered in early carcinogenesis even in

the histologically normal mucosa.

Using a first generation bench-top system, we have shown that

the LEBS signatures were able to detect the presence of colorectal

and pancreatic field carcinogenesis through analysis of the rectal

and duodenal mucosa, respectively [6,7]. Indeed, in a study of 297

patients, biopsies of the endoscopically normal rectum were able to

predict significant neoplasia throughout the colon with diagnostic

performance (sensitivity 100%, specificity 80% for advanced

adenomas) [7]. Moreover, we showed that the origin of the

changes in colon field carcinogenesis was primarily in alterations

of structures smaller than ,200 nm found within the top 600

microns of rectal mucosa [3].

In order to apply this approach to lung cancer, we targeted the

buccal (cheek) mucosa since it is well-established as a part of the

field of injury from cigarette smoking. In fact, the cheek epithelium

has been referred to as ‘‘molecular mirror’’ or ‘‘window to the

soul’’ of lung carcinogenesis [8–10]. In this study, we wanted to

assess whether buccal LEBS markers could discriminate between

smokers with and without lung cancer. To accomplish this goal,

we employed a newly developed LEBS fiber optic probe to allow

in situ, painless interrogation of the buccal mucosal.

Materials and Methods

Participants
This case-control study was approved by the Institutional

Review Board at NorthShore University HealthSystem. All

participants provided written informed consent prior to enrollment

in the study. Cases had pathologically confirmed primary lung

cancer without previous chemotherapy or radiation. Controls were

smokers (current or past) without a diagnosis or symptoms of lung

cancer. LEBS readings of the buccal mucosa were taken from oral

cavity by a 3.4 mm diameter fiber optic LEBS probe with gentle

contact (,10 locations assessed, each requiring 250 milliseconds).

Figure 1a shows the LEBS probe inserted into the cheek for

measurement of the buccal mucosa and Figure 1b shows the

portable cart housing the data acquisition module. LEBS

measurements were acquired by trained technicians, while the

data analysis was performed by the investigators. Both were

blinded to the pathology findings at the time of data acquisition

and analysis. The investigators became un-blinded only to perform

statistical analysis.

LEBS Analysis of tissue micro/nano-structure
The characterization of tissue micro/nano-structure in field

carcinogenesis has been detailed elsewhere [3,11]. We therefore

review only the basic principles needed in this paper. The primary

physical characteristic that describes both tissue micro/nano-

structure as well as the light scattering detected by LEBS is the

spatial auto-correlation function B(r) [12,13]. B(r) is a statistical

quantity that quantifies the range of structures that make up a

specific tissue sample. The shape of B(r) can be described by three

physical parameters. s2n is the fluctuation strength of spatial tissue

heterogeneity, Ln is the characteristic structural length-scale, and

D is the shape of the spatial distribution. By using scattering theory

Figure 1. Clinical LEBS instrument. (a) LEBS probed inserted into the cheek for measurement of the buccal mucosa. (b) Portable cart that houses
the data acquisition instrumentation and software. (c) 3.4 mm diameter fiber-optic LEBS probe schematic. White light from one illumination fiber is
directed onto the sample. Three collection fibers detect the scattered light intensity as a function of angle and illumination wavelength. The inset
shows an image of the linear optical fiber array.
doi:10.1371/journal.pone.0110157.g001
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and simple mathematical transformations [14], these three

physical properties can be related to the optical scattering

properties m�s (the reduced scattering coefficient) and g (the

anisotropy factor).

The LEBS phenomenon is a coherent intensity peak that forms

due to the tissue heterogeneity specified by B(r). By using

illumination with partial spatial coherence, LEBS is able to target

the short light scattering paths that retain information about m�s , g,
and D [15–18]. To quantify the shape of the LEBS peak, we use

three empirical parameters: enhancement (E, the height of the

peak), full width at half maximum (W), and spectral slope (S,

change in E per unit wavelength). These three empirical

parameters encode information that allows us to calculate the

optical and physical properties of biological tissue.

LEBS fiber optic probe instrumentation and markers
The design and theory behind the fiber-optic LEBS probe

(assembled by OFS, Avon, CT) have been detailed elsewhere

[4,19]. Briefly, the LEBS probe consists of a linear array of 4

optical fibers shown in Figure 1c. The first fiber provides white

light illumination onto the tissue surface, and the remaining three

fibers collect light at three backscattering angles (20.6u, 0.6u &

1.12u relative to the incident direction). Light traveling through the

three collection fibers is detected by a spectrometer optimized for

wavelengths between 500 and 700 nm. The LEBS probe therefore

measures the backscattered light signal as a function of wavelength

and angle. Finally, in order to control the illumination spatial

coherence length (LSC) (and thereby limit the light penetration

depth), a 9 mm glass rod spacer separates the optical fibers from

the tissue surface. Buccal mucosa consists of a thick layer (,500–

800 mm) of non-keratinized stratified squamous epithelium. In

order to target the squamous cells within the top ,100–150 mm of

mucosa that interact most closely with the oral environment, we

restricted the spatial coherence length to 27 mm at 700 nm

illumination wavelength [4,20].

In order to characterize the LEBS signal, two empirical

parameters are calculated: the enhancement at h=0.6u (E0) and
the normalized spectral slope (NSS). These parameters were

chosen in part due to their past sensitivity to colorectal and

pancreatic field carcinogenesis [6,7]. To calculate these parame-

ters we first calculate the spectrally resolved E0(l) by taking the

average of the intensities at 20.6u and +0.6u minus the intensity at

1.12u. The E0 parameter is then simply the average of E0(l) from
610 to 690 nm. Next we calculate the spectral slope (S0) of E0(l)
using a linear regression of the form E0(l)~K{S0l over the

wavelength range 610–690 nm. Since the S0 parameter is partially

correlated with E0, we must remove this dependence in order to

calculate an independent marker. We therefore calculate NSS by

dividing S0 by E0 and multiplying by the average wavelength:

NSS~{S0:vlw
E0 .

To gain a more physical understanding of the tissue composi-

tion, we also derive the physical/optical properties D and m�s using
the empirical parameters E0 and NSS. To do this, we begin with

the assumption that g=0.9 in biological tissue [21]. We then use

empirical equations formulated using Monte Carlo simulation to

calculate D and m�s [22]: D~0:80:NSSz2:85 and

m�s~3590 cm{1:E0z3010 cm{1:E0:NSS{4:53 cm{1. Prior to

applying these equations, the value of E0 was first multiplied by

a constant calibration factor of 0.31 to achieve agreement between

experiment and Monte Carlo simulation. Possible reasons for the

difference in value between theory and experiment are discussed

in Ref. [17].

A number of data exclusion criteria were employed to ensure

the robustness of the dataset. First, we removed patients whose

values for either E0 or NSS were outside of the range [Q1–1.5

(Q32Q1), Q3+1.5 (Q32Q1)], where Q1 and Q3 are the 25th and

75th percentiles, respectively. For normally distributed data this

corresponds to 62.7 standard deviations. Furthermore, we

excluded values of D and m�s that were determined to be

unphysical for buccal mucosa. These criterion were 1,D,4

and 0 cm21,m�s,100 cm21.

Statistical analysis
The empirical parameters E0 and NSS were combined into a

single diagnostic biomarker (termed the LEBS marker) to predict

lung cancer using a multivariable logistic regression performed in

MATLAB R2013a. The final prediction rule is generated as a

linear combination of E0 and NSS:

LEBS Marker~a0za1E
0za2NSS ð1Þ

where an are coefficients assigned by the MATLAB function

‘mnrfit’. To characterize the overall diagnostic performance we

calculated the sensitivity, specificity, and the accuracy by

generating the receiver operating characteristic (ROC) curve

using the MATLAB function ‘perfcurve’. Contributions of

confounding factors (age, race, smoking/alcohol status, and

personal and family history of cancer) toward the LEBS marker

were evaluated by performing analysis of covariance (ANCOVA)

in STATA 8.0.

To test the robustness of the LEBS marker we chronologically

separated our dataset into a training and validation set. The

coefficients for the prediction rule in Eq. 1 as well as the optimal

test threshold value were developed using patients in the training

set. These values were then applied to the blinded validation set.

Results

Patient Characteristics
Demographics for our study are shown in Table 1. The total

dataset consisted of 79 patients, of which 6 non-smoking controls

were not included in the prediction rule. The remaining dataset of

73 patients comprised of 27 smoking controls without lung cancer

and 46 lung cancer patients with a smoking history. These patients

were chronologically divided into two similarly-sized datasets: the

first 32 patients were included in the training sets, and the

remaining 47 patients (including all 6 non-smoking controls) were

assigned to the blinded validation set.

Nature of the optical alterations occurring in lung cancer
field carcinogenesis
Figure 2 shows the alterations in optical properties D and m�s for

the full dataset. For D we measured a nearly significant 16%

increase in value (P = 0.067). This increase indicates a shift in

nano-structural composition towards larger sizes in lung field

carcinogenesis. For m�s there was a significant 5 times increase in

value (P= 0.014). This change is due in part to an increase in the

variance of spatial mass density organization.

Evaluation of the LEBS Marker
The composite LEBS marker was evaluated as a linear

combination of the empirical parameters E0 and NSS using data

in the training set (Eq.1). This prediction rule was then applied to

the validation set. The values of the LEBS marker calculated for

the training and validation sets are shown in Figure 3a and 3b,

Buccal LEBS Analysis for Lung Cancer Risk Analysis
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respectively. In both the training and validation sets, the LEBS

marker served as a highly sensitive predictor of the presence of

lung cancer with P,0.001 in each case. Moreover, the absolute

values of the LEBS marker were consistent across the training and

validation sets with P= 0.93 between smoking control groups and

P=0.96 between lung cancer groups.

Summarizing the diagnostic potential of the LEBS marker, the

receiver operating characteristic (ROC) curve for the training and

validation sets are shown in Figure 3c. The performance in the

training set was excellent with 94% sensitivity, 80% specificity, and

95% overall accuracy (95% confidence interval from 87% to

100%). Applying the same prediction rule to the validation set, we

achieved 79% sensitivity, 83% specificity, and 89% overall

accuracy (95% confidence interval from 79% to 99%). These test

performance characteristics are summarized in Table 2. The slight

decrease in the performance for the validation set may be

attributable in part to the modest number of patients in each data

set. Supporting this claim, we note that the accuracy of each data

set falls within the 95% confidence interval of the other data set.

Influence of cancer type, stage, and location
We next wanted to assess whether buccal LEBS markers

performance would be affected by cancer type, stage, and location.

To this end, we combined the training and validation sets for

further analysis.

Figure 4a shows the LEBS marker values for lung cancer

patients separated according to cancer type and control patients

separated according to smoking status. We begin by noting that

smoking and non-smoking controls are statistically indistinguish-

able with P= 0.216, suggesting that smoking status does not

change the buccal morphology measured by LEBS. Next, we

divided the cancer patients into small cell (N= 2) and non-small

cell lesions (N= 39) with 5 patients remaining unclassified due to

unknown histology. For small cell carcinomas we saw an increase

in the LEBS marker relative to smoking controls (indicating

increased aggressiveness), but due to limited patient numbers this

change was insignificant (P = 0.112). For the non-small cell lesions

that comprised a majority of the cancer patients, there was a

highly significant (P,0.001) increase in the value of the LEBS

marker. Finally, we further separated the non-small cell carcinoma

group into squamous carcinomas (N=10) and adenocarcinomas

(N= 25) with 4 patients cancer type unknown. For both squamous

carcinomas and adenocarcinomas there was a highly significant

increase in the LEBS marker (P,0.001).

Figure 4b separates the lung cancer patient according to their

stage: Stage I N= 10, Stage II N= 8, Stage III N= 10 and Stage

IV N=10 (8 patients cancer stage was unclassified). Regardless of

cancer stage, the LEBS marker is a highly significant predictor of

presence of lung cancer with P#0.001. Similarly, Figure 4c shows

that the LEBS marker is equally sensitive to lesions found in both

the right and left lung (P,0.001 in each case).

Potential Confounders
To study the effect of confounding factors on our results, we

performed an analysis of covariance (ANCOVA) with the LEBS

marker as the dependent variable and the presence of neoplasia,

smoking (pack-years) history, alcohol history, race, gender, age,

and personal and family history of cancer as predictors (Table 3).

After incorporating these confounding factors into our model, the

LEBS marker remained a highly significant predictor for the

presence of lung cancer with P,0.001. At the same time, each of

Table 1. Patient Demographics.

Patient Type Age (mean6SD) Gender (% Male) Race (% Caucasian) # Patients (Training) # Patients (Validation)

Non-Smoking Controls 5766.83 50 83 0 6

Smoking Controls 59611 52 74 15 12

Lung Cancer 70611 48 87 17 29

All Patients 65612 49 82 32 47

doi:10.1371/journal.pone.0110157.t001

Figure 2. Optical properties are altered in buccal mucosa of patients with lung cancer compared to smoking controls. (a) Mass density
distribution D. (b) Reduced scattering coefficient m�s .
doi:10.1371/journal.pone.0110157.g002

Buccal LEBS Analysis for Lung Cancer Risk Analysis
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the confounding factors had an insignificant effect (P.0.05) on the

LEBS marker.

Discussion

We demonstrated herein that buccal interrogation with LEBS

was able to discriminate between smokers with and without

concurrent lung cancer. Importantly, buccal LEBS was able to

sense both early and late stage lung cancer. Furthermore, while the

dataset was modest, there did not appear to be any significant

differences based on tumor histology. From a diagnostic point of

view, the performance seemed excellent with only two optical

markers, thereby avoiding concerns of over fitting. Furthermore,

use of an independent validation set which is critical for any

biomarker development, underscored the potential robustness of

the findings.

From a clinical perspective, LEBS can help address the

inefficiencies in the current screening approaches for lung cancer

which result in most positive test results being false positives

(,99%). Indeed, since the prevalence of the disease is low even in

the high risk population (90% of smokers will never get lung

cancer), most positive results will turn out to be false positive.

Therefore, using a test that enables a subset of patients to eschew

more invasive procedures (e.g., LDCT) will enrich the screening

population with those patients at highest risk for lung cancer, and

therefore decrease the total number of false positives. For instance,

Kovalchik and colleagues risk stratified patients using a relatively

cumbersome clinical index, showing an improvement in the

number of patients needed to be screened in order to prevent one

lung cancer death for higher risk patients (302 in the entire NLST

cohort versus 171 and 161 in the top two risk quintiles,

respectively) [23]. However, the top two quintiles only encom-

passed approximately two thirds of cancer cases, thus underscoring

the tradeoff between minimizing false positives and maximizing

patients. This clinical concern is underscored by the fact that when

the NLST criterion was applied to the Prostate, Lung, Colorectal,

and Ovarian (PLCO) Cancer Screening Trial cohort, only 72% of

lung cancer patients would have been eligible for LDCT [24].

To improve the effectiveness of cancer screening, a two-step

approach has frequently been advocated. Under this approach the

patient’s risk of disease is first assessed using a minimally invasive

risk stratification technique. Patients found to be at high risk are

then funneled into more invasive procedures for confirmation. For

example, in colorectal cancer a fecal test followed by colonoscopy

or in cervical cancer a Pap smear to decide which patients need

colposcopy. While there are a number of promising risk

stratification techniques being developed (including serum and

sputum tests), these by and large rely on detecting minute amounts

of circulating or expectorate tumor products which can be quite

challenging. Therefore, evaluating field carcinogenesis is particu-

larly attractive since it reflects the complex interactions between a

patient’s genetics and the environmental insult (smoking, air

quality, etc). Such interactions may determine why only a small

fraction of smokers ever develop lung cancer.

Lung cancer epitomizes the field effect of carcinogenesis. This

concept posits that the shared genotoxic milieu (both environ-

ment/smoking and genetic) that results in a focal neoplastic lesion

in the lung also diffusely fosters an increased mutational rate

(‘‘fertile field’’), which then stochastically leads to tumors. Indeed,

the entire aero-digestive mucosa is ‘‘condemned’’ by tobacco

exposure and thus patients with lung cancer are also at risk for

oro-pharyngeal, esophageal squamous and second primary lung

cancers. This is well established in the bronchial mucosa with

changes in EGFR, p53, gene methylation, etc having previously

been observed [25]. Additionally, there have been numerous gene

expression studies on smoking-induced alterations in the bronchial

transcriptosome [26,27]. Importantly, while some of these changes

reversed with smoking cessation, others were irreversible conso-

nant with the long term risk in former smokers.

While the concept of field carcinogenesis has long been

established, it is only recently that it has been exploited for

diagnostics. For instance, in a landmark report by Spira and

Figure 3. LEBS marker diagnostic power. Composite LEBS marker calculated using linear combination of LEBS parameters of E0 and NSS shows
highly significant alteration (p,0.001) between smoking controls and lung cancer patients in both training and validation sets (panels a and b). c)
Receiver operating characteristic (ROC) curve for training and validations sets. The area under the curve (AUC) is 0.95 for the training set and 0.89 for
the validation set. The double red star indicates statistical significance at the 0.1% level.
doi:10.1371/journal.pone.0110157.g003

Table 2. Test performance characteristics for LEBS marker threshold 0.04.

Study Set Sensitivity Specificity AUC [95% CI]

Training 94% 80% 95% [87,100]

Validation 79% 83% 89% [79,99]

doi:10.1371/journal.pone.0110157.t002

Buccal LEBS Analysis for Lung Cancer Risk Analysis
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colleagues, they noted a panel of 80 genes obtained from the

normal right mainstem bronchus had 80% sensitivity and 84%

specificity for discriminating between the controls and cancers [8].

More recently, Blomquist and colleagues used a 14 gene set from

bronchial mucosa and achieved an AUC of 0.82–0.87 for

discriminating control smokers from those with cancer [28]. Thus,

Figure 4. LEBS marker by cancer type, stage, and location. Composite LEBS marker separated according to cancer type (panel a), stage (panel
b), and location (panel c). The double red star indicates statistical significance at the 0.1% level. In each panel, a number of cancer patients were not
added to the subgroups due to incomplete pathology reports.
doi:10.1371/journal.pone.0110157.g004

Table 3. Confounding Factor Analysis.

Factor ANCOVA P-value

Lung Cancer ,0.001

Age 0.80

Race 0.72

Gender 0.07

Smoking History (Pack-Years) 0.72

Alcohol Use 0.10

Personal History 0.75

Family History 0.57

doi:10.1371/journal.pone.0110157.t003

Buccal LEBS Analysis for Lung Cancer Risk Analysis
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previous studies have demonstrated the potential clinical relevance

of assaying field carcinogenesis.

From a teleological perspective, field carcinogenesis assessment

represents an attractive approach for lung risk analysis. Specifi-

cally, while cigarette smoking is responsible for the vast majority of

lung cancer, only a small proportion of smokers (,10%) will ever

develop lung cancer. While part of this is determined by smoking

factors (intensity, duration), this is only part of the issue since host

factors are critical in determining neoplastic responsiveness to the

carcinogenic insult of cigarette smoke. Factors such as family

history, gender, polymorphisms in genes (especially those high-

prevalence, low-penetrance genetic polymorphisms in metaboliz-

ing carcinogen), and markers of tissue damage (COPD etc) are

well established to be correlated as modifiers of environmental

lung cancer risk. Field carcinogenesis is particularly attractive since

it reflects the complex interactions between environmental risk

factors and host susceptibility.

For techniques using field carcinogenesis to be feasible for

population-wide screening, a less intrusive approach is required. In

this regard, it has been noted that smoking-induced alterations in

bronchial epithelial transcriptosome could also be detected in the

buccal mucosa albeit this was somewhat obfuscated by salivary

RNases [27]. Additionally, analysis of the buccal mucosa for

glutathione S-transferase P1 expression, p16 methylation or allelic

loss (9p21, 17p13 and 5q21) discriminated between smokers with

and without concomitant lung cancer [29]. These findings have

been mirrored from an ultra-structural perspective with buccal

epithelial nuclear texture (DNA-specific Feulgen-thionin stain

scanned with a high-resolution cytometer) or cellular organization

with partial wave spectroscopic microscopy [30].

While our buccal LEBS data is biologically predicated upon the

results of the techniques discussed above, the use of optics has

some important potential advantages. First, the approach is

particularly powerful because of its ease-of-use and convenience,

especially with the minimally invasive 3.4 mm fiber optic LEBS

probe. Furthermore, there may be particular advantages with

regards to looking at tissue micro/nano-architecture. For instance,

in essentially all cancer types that our group has studied (colon

[3,7,11], pancreas [3,11], and now lung) we have seen an increase

in the mass density distribution D. The fact that this tissue

property changes in the same direction across organs in field

carcinogenesis despite having quite different genetic/epigenetic

makeup may represent a common pathway in early cancer

progression. Indeed, the fact that a similar magnitude of the LEBS

marker was seen regardless of lung cancer histology despite having

different precursor lesions supports this idea (although we

acknowledge that this is very speculative at this point).

While the biological underpinnings of field carcinogenesis

remain incompletely understood, the optical parameter D provides

fundamental insights into tissue micro-structure. A complete

discussion of the link between optical properties and tissue

micro/nano-structure is beyond the scope of this clinical report,

but has been detailed previously [3,12]. Briefly, the increase in the

value of D indicates a shift in tissue structure towards larger sizes.

Examples of processes which could lead to such a change include

chromatin condensation in the nucleus or collagen fiber cross-

linking in the extracellular matrix. In fact, it bears mention that

many of the physical alterations associated with field carcinogen-

esis are also recognized hallmarks of neoplastic transformation.

For instance, when its value is smaller than 3, D represents the

mass fractal dimension, a physical parameter that is well

established for cancer diagnosis and prognostication [31].

There are some limitations of this study that should be

acknowledged. First, the modest size of this case-control study

cannot provide a definitive determination of the diagnostic

performance but rather demonstrates a first proof-of-principle.

Importantly, the use of an independent dataset and only two LEBS

markers supports the robustness of these findings. Second, this

study focused exclusively on smokers and thus does not provide

insight into whether this approach may be useful in the subgroup

of lung cancer patients without smoking history (,10% of all

cases). Finally, the biological determinants of the micro/nano-

structural alterations which the LEBS marker senses are incom-

pletely elucidated. Evidence in colon suggests contributions from

alterations in high order chromatin structure, cytoskeletal, and the

extracellular matrix [11,32,33]. In addition, since buccal epithe-

lium is heterogeneous the contribution of the neoplastic signals

from various layers is unclear, suggesting that further optimization

may lead to improved diagnostics.

In conclusion, we provide the proof-of-concept that buccal

LEBS could discriminate between smokers with and without lung

cancer. Importantly, this was validated on an independent dataset.

The accuracy suggests clinical utility as does the non-invasive

nature of the test (oral insertion of fiber optic probe). While larger

multi-center studies are being initiated, if confirmed buccal LEBS

may serve as pre-screen to funnel the most appropriate patients

into diagnostic modalities such as LDCT. This would mitigate

many of the potential harms of lung cancer screening that are

related to the high false positive rate.

Supporting Information

Data S1 Biomarkers and patient characteristics used
for diagnostic and confounding factor analysis.

(XLSX)

Acknowledgments

We would like to thank Leah Bowen for providing us with a buccal LEBS

demonstration image.

Author Contributions

Conceived and designed the experiments: HKR VB NNM AJR JDR.

Performed the experiments: NNM TAH DR BG. Analyzed the data:

NNM AJR. Contributed reagents/materials/analysis tools: JDR BG.

Contributed to the writing of the manuscript: AJR HKR VB.

References

1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin

64: 9–29.

2. National Lung Screening Trial Research T, Church TR, Black WC, Aberle DR,

Berg CD, et al. (2013) Results of initial low-dose computed tomographic

screening for lung cancer. N Engl J Med 368: 1980–1991.

3. Radosevich AJ, Mutyal NN, Yi J, Stypula-Cyrus Y, Rogers JD, et al. (2013)

Ultrastructural alterations in field carcinogenesis measured by enhanced

backscattering spectroscopy. Journal of Biomedical Optics 18.

4. Mutyal NN, Radosevich A, Gould B, Rogers JD, Gomes A, et al. (2012) A fiber

optic probe design to measure depth-limited optical properties in-vivo with low-

coherence enhanced backscattering (LEBS) spectroscopy. Opt Express 20:

19643–19657.

5. Kim YL, Liu Y, Wali RK, Roy HK, Backman V (2005) Low-coherent

backscattering spectroscopy for tissue characterization. Appl Opt 44: 366–377.

6. Turzhitsky V, Liu Y, Hasabou N, Goldberg M, Roy HK, et al. (2008)

Investigating population risk factors of pancreatic cancer by evaluation of optical

markers in the duodenal mucosa. Disease Markers 25: 313–321.

7. Roy HK, Turzhitsky V, Kim Y, Goldberg MJ, Watson P, et al. (2009)

Association between Rectal Optical Signatures and Colonic Neoplasia: Potential

Applications for Screening. Cancer Res 69: 4476–4483.

Buccal LEBS Analysis for Lung Cancer Risk Analysis

PLOS ONE | www.plosone.org 7 October 2014 | Volume 9 | Issue 10 | e110157



8. Spira A, Beane JE, Shah V, Steiling K, Liu G, et al. (2007) Airway epithelial

gene expression in the diagnostic evaluation of smokers with suspect lung cancer.
Nature Medicine 13: 361–366.

9. Spira A (2010) Upper airway gene expression in smokers: the mouth as a

‘‘window to the soul’’ of lung carcinogenesis? Cancer Prev Res (Phila) 3: 255–
258.

10. Sidransky D (2008) The oral cavity as a molecular mirror of lung carcinogenesis.
Cancer Prev Res (Phila) 1: 12–14.

11. Yi J, Radosevich AJ, Stypula-Cyrus Y, Mutyal NN, Azarin SM, et al. (2014)

Spatially-resolved optical and ultrastructural properties of colorectal and
pancreatic field carcinogenesis observed by inverse spectroscopic optical

coherence tomography. Journal of Biomedical Optics ACCEPTED 2-17-2014.
12. Rogers JD, Radosevich AJ, Ji Y, Backman V (2014) Modeling Light Scattering

in Tissue as Continuous Random Media Using a Versatile Refractive Index
Correlation Function. Selected Topics in Quantum Electronics, IEEE Journal of

20: 1–14.

13. Rogers JD, Capoglu IR, Backman V (2009) Nonscalar elastic light scattering
from continuous random media in the Born approximation. Opt Lett 34: 1891–

1893.
14. Ishimaru A (1997) Wave propagation and scattering in random media. New

York: IEEE Press-Oxford University Press. xxv, 574 p.

15. Turzhitsky V, Radosevich A, Rogers JD, Taflove A, Backman V (2010) A
predictive model of backscattering at subdiffusion length scales. Biomed Opt

Express 1: 1034–1046.
16. Radosevich AJ, Mutyal NN, Turzhitsky V, Rogers JD, Yi J, et al. (2011)

Measurement of the spatial backscattering impulse-response at short length
scales with polarized enhanced backscattering. Optics letters 36: 4737–4739.

17. Radosevich AJ, Rogers JD, Turzhitsky V, Mutyal NN, Yi J, et al. (2012)

Polarized Enhanced Backscattering Spectroscopy for Characterization of
Biological Tissues at Subdiffusion Length Scales. Ieee Journal of Selected

Topics in Quantum Electronics 18: 1313–1325.
18. Kim YL, Liu Y, Turzhitsky VM, Roy HK, Wali RK, et al. (2004) Coherent

backscattering spectroscopy. Opt Lett 29: 1906–1908.

19. Rogers JD, Stoyneva V, Turzhitsky V, Mutyal NN, Pradhan P, et al. (2011)
Alternate formulation of enhanced backscattering as phase conjugation and

diffraction: derivation and experimental observation. Opt Exp 19: 11922–
11931.

20. Turzhitsky V, Mutyal NN, Radosevich AJ, Backman V (2011) Multiple
scattering model for the penetration depth of low-coherence enhanced

backscattering. J Biomed Opt 16: 097006.

21. Cheong WF, Prahl SA, Welch AJ (1990) A Review of the Optical-Properties of

Biological Tissues. IEEE Journal of Quantum Electronics 26: 2166–2185.

22. Turzhitsky V, Radosevich AJ, Rogers JD, Mutyal NN, Backman V (2011)

Measurement of optical scattering properties with low-coherence enhanced

backscattering spectroscopy. J Biomed Opt.

23. Kovalchik SA, Tammemagi M, Berg CD, Caporaso NE, Riley TL, et al. (2013)

Targeting of low-dose CT screening according to the risk of lung-cancer death.

N Engl J Med 369: 245–254.

24. Tammemagi MC, Katki HA, Hocking WG, Church TR, Caporaso N, et al.

(2013) Selection criteria for lung-cancer screening. N Engl J Med 368: 728–736.

25. Barsky SH, Roth MD, Kleerup EC, Simmons M, Tashkin DP (1998)

Histopathologic and molecular alterations in bronchial epithelium in habitual

smokers of marijuana, cocaine, and/or tobacco. Journal of the National Cancer

Institute 90: 1198–1205.

26. Chari R, Lonergan KM, Ng RT, MacAulay C, Lam WL, et al. (2007) Effect of

active smoking on the human bronchial epithelium transcriptome. BMC

Genomics 8: 297.

27. Sridhar S, Schembri F, Zeskind J, Shah V, Gustafson AM, et al. (2008) Smoking-

induced gene expression changes in the bronchial airway are reflected in nasal

and buccal epithelium. BMC Genomics 9: 259.

28. Blomquist T, Crawford EL, Mullins D, Yoon Y, Hernandez DA, et al. (2009)

Pattern of antioxidant and DNA repair gene expression in normal airway

epithelium associated with lung cancer diagnosis. Cancer Res 69: 8629–8635.

29. Sanz-Ortega J, Roig F, Al-Mousa MM, Saez MC, Munoz A, et al. (2007) 17p13

(p53 locus), 5q21 (APC locus) and 9p21 (p16 locus) allelic deletions are

frequently found in oral exfoliative cytology cells from smoker patients with non-

small-cell lung cancer. Histol Histopathol 22: 541–545.

30. Roy HK, Subramanian H, Damania D, Hensing TA, Rom WN, et al. (2010)

Optical detection of buccal epithelial nanoarchitectural alterations in patients

harboring lung cancer: implications for screening. Cancer Res 70: 7748–7754.

31. Metze K (2013) Fractal dimension of chromatin: potential molecular diagnostic

applications for cancer prognosis. Expert Rev Mol Diagn 13: 719–735.

32. Mutyal NN, Radosevich A, Tiwari AK, Stypula Y, Wali R, et al. (2013)

Biological mechanisms underlying structural changes induced by colorectal field

carcinogenesis measured with low-coherence enhanced backscattering (LEBS)

spectroscopy. PLoS One 8: e57206.

33. Cherkezyan L, Stypula-Cyrus Y, Subramanian H, White C, Dela Cruz M, et al.

(2014) Nanoscale changes in chromatin organization represent the initial steps of

tumorigenesis: a transmission electron microscopy study. BMC Cancer 14: 189.

Buccal LEBS Analysis for Lung Cancer Risk Analysis

PLOS ONE | www.plosone.org 8 October 2014 | Volume 9 | Issue 10 | e110157


