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Abstract

We study the problem of learning classification models from complex multivariate temporal data

encountered in electronic health record systems. The challenge is to define a good set of features

that are able to represent well the temporal aspect of the data. Our method relies on temporal

abstractions and temporal pattern mining to extract the classification features. Temporal pattern

mining usually returns a large number of temporal patterns, most of which may be irrelevant to the

classification task. To address this problem, we present the Minimal Predictive Temporal Patterns

framework to generate a small set of predictive and non-spurious patterns. We apply our approach

to the real-world clinical task of predicting patients who are at risk of developing heparin induced
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thrombocytopenia. The results demonstrate the benefit of our approach in efficiently learning

accurate classifiers, which is a key step for developing intelligent clinical monitoring systems.

1. INTRODUCTION

Advances in data collection and data storage technologies have led to the emergence of

complex multivariate temporal datasets, where data instances are traces of complex

behaviors characterized by multiple time series. Such data appear in a wide variety of

domains, such as health care [Hauskrecht et al. 2010; Sacchi et al. 2007; Ho et al. 2003],

sensor measurements [Jain et al. 2004], intrusion detection [Lee et al. 2000], motion capture

[Li et al. 2009], environmental monitoring [Papadimitriou et al. 2005] and many more.

Designing algorithms capable of learning from such complex data is one of the most

challenging topics of data mining research.

This work primarily focuses on developing methods for analyzing electronic health records

(EHRs). Each record in the data consists of multiple time series of clinical variables

collected for a specific patient, such as laboratory test results, medication orders and

physiological parameters. The record may also provide information about the patient’s

diseases, surgical interventions and their outcomes. Learning classification models from this

data is extremely useful for patient monitoring, outcome prediction and decision support.

The task of temporal modeling in EHR data is very challenging because the data is

multivariate and the time series for clinical variables are acquired asynchronously, which

means they are measured at different time moments and are irregularly sampled in time.

Therefore, most times series classification methods (e.g, hidden Markov model [Rabiner

1989] or recurrent neural network [Rojas 1996]), time series similarity measures (e.g.,

Euclidean distance or dynamic time warping [Ratanamahatana and Keogh 2005]) and time

series feature extraction methods (e.g., discrete Fourier transform, discrete wavelet

transform [Batal and Hauskrecht 2009] or singular value decomposition [Weng and Shen

2008]) cannot be directly applied to EHR data.

This paper proposes a temporal pattern mining approach for analyzing EHR data. The key

step is defining a language that can adequately represent the temporal dimension of the data.

We rely on temporal abstractions [Shahar 1997] and temporal logic [Allen 1984] to define

patterns able to describe temporal interactions among multiple time series. This allows us to

define complex temporal patterns like “the administration of heparin precedes a decreasing

trend in platelet counts”.

After defining temporal patterns, we need an algorithm for mining patterns that are

important to describe and predict the studied medical condition. Our approach adopts the

frequent pattern mining paradigm. Unlike the existing approaches that find all frequent

temporal patterns in an unsupervised setting [Villafane et al. 2000; shan Kam and chee Fu

2000; Hoppner 2003; Papapetrou et al. 2005; Moerchen 2006; Winarko and Roddick 2007;

Wu and Chen 2007; Sacchi et al. 2007; Moskovitch and Shahar 2009], we are interested in

those patterns that are important for the classification task. We present the Minimal
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Predictive Temporal Patterns (MPTP) framework, which relies on a statistical test to

effectively filter out non-predictive and spurious temporal patterns.

We demonstrate the usefulness of our framework on the real-world clinical task of

predicting patients who are at risk of developing heparin induced thrombocytopenia (HIT), a

life threatening condition that may develop in patients treated with heparin. We show that

incorporating the temporal dimension is crucial for this task. In addition, we show that the

MPTP framework provides useful features for classification and can be beneficial for

knowledge discovery because it returns a small set of discriminative temporal patterns that

are easy to analyze by a domain expert. Finally, we show that mining MPTPs is more

efficient than mining all frequent temporal patterns.

Our main contributions are summarized as follows:

— We propose a novel temporal pattern mining approach for classifying complex

EHR data.

— We extend our minimal predictive patterns framework [Batal and Hauskrecht

2010] to the temporal domain.

— We present an efficient mining algorithm that integrates pattern selection and

frequent pattern mining.

The rest of the paper is organized as follows. Section 2 describes the problem and briefly

outlines our approach for solving it. Section 3 defines temporal abstraction and temporal

patterns. Section 4 describes an algorithm for mining frequent temporal patterns and

techniques we propose for improving its efficiency. Section 5 discusses the problem of

pattern selection, its challenges and the deficiencies of the current methods. Section 6

introduces the concept of minimal predictive temporal patterns (MPTP) for selecting the

classification patterns. Section 7 describes how to incorporate MPTP selection within

frequent temporal pattern mining and introduces pruning techniques to speed up the mining.

Section 8 illustrates how to obtain a feature-vector representation of the data. Section 9

compares our approach with several baselines on the clinical task of predicting patients who

are at risk of heparin induced thrombocytopenia. Finally, Section 10 discusses related work

and Section 11 concludes the paper.

2. PROBLEM DEFINITION

Let D = {<xi, yi >} be a dataset such that xi ∈ X is the electronic health record for patient i

up to some time ti, and yi ∈ Y is a class label associated 2 with a medical condition at time ti.

Figure 1 shows a graphical illustration of an EHR instance with 3 clinical temporal

variables.

Our objective is to learn a function f: X → Y that can predict accurately the class labels for

future patients. Learning f directly from X is very difficult because the instances consist of

multiple irregularly sampled time series of different length. Therefore, we want to apply a

transformation ψ : X → X′ that maps each EHR instance xi to a fixed-size feature vector 

while preserving the predictive temporal characteristics of xi as much as possible. One
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approach is to apply a static transformation and represent the data using a predefined set of

features and their values as in [Hauskrecht et al. 2010]. Examples of such features are “most

recent creatinine measurement”, “most recent creatinine trend”, “maximum cholesterol

measurement”, etc. Our approach is different and we learn transformation ψ from the data

using temporal pattern mining (dynamic transformation). This is done by applying the

following steps:

1. Convert the time series variables into a higher level description using temporal

abstraction.

2. Mine the minimal predictive temporal patterns Ω.

3. Transform each EHR instance xi to a binary vector , where every feature in 

corresponds to a specific pattern P ∈ Ω and its value is 1 if xi contains P; and 0

otherwise.

After applying this transformation, we can use a standard machine learning method (e.g.,

SVM, decision tree, näive Bayes, or logistic regression) on {< , yi >} to learn function f.

3. TEMPORAL PATTERNS FROM ABSTRACTED DATA

3.1. Temporal Abstraction

The goal of temporal abstraction [Shahar 1997] is to transform the time series for all clinical

variables to a high-level qualitative form. More specifically, each clinical variable (e.g.,

series of white blood cell counts) is transformed into an interval-based representation 〈v1[b1,

e1], …, vn[bn, en]〉, where vi ∈ Σ is an abstraction that holds from time bi to time ei and Σ is

the abstraction alphabet that represents a finite set of all permitted abstractions.

The most common types of clinical variables in EHR data are: medication administrations

and laboratory results.

Medication variables are usually already represented in an interval-based format and specify

the time interval during which a patient was taking a specific medication. For these

variables, we simply use abstractions that indicate whether the patient is on the medication:

Σ = {ON, OFF}.

Lab variables are usually numerical time series1 that specify the patient’s laboratory results

over time. For these variables, we use two types of temporal abstractions:

1. Trend abstraction that uses the following abstractions: Decreasing (D), Steady (S)

and Increasing (I), i.e., Σ = {D, S, I}. In our work, we segment the lab series using

the sliding window segmentation method [Keogh et al. 2003], which keeps

expanding each segment until its interpolation error exceeds some error threshold.

The abstractions are determined from the slopes of the fitted segments. For more

information on trend segmentation, see [Keogh et al. 2003].

2. Value abstraction that uses the following abstractions: Very Low (VL), low (L),

Normal (N), High (H) and Very High (VH), i.e., Σ = {VL, L, N, H, VH}. We use the

10th, 25th, 75th and 90th percentiles on the lab values to define these 5 states: a
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value below the 10th percentile is very low (VL), a value between the 10th and 25th

percentiles is low (L), and so on.

Figure 2 shows the trend and value abstractions on a time series of platelet counts of a

patient.

3.2. State Sequence Representation

Let a state be an abstraction for a specific variable. For example, state E: Vi = D represents

a decreasing trend in the values of temporal variable Vi. We sometimes use the shorthand

notation Di to denote this state, where the subscript indicates that D is abstracted from the ith

variable. Let a state interval be a state that holds during an interval. We denote by (E, bi, ei)

the realization of state E in a data instance, where E starts at time bi and ends at time ei.

Definition 3.1. A state sequence is a series of state intervals, where the state intervals are

ordered according to their start times2:

Note that we do not require ei to be less than bi+1 because the states are obtained from

multiple temporal variables and their intervals may overlap.

After abstracting all temporal variables, we represent every instance (i.e., patient) in the

database as a state sequence. We will use the terms instance and state sequence

interchangeably hereafter.

3.3. Temporal Relations

Allen’s temporal logic [Allen 1984] describes the relations for any pair of state intervals

using 13 possible relations (see Figure 3). However, it suffices to use the following 7

relations: before, meets, overlaps, is-finished-by, contains, starts and equals because the

other relations are simply their inverses. Allen’s relations have been used by most work on

mining time interval data [shan Kam and chee Fu 2000; Hoppner 2003; Papapetrou et al.

2005; Winarko and Roddick 2007; Moskovitch and Shahar 2009].

Most of Allen’s relations require equality of one or two of the intervals end points. That is,

there is only a slight difference between overlaps, is-finished-by, contains, starts and equals

relations. Hence, when the time information in the data is noisy (not precise), which is the

case in EHR data, using Allen’s relations may cause the problem of pattern fragmentation

[Moerchen 2006]. Therefore we opt to use only two temporal relations, before (b) and co-
occurs (c), which we define as follows: Given two state intervals Ei and Ej:

1. (Ei, bi, ei) before (Ej, bj, ej) if ei < bj, which is the same as Allen’s before relation.

2. (Ei, bi, ei) co-occurs with (Ej, bj, ej), if bi ≤ bj ≤ ei, i.e. Ei starts before Ej and there

is a nonempty time period where both Ei and Ej occur.
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3.4. Temporal Patterns

In order to obtain temporal descriptions of the data, we combine basic states using temporal

relations to form temporal patterns. Previously, we saw that the relation between two states

can be either before (b) or co-occurs (c). In order to define relations between k states, we

adopt Hoppner’s representation of temporal patterns [Hoppner 2003].

Definition 3.2. A temporal pattern is defined as P = (〈S1, …, Sk〉, R), where Si is the ith state

of the pattern and R is an upper triangular matrix that defines the temporal relations between

each state and all of its following states:

The size of pattern P is the number of states it contains. If size(P)=k, we say that P is a k-

pattern. Hence, a single state is a 1-pattern (a singleton). We also denote the space of all

temporal patterns of arbitrary size by TP.

Figure 4 graphically illustrates a 4-pattern with states 〈A1, B2, C3, B1, where the states are

abstractions of temporal variables V1, V2 and V3 using abstraction alphabet Σ = {A, B, C}.

The half matrix on the right represents the temporal relations between every state and the

states that follow it. For example, the second state B2 is before the fourth state B1: R2,4 = b.

Interesting patterns are usually limited in their temporal extensions, i.e., it would not be

interesting to use the before relation to relate states that are temporally very far away from

each other. Therefore, the definition of temporal patterns usually comes with a specification

of a window size that defines the maximum pattern duration [Moerchen 2006; Hoppner

2003; Mannila et al. 1997].

In this paper, we are interested in the patient monitoring task, where we have the electronic

health record for patient xi up to time ti and we want to decide whether or not patient xi is

developing a medical condition that we should alert physicians about. In this task, recent

measurements of the clinical variables of xi (close to ti) are usually more predictive than

distant measurements, as was shown by [Valko and Hauskrecht 2010]. The approach taken

in this paper is to define windows of fixed width that end at ti for every patient xi and only

mine temporal patterns that can be observed inside these windows.

Definition 3.3. Let T = 〈(E1, b1, e1), …, (El, bl, el)〉 be a state sequence that is visible within

a specific window. We say that pattern P = (〈S1, …, Sk〉, R) occurs in T (or that P covers T),

denoted as P ∈ T, if there is an injective mapping π from the states of P to the state intervals

of T such that:

Notice that checking the existence of a temporal pattern in a state sequence requires: (1)

matching all k states of the patterns and (2) checking that all k(k − 1)/2 temporal relations are

satisfied.
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Definition 3.4. P = (〈S1, …, Sk1〉, R) is a subpattern of , denoted as

P ⊂ P′, if k1 < k2 and there is an injective mapping π from the states of P to the states of P′

such that:

For example, pattern (〈A1, C3〉,R1,2 = b) is a subpattern of the pattern in Figure 4. If P is a

subpattern of P′, we say that P′ is a superpattern of P.

Definition 3.5. The support of temporal pattern P in database D is the number of instances

in D that contain P:

Note that the support definition satisfies the Apriori property [Agrawal and Srikant 1994]:

We define a rule to be of the form P ⇒ y, where P is a temporal pattern and y is a specific

value of the target class variable Y. We say that rule P ⇒ y is a subrule of rule P′ ⇒ y′ if P

⊂ P′ and y = y′.

Definition 3.6. The confidence of rule P ⇒ y is the proportion of instances from class y in

all instances covered by P:

where Dy denotes all instances in D that belong to class y.

Note that the confidence of rule R:P ⇒ y is the maximum likelihood estimation of the

probability that an instance covered by P belongs to)class y. If R is a predictive rule of class

y, we expect its confidence to be larger than the prior probability of y in the data.

4. MINING FREQUENT TEMPORAL PATTERNS

In this section, we present our proposed algorithm for mining frequent temporal patterns.

We chose to utilize the class information and mine frequent temporal patterns for each class

label separately using local minimum supports as opposed to mining frequent temporal

patterns from the entire data using a single global minimum support. The approach is

reasonable when pattern mining is applied in the supervised setting because 1) for

unbalanced data, mining frequent patterns using a global minimum support threshold may

result in missing many important patterns in the rare classes and 2) mining patterns that are
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frequent in one of the classes (hence potentially predictive for that class) is more efficient

than mining patterns that are globally frequent3.

The mining algorithm takes as input Dy: the state sequences from class y and σy: a user

specified local minimum support threshold. It outputs all frequent temporal patterns in Dy:

The mining algorithm performs an Apriori-like level-wise search [Agrawal and Srikant

1994]. It first scans the database to find all frequent 1-patterns. Then for each level k, the

algorithm performs the following two phases to obtain the frequent (k+1)-patterns:

1. The candidate generation phase: Generate candidate (k+1)-patterns from the

frequent k-patterns.

2. The counting phase: Obtain the frequent (k+1)-patterns by removing candidates

with support less than σy.

This process repeats until no more frequent patterns can be found.

In the following, we describe in details the candidate generation algorithm and techniques

we propose to improve the efficiency of candidate generation and counting.

4.1. Candidate Generation

We generate a candidate (k+1)-pattern by adding a new state (1-pattern) to the beginning of

a frequent k-pattern4. Let us assume that we are extending pattern P = (〈S1, …, Sk〉, R) with

state Snew in order to generate candidates of the form ( ). First of all, we

set ,  for i ∈ {1, …, k} and  for i ∈ {1, …, k − 1} ∧ j ∈ {i+1,

…, k}. This way, we know that every candidate P′ of this form is a superpattern of P:P ⊂ P

′.

In order to fully define a candidate, we still need to specify the temporal ˄ relations between

the new state  and states , i.e., we should define  for i ∈ {2, …, k + 1}.

Since we have two possible temporal relations (before and co-occurs), there are 2k possible

ways to specify the missing relations. That is, 2k possible candidates can be generated when

adding a new state to a k-pattern. Let L denote all possible states (1-patterns) and let Fk

denote the frequent k-patterns, generating the (k+1)-candidates naively in this fashion

results in 2k L Fk different candidates.

This large number of candidates makes the mining algorithm computationally very

expensive and limits its scalability. Below, we describe the concept of incoherent patterns

and introduce a method that smartly generates fewer candidates without missing any valid

temporal pattern from the result.
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4.2. Improving the Efficiency of Candidate Generation

Definition 4.1. A temporal pattern P is incoherent if there does not exist any valid state

sequence that contains P.

Clearly, we do not have to generate and count incoherent candidates because we know that

they will have zero support in the dataset. We introduce the following two propositions to

avoid generating incoherent candidates when specifying the relations  in candidates of

the form .

PROPOSITION 4.2.  is incoherent if  and states  and  belong

to the same temporal variable.

Two states from the same variable cannot co-occur because temporal abstraction segments

each variable into non-overlapping state intervals.

PROPOSITION 4.3.  is incoherent if .

PROOF. Let us assume that there exists a state sequence T = 〈(E1, b1, e1), …, (El, bl, el)〉 where

P′ ∈ T. Let π be the mapping from the states of P′ to the state intervals of T. The definition

of temporal patterns and the fact that state intervals in T are ordered by their start values

implies that the matching state intervals 〈(Eπ(1), bπ(1), eπ(1)), …, (Eπ(k+1), bπ(k+1), eπ(k+1))

should also be ordered by their start times: bπ(1) ≤ … ≤ bπ(k+1). Hence, bπ(j) ≤ bπ(i). We also

know that eπ(1) < bπ(j) because . Therefore, eπ(1) < bπ(i). However, since , then

eπ(1) ≥ bπ(i), which is a contradiction. Therefore, there is no state sequence that contains P′.

Example 4.4. Assume we want to extend pattern P = (〈A1, B2, C3, B1〉, R) in Figure 4 with

state C2 to generate candidates of the form (〈C2, A1, B2, C3, B1〉, R′). The relation between

the new state C2 and the first state A1 is allowed to be either before or co-occurs:  or

. However, according to proposition 4.2, C2 cannot co-occur with B2 because they

both belong to temporal variable V2 ( ). Also, according to proposition 4.3, C2 cannot

co-occur with C3 ( ) because C2 is before B2 ( ) and B2 should start before C3.

For the same reason, C2 cannot co-occur with B1 ( ). By removing incoherent

patterns, we reduce the number of candidates that result from adding C2 to 4-pattern P from

24 =16 to only 2.

THEOREM 4.5. There are at most k + 1 coherent candidates that result from extending a k-

pattern with a new state.

PROOF. We know that every candidate  corresponds to a specific

assignment of . When we assign the temporal relations, once a relation before,

all the following relations have to be before as well according to proposition 4.3. We can see

that the relations can be co-occurs in the beginning of the pattern, but once we see a before
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relation at point q ∈ {2, …, k+1} in the pattern, all subsequent relations (i > q) should be

before as well:

Therefore, the total number of coherent candidates cannot be more than k +1, which is the

total number of different combinations of consecutive co-occurs relations followed by

consecutive before relations.

In some cases, the number of coherent candidates is less than k + 1. Assume that there are

some states in P′ that belong to the same variable as state . Let  be the first such state (j

≤ k+1). According to proposition 4.2, . In this case, the number of coherent

candidates is j − 1 < k+1.

COROLLARY 4.6. Let L denote all possible states and let Fk denote all frequent k-patterns. The

number of coherent (k+1)-candidates is always less or equal to (k + 1) × |L| × |Fk|.

So far we described how to generate coherent candidates by appending singletons to the

beginning of frequent temporal patterns. However, we do not have to count all coherent

candidates because some of them may be guaranteed not to be frequent. To filter out such

candidates, we apply the Apriori pruning [Agrawal and Srikant 1994], which removes any

candidate (k+1)-pattern if it contains an infrequent k-subpattern.

4.3. Improving the Efficiency of Counting

Even after eliminating incoherent candidates and applying the Apriori pruning, the mining

algorithm is still computationally expensive because for every candidate, we need to scan

the entire database in the counting phase to check whether or not it is a frequent pattern.

The question we try to answer in this section is whether we can omit portions of the database

that are guaranteed not to contain the candidate we want to count. The proposed solution is

inspired by [Zaki 2000] that introduced the vertical format for itemset mining and later

extended it to sequential pattern mining [Zaki 2001].

Let us associate every frequent pattern P with a list of identifiers for all state sequences in

Dy that contain P:

Clearly, sup(P, Dy) = {P.id-list}.

Definition 4.7. The potential id-list (pid-list) of pattern P is the intersection of the id-lists of

its subpatterns:
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PROPOSITION 4.8. ∀P ∈ TP: P.id-list ⊆ P.pid-list

PROOF. Assume Ti is a state sequence in the database such that P ∈ Ti. By definition, i ∈ P.id-

list. We know that Ti must contain all subpatterns of P according to the Apriori property: ∀S

⊂ P: S ∈ Ti. Therefore, ∀S ⊂ P: i ∈ S.id-list Ρ i ∈ ∩S⊂P S.id-list = P.pid-list.

Note that for itemset mining, P.pid-list is always equal to P.id-list [Zaki 2000]. However,

this is not true for time-interval temporal patterns. As an example, suppose P = (〈A1, B1,

C2〉, R1,2 = b, R1,3 = b, R2,3 = c) and consider the state sequence Ti in Figure 5. Ti contains

all subpatterns of P and hence i ∈ P.pid-list. However, Ti does not contain P (there is no

mapping π that satisfies definition 3.3); hence i ≠ P.id-list.

Putting it all together, we compute the id-lists in the counting phase (based on the true

matches) and the pid-lists in the candidate generation phase. The key idea is that when we

count a candidate, we only need to check the state sequences in its pid-list because:

This offers a lot of computational savings since the pid-lists get smaller as the size of the

patterns increases, making the counting phase much faster.

Algorithm 1 shows the candidate generation algorithm. After generating coherent candidates

(line 3), we apply the Apriori pruning (lines 5 and 6). In our implementation, we hash all

patterns in Fk, so that searching for the k-subpatterns of the candidate in Fk requires only k

operations. Now that we found all k-subpatterns, we simply intersect their id-lists to

compute the pid-list of the candidate (line 7). Note that the cost of the intersection is linear

because the id-lists are always sorted according to the order of the instances in the database.

Line 8 is used for mining the minimal predictive temporal patterns and will be explained

later in Section 7. Finally, line 9 applies an additional pruning to remove candidates that are

guaranteed not to be frequent according to the following implication of proposition 4.8:

5. SELECTING TEMPORAL PATTERNS FOR CLASSIFICATION

Applying frequent temporal pattern mining on data usually results in a very large number of

patterns, most of which may be unimportant for the classification task. Using all of these

patterns as features can hurt the classification performance due to the curse of

dimensionality. Therefore, it is important to develop effective methods to select a small

subset of patterns that are likely to improve the classification performance.

The task of pattern selection is more challenging than the well-studied task of feature

selection due to the nested structure of patterns: if P is frequent, all instances covered by P

are also covered by all of its subpatterns, which are also in the result of the frequent pattern

mining method. This nested structure causes the problem of spurious patterns, which we

will illustrate in the following.
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5.1. Spurious Patterns

Definition 5.1. A temporal pattern P is a spurious pattern if P is predictive when evaluated

by itself, but it is redundant given one of its subpatterns.

Example 5.2. Assume that having very low platelet counts (PLT) is an important risk factor

for heparin induced thrombocytopenia (HIT). If we denote pattern PLT=VL by P, we expect

conf (P ⇒ HIT) to be much higher than the HIT prior in the data. Now assume that there is

no causal relation between the patient’s potassium (K) level and his risk of HIT, so a pattern

like K=N (normal potassium) does not change our belief about the presence of HIT. If we

combine these two patterns, for example P′:K=N before PLT=VL, we expect that conf (P′ ⇒

HIT) ≈ conf (P ⇒ HIT). The intuition behind this is that the instances covered by P′ can be

seen as a random π sub-sample of the instances covered by P. So if the proportion of HIT

cases in P is relatively high, we expect the proportion of HIT cases in P′ to be high as well

[Batal and Hauskrecht 2010].

The problem is that if we examine P′ by itself, we may falsely conclude that it is a good

predictor of HIT, where in fact this happens only because P′ contains the real predictive

pattern P. Having such spurious patterns in the mining results is undesirable for

classification because it leads to many redundant and highly correlated features. It is also

undesirable for knowledge discovery because spurious patterns can easily overwhelm the

domain expert and prevent him/her from understanding the real causalities in the data.

5.2. The Two-Phase Approach

The most common way to select patterns for classification is the two-phase approach, which

generates all frequent patterns in the first phase and then selects the top k discriminative

patterns in the second phase. This approach has been used by [Cheng et al. 2007; Li et al.

2001] for itemset based classification, by [Exarchos et al. 2008; Tseng and Lee 2005] for

sequence classification and by [Deshpande et al. 2005] for graph classification. However,

the two-phase approach is not very effective because when frequent patterns are evaluated

individually in the second phase, there is a high risk of selecting spurious patterns because

they look predictive using most interestingness measures [Geng and Hamilton 2006]. One

way to partially overcome this problem is to apply an iterative forward pattern selection

method as in [Cheng et al. 2007]. However, such methods are computationally very

expensive when applied on large number of frequent patterns.

Having discussed these problems, we propose the minimal predictive temporal patterns

framework for selecting predictive and non-spurious temporal patterns for classification.

6. MINIMAL PREDICTIVE TEMPORAL PATTERNS

Definition 6.1. A frequent temporal pattern P is a Minimal Predictive Temporal Pattern

(MPTP) for class y if P predicts y significantly better than all of its subpatterns.

The MPTP definition prefers simple patterns over more complex patterns (the Occam’s

Razor principal) because pattern P is not an MPTP if its effect on the class distribution “can

be explained” by a simpler pattern that covers a larger population.
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In order to complete the definition, we define the MPTP statistical significance test and

explain how to address the issue of multiple hypothesis testing.

6.1. The MPTP Significance Test

Assume we want to check whether temporal pattern P is an MPTP for class y. Suppose that

P covers N instances in the entire database D and covers Ny instances in Dy (the instances

from class y). Let  be the highest confidence achieved by any subrule of P ⇒ y:

Let us denote the true underlying probability of observing y in group P by θ. We define the

null hypothesis H0 to be . That is, H0 says that Ny is generated from N according to

the binomial distribution with probability . The alternative hypothesis H1 says that

 (a one sided statistical test). We compute the p-value of the MPTP significance test

as follows:

This p-value can be interpreted as the probability of observing Ny or more instances of class

y out of the N instances covered by P if the true underlying probability is . If the p-value

is smaller than a significance level (e.g., p-value < 0.01), then the null hypothesis H0 is very

unlikely. In this case, we reject H0 in favor of H1, which say that P ⇒ y is significantly more

predictive than all its subrules, hence P is an MPTP.

This statistical test can filter out many spurious patterns. Going back to Example 5.2, we do

not expect spurious pattern P′:K=N before PLT=VL to be an MPTP because it does not

predict HIT significantly better that the real pattern: PLT=VL.

6.2. Correcting for Multiple Hypothesis Testing

When testing the significance of multiple patterns in parallel, it is possible that some

patterns will pass the significance test just by chance (false positives). This is a concern for

all pattern mining techniques that rely on statistical tests.

In order to tackle this problem, the significance level should be adjusted by the number of

tests performed during the mining. The simplest way is the Bonferroni correction [shaffer

1995], which divides the significance level by the number of tests performed. However, this

approach is very conservative (with large type II error) when the number of tests is large,

making it unsuitable for pattern mining. In this work, we adopt the FDR (False Discovery

Rate) technique [Benjamini and Hochberg 1995], which directly controls the expected

proportion of false discoveries in the result (type I error). FDR is a simple method for

estimating the rejection region so that the false discovery rate is on average less than α. It

takes as input sorted p-values: p(1) ≤ p(2) … p(m) and estimates k̂ that tells us that only

hypotheses associated with p(1), p(2), …, p(k̂) are significant. We apply FDR to post-process
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all potential MPTP (patterns satisfying the MPTP significance test) and select the ones that

satisfy the FDR criteria.

7. MINING MINIMAL PREDICTIVE TEMPORAL PATTERNS

The algorithm in Section 4 describes how to mine all frequent temporal patterns for class y

using Dy. In this section, we explain how to mine minimal predictive temporal patterns for

class y. Our algorithm is integrated with frequent pattern mining in order to directly mine the

MPTP set, as opposed to mining all frequent patterns first and then selecting MPTP as in the

two-phase approach. To do this, the algorithm requires another input: D¬y, which is the

instances in the database D that do not belong to class y: D¬y = D − Dy.

7.1. Extracting MPTPs

The process of testing whether temporal pattern P is an MPTP is not trivial because the

definition demands checking P against all its subpatterns. That is, for a k-pattern, we need to

compare it with all of its 2k−1 subpatterns!

In order to avoid this inefficiency, we associate every frequent pattern P with two values:

1. P.mcs (Maximum Confidence of Subpatterns) is the maximum confidence of all

subpatterns of P:

(1)

2. P.mc (Maximum Confidence) is the maximum confidence of P and all of its

subpatterns:

(2)

Note that P.mcs is what we need to perform the MPTP significance test for pattern P.

However, we need a way to compute P.mcs without having to access all subpatterns. The

idea is that we can re-expressed P.mcs for any k-pattern using the maximum confidence

values of its (k-1)-subpatterns:

(3)

This leads to a simple dynamic programming type of algorithm for computing these two

values. Initially, for every frequent 1-patterns P, we set P.mcs to be the prior probability of

class y in the data and compute P.mc using expression (2). In the candidate generation

phase, we compute mcs for a new candidate k-pattern using the mc values of its (k-1)-

subpatterns according to expression (3) (Algorithm 1: line 8). Then, we compute the mc

values for the frequent k-patterns in the counting phase, and repeat the process for the next

levels.

Batal et al. Page 14

ACM Trans Intell Syst Technol. Author manuscript; available in PMC 2014 October 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The algorithm for extracting the MPTP of size k from the frequent k-patterns is outlined in

Algorithm 2. For every frequent pattern P, we compute P.mc (line 5). Then we add P to the

MPTP set if it satisfies the MPTP significance test (lines 6 and 7).

7.2. Pruning the Search Space

In this section, we illustrate how integrating MPTP selection with frequent temporal pattern

mining helps pruning the search space (speeding up the mining). We say that temporal

pattern P is pruned if we do not explore any of its superpatterns. Frequent pattern mining

relies only on the supportinformation to prune infrequent patterns according to the Apriori

property. That is, all patterns that are not frequent are pruned because their superpatterns are

guaranteed not to be frequent.

In the following, we present two pruning techniques that can utilize the predictiveness of

patterns to further prune the search space. The first technique is lossless, while the second is

lossy.

7.2.1. Lossless Pruning—This section describes a lossless pruning technique that can

prune parts of the search space without missing any MPTP. The idea is to prune pattern P if

we guarantee that none of P’s superpatterns will be an MPTP. However, since the algorithm

is applied in a level-wise fashion, we do not know the class distribution in the superpatterns

of P. To overcome this difficulty, we define the optimal superpattern of P, denoted as P*, to

be a hypothetical pattern that covers all and only the instances of class y in P, i.e., sup(P*,

Dy) = sup(P, Dy) and sup(P*, D¬y) = 0. Clearly, P cannot generate any superpattern that

predicts y better than P*. Now, we prune P if P* is not an MPTP with respect to P.mc (the

highest confidence achieved by P and its subpatterns). This pruning is outlined in Algorithm

2: lines 9 and 10. Note that this pruning is guaranteed not to miss any MPTP.

7.2.2. Lossy Pruning—This section describes a lossy pruning technique that speeds up

the mining at the risk of missing some MPTPs. We refer to the patterns mined with the lossy

pruning as A-MPTP (Approximated MPTP). The idea is to prune pattern P if it does not

show any sign of being more predictive than its subpatterns. To do this, we simply perform

the MPTP significance test, but at a higher significance level 2 than the significance level

used in the original MPTP significance test: α2 ∈ [α, 1]. If P does not satisfy the test with

respect to α2, we prune P. We call α2 the pruning significance level.

Note that α2 is a parameter that controls the tradeoff between efficiency and completeness.

So if we set α2 = 1, we do not perform any lossy pruning. On the other end of the spectrum,

if we set α2 = α, we prune every non-MPTP pattern, which leads to very aggressive pruning!

Example 7.1. Assume that temporal pattern P covers 25 instances of class y and 15 instances

that are not from class y and that the maximum confidence for P’s subpatterns is P.mcs =

0.65. If we apply the lossy pruning using pruning significance level α2 = 0.5, we prune P

because the p-value of the MPTP significance test is larger than α2: P rbinom(x ≥ 25; 40,

0.65) = 0.69 > 0.5.
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8. FEATURE SPACE REPRESENTATION

After we mine the MPTPs from each class label separately, we take the union of these

patterns, denoted by Ω, to define the classification features. To do this, we transform each

EHR instance xi into a binary vector  of size equal to |Ω|, where  corresponds to a

specific MPTP Pj and its value is 1 if Pj occurs in xi; and 0 otherwise. Once the data is

transformed to this binary representation, we can apply standard machine learning

algorithms (e.g., SVM, decision tree, näive Bayes, or logistic regression) to learn the

classification model.

9. EXPERIMENTAL EVALUATION

In this section, we test and present results of our temporal pattern mining approach on the

problem of predicting patients who are at risk of developing heparin induced

thrombocytopenia (HIT) [Warkentin 2000]. HIT is a pro-thrombotic disorder induced by

heparin exposure with subsequent thrombocytopenia (low platelets in the blood) and

associated thrombosis (blood clot). It is a life-threatening condition if it is not detected and

managed properly. Hence, it is extremely important to detect the onset of the condition.

9.1. Dataset

We use data acquired from a database that contains 4,281 electronic health records of post

cardiac surgical patients [Hauskrecht et al. 2010]. From this database, we selected 220

instances of patients who were considered by physicians to be at risk of HIT and 220

instances of patients without the risk of HIT. The patients at risk of HIT were selected using

information about the heparin platelet factor 4 antibody (HPF4) test orders. The HPF4 test

is ordered for a patient when a physician suspects the patient is developing HIT and hence it

is a good surrogate of the HIT-risk label. The HIT-risk instances include clinical information

up to the time HFP4 was ordered. The negative (no HIT-risk) instances were selected

randomly from the remaining patients. These instances include clinical information up to

some randomly selected time.

For every instance, we consider the following 5 clinical variables: platelet counts (PLT),

activated partial thromboplastin time (APTT), white blood cell counts (WBC), hemoglobin

(Hgb) and heparin orders. PLT, APTT, WBC and Hgb are numerical time series and we

segment them using trend and value abstractions (Section 3.1). Heparin orders are already in

an interval-based format that specifies the time period the patient was on heparin. We set the

window size of temporal patterns to be the last 5 days of every patient record.

9.2. Classification Performance

In this section, we test the ability of our methods to represent and capture temporal patterns

important for predicting HIT. We compare our methods, MPTP and its approximate version

A-MPTP, to the following baselines:

1. Last_values: The features are the most recent value of each clinical variable. For

example, the most recent value for PLT is 92, the most recent value for Hgb is

13.5, and so on.
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2. Last_abs: The features are the most recent trend and value abstractions of each

clinical variable. For example, the most recent trend abstraction for PLT is

“decreasing”, the most recent value abstraction for PLT is “low”, and so on.

3. TP_all: The features are all frequent temporal patterns (without applying pattern

selection).

4. TP_IG: The features are the top 100 frequent temporal patterns according to

information gain (IG).

5. TP_chi: The features are the frequent temporal patterns that are statistically

significant according to the χ2 test with significance level α = 0.01. This method

applies FDR to correct for multiple hypothesis testing.

The first two methods (1-2) are atemporal and do not rely on any temporal ordering when

constructing their features. On the other hand, methods 3-5 use temporal patterns that are

built using temporal abstractions and temporal logic. However, unlike MPTP and A-MPTP,

they select the patterns using standard feature selection methods without considering the

nested structure of the patterns.

We set the significance level = 0.01 for MPTP and A-MPTP, and we set the pruning

significance level α2 = 0.5 for A-MPTP (see Section 7.2.2). We set the local minimum

supports to 10% of the number of instances in the class for all compared methods.

We judged the quality of the different feature representations in terms of their induced

classification performance. More specifically, we use the features extracted by each method

to build an SVM classifier and evaluate its performance using the classification accuracy and

the area under the ROC curve (AUC).

In addition, we compared our methods to MBST (Model Based Search Tree) [Fan et al.

2008], a recently proposed method that combines frequent pattern mining and decision tree

induction. MBST builds the decision tree as follows: for each node 1) invoke a frequent

pattern mining algorithm; 2) select the most discriminative pattern according to IG; 3) divide

the data into two subsets: one containing the pattern and the other not; and 4) repeat the

process recursively on the two subsets. We extend this method to temporal pattern mining

and refer to it in the results as to TP_MBST. We set the invocation minimum support to be

10%, i.e., at each node of the tree, the algorithm mines temporal patterns that appear in more

than 10% of the instances in that node.

Table I shows the classification accuracy and the AUC for each of the methods. All

classification results are reported using averages obtained via 10-folds cross validation.

The results show that temporal features generated using temporal abstractions and temporal

logic are beneficial for predicting HIT, since they outperformed methods based on atemporal

features. The results also show that the MPTP and A-MPTP are the best performing

methods. Note that although the temporal patterns generated by TP_all, TP_IG, and TP_chi

subsume or overlap MPTP and A-MPTP patterns, they also include many irrelevant and

spurious patterns that negatively effect their classification performance.
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Figure 6 shows the classification accuracy of the temporal pattern mining methods under

different minimum support values. We did not include TP_MBST because it is very

inefficient when the minimum support is low5. We can see that MPTP and A-MPTP

consistently outperform the other methods under different settings of minimum support.

9.3. Knowledge Discovery

In order for a pattern mining method to be useful for knowledge discovery, the method

should provide the user with a small set of understandable patterns that are able to capture

the important information in the data.

Figure 7 compares the number of temporal patterns (on a logarithmic scale) that are

extracted by TP_all, TP_chi, MPTP and A-MPTP under different minimum support

thresholds. Notice that the number of frequent temporal patterns (TP_all) exponentially

blows up when we decrease the minimum support. Also notice that TP_chi does not help

much in reducing the number of patterns even though it applies the FDR correction. For

example, when the minimum support is 5%, TP_chi outputs 1,842 temporal patterns that are

statistically significant! This clearly illustrates the spurious patterns problem that we

discussed in Section 5.1.

On the other hand, the number of MPTPs is much lower than the number of temporal

patterns extracted by the other methods and it is less sensitive to the minimum support. For

example, when the minimum support is 5%, the number of MPTPs is about two orders of

magnitude less than the total number of frequent patterns.

Finally notice that the number of A-MPTPs may in some cases be higher than the number of

MPTPs. The reason for this is that A-MPTP performs less hypothesis testing during the

mining (due to its aggressive pruning), hence FDR is less aggressive with A-MPTPs than

with MPTPs.

Table II shows the top 5 MPTPs according to the p-value of the binomial statistical test,

measuring the improvement in the predictive power of the pattern with respect to the HIT

prior in the dataset. Rules R1, R2 and R3 describe the main patterns used to detect HIT and

are in agreement with the current HIT detection guidelines [Warkentin 2000]. Rule R4

relates the risk of HIT with high values of APTT (activated partial thromboplastin time).

This relation is not obvious from the HIT detection guidelines. However it has been recently

discussed in the literature [Pendelton et al. 2006]. Finally R5 suggests that the risk of HIT

correlates with having high WBC values. We currently do not know if it is a spurious or an

important pattern. Hence this rule requires further investigation.

9.4. Efficiency

In this section, we study the effect of the different techniques we proposed for improving the

efficiency of temporal pattern mining. We compare the running time of the following

methods:

1. TP_Apriori: Mine the frequent temporal patterns using the standard Apriori

algorithm.
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2. TP_id-lists: Mine the frequent temporal patterns using the id-list format to speed

up counting as described in Section 4.3.

3. MPTP: Mine the MPTP set using the id-list format and apply the lossless pruning

described in Section 7.2.1

4. A-MPTP: Mine the approximated MPTP set using the id-list format and apply both

the lossless pruning and the lossy pruning described in Section 7.2.2.

To make the comparison fair, all methods apply the techniques we propose in Section 4.2 to

avoid generating incoherent candidates. Note that if we do not remove incoherent

candidates, the execution time for all methods greatly increases.

The experiments were conducted on a Dell Precision T7500 machine with an Intel Xeon

3GHz CPU and 16GB of RAM. All algorithms are implemented in MATLAB.

Figure 8 shows the execution times (on a logarithmic scale) of the above methods using

different minimum support thresholds. We can see that using the id-list format greatly

improves the efficiency of frequent temporal pattern mining as compared to the standard

Apriori algorithm. For example, when the minimum support is 10%, TP_id-lists is more

than 6 times faster than TP_Apriori.

Notice that the execution time of frequent temporal pattern mining (both TP_Apriori and

TP_id-lists) blows up when the minimum support is low. On the other hand, MPTP controls

the mining complexity and the execution time increases much slower than frequent pattern

mining when the minimum support decreases. Finally, notice that A-MPTP is the most

efficient method. For example, when the minimum support is 5%, A-MPTP is around 4

times faster than MPTP, 20 times faster than TP_id-lists and 60 times faster than

TP_Apriori.

9.5. Changing the Window Size

The results reported so far show the performance of several temporal pattern mining

methods when the window size is fixed to be the last 5 days of the patient records. Here, we

examine the effect of changing the window size on the methods’ performance. In Figure 9,

we vary the window size from 3 days to 9 days and show the classification accuracy (left),

the number of patterns (center) and the execution time (right) of the compared methods.

Note that when we increase the window size beyond 5 days, the classification accuracy for

most methods slightly decreases6. This shows that for our task, temporal patterns that are

recent (close to the decision point) are more predictive than the ones that are distant. Also

note that increasing the window size increases the number of patterns in the result and also

increases the execution time. The reason is that the search space of frequent temporal

patterns becomes larger. Finally, note that our methods (MPTP and A-MPTP) maintain their

advantages over the competing methods for the different settings of the window size.
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10. RELATED RESEARCH

The integration of classification and pattern mining has recently attracted a lot of interest in

data mining research and has been successfully applied to static data [Cheng et al. 2007;

Batal and Hauskrecht 2010], graph data [Deshpande et al. 2005] and sequence data [Tseng

and Lee 2005; Exarchos et al. 2008; Ifrim and Wiuf 2011]. This work proposes a pattern-

based classification framework for complex multivariate time series data, such as the one

encountered in electronic health record systems.

Our work relies on temporal abstractions [Shahar 1997] as a preprocessing step to convert

numeric time series into time interval state sequences. The problem of mining temporal

patterns from time interval data is a relatively young research field. Most of the techniques

are extensions of sequential pattern mining methods [Agrawal and Srikant 1995; Zaki 2001;

Pei et al. 2001; Yan et al. 2003; yen Lin and yin Lee 2005] to handle time interval data7.

[Villafane et al. 2000] is one of the earliest work in this area and proposed a method to

discover only containment relationships from interval time series. [shan Kam and chee Fu

2000] is the first to propose using Allen’s relations [Allen 1984] for defining temporal

patterns. Their patterns follow a nested representation which only allows concatenation of

temporal relations on the right hand side of the pattern. However, this representation is

ambiguous (the same situation in the data can be described using several patterns).

[Hoppner 2003] is the first to propose a non-ambiguous representation by explicitly defining

all k(k − 1)/2 pairwise relations for a temporal k-pattern. We adopt Hoppner’s representation

in our work. [Papapetrou et al. 2005] used the same pattern format as [Hoppner 2003] and

proposed the Hybrid-DFS algorithm which uses a tree-based enumeration algorithm like the

one introduced in [Bayardo 1998]. [Winarko and Roddick 2007] also used the same pattern

format as [Hoppner 2003] and proposed the ARMADA algorithm, which extends a

sequential pattern mining algorithm called MEMISP [yen Lin and yin Lee 2005] to mine

time interval temporal patterns.

[Moerchen 2006] proposed the TSKR representation as an alternative to Allen’s relations

and used a modification of the CloSpan algorithm [Yan et al. 2003] to mine such patterns.

[Wu and Chen 2007] proposed converting interval state sequences into sequences of interval

boundaries (the start and end of each state) and mine sequential patterns from those

sequences. Their algorithm is modification of PrefixSpan [Pei et al. 2001] that adds

constraints to ensure that the mined patterns correspond to valid interval patterns. In [Sacchi

et al. 2007], the user is required to define beforehand a set of complex patterns of interest.

The system then mines temporal association rules that combine these user-defined patterns

using the precedes relation that the paper introduced.

All related work on mining time interval temporal patterns [Villafane et al. 2000; shan Kam

and chee Fu 2000; Hoppner 2003; Papapetrou et al. 2005; Winarko and Roddick 2007;

Moerchen 2006; Wu and Chen 2007; Sacchi et al. 2007; Moskovitch and Shahar 2009] have

been applied in an unsupervised setting to mine temporal association rules. On the other

hand, our work focuses on applying temporal pattern mining in the supervised setting in
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order to mine predictive and non-spurious temporal patterns and use them as features for

classification.

11. CONCLUSION

Modern hospitals and health-care institutes collect huge amounts of data about their patients,

including laboratory test results, medication orders, diagnoses and so on. Those who deal

with such data know that there is a widening gap between data collection and data

utilization. Thus, it is very important to develop data mining techniques capable of

automatically extracting useful knowledge to support clinical decision making in various

diagnostic and patient-management tasks.

This work proposes a pattern mining approach to learn classification models from

multivariate temporal data, such as the data encountered in electronic health record systems.

Our approach relies on temporal abstractions and temporal pattern mining to construct the

classification features. We also propose the minimal predictive temporal patterns framework

and present an efficient mining algorithm. We believe the proposed method is a promising

candidate for many applications in the medical field, such as patient monitoring and clinical

decision support.
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Fig. 1.
An example of an EHR data instance with three temporal variables. The black dots represent

their values over time.
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Fig. 2.
An example illustrating the trend and value abstractions. The blue dashed lines represent the

25th and 75th percentiles and the red solid lines represent the 10th and 90th percentiles.
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Fig. 3.
Allen’s temporal relations.
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Fig. 4.
A temporal pattern with states 〈A1, B2, C3, B1〉 and temporal relations R1,2 = c, R1,3 = b, R1,4

= b, R2,3 = c, R2,4 = b and R3,4 = c.
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Fig. 5.
A state sequence that contains all subpatterns of pattern P = (〈A1, B1, C2〉, R1,2 = b, R1,3 = b,

R2,3 = o), but does not contain P.
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Fig. 6.
The classification accuracy of TP_all, TP_IG, TP_chi, MPTP and A-MPTP for different

minimum supports.
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Fig. 7.
The number of temporal patterns (on a logarithmic scale) mined by TP_all, TP_chi, MPTP

and A-MPTP for different minimum supports.
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Fig. 8.
The running time (on a logarithmic scale) of TP_Apriori, TP_id-lists, MPTP and A-MPTP

for different minimum supports.
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Fig. 9.
The effect of the window size on the classification accuracy (left), the number of patterns

(center) and the mining efficiency (right).
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Table I

Classification Performance

Method Accuracy AUC

Last_values 78.41 89.57

Last_abs 80.23 88.43

TP_all 80.68 91.47

TP_IG 82.50 92.11

TP_chi 81.36 90.99

TP_MBST 83.5 89.85

MPTP 85.68 94.42

A-MPTP 85.45 95.03

The classification accuracy (%) and the area under the ROC curve (%) for different feature extraction methods.
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Table II

Top MPTPs

Rule Support Confidence

R1: PLT=VL⇒HIT-risk 0.41 0.85

R2: Hep=ON co-occurs with PLT=D⇒HIT-risk 0.28 0.88

R3: Hep=ON before PLT=VL⇒HIT-risk 0.22 0.95

R4: Hep=ON co-occurs with APTT=H⇒HIT-risk 0.2 0.94

R5: PLT=D co-occurs with WBC=H⇒HIT-risk 0.25 0.87

The top 5 MPTPs according to the p-values of the binomial statistical test.
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ALGORITHM 1

A high-level description of candidate generation.
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ALGORITHM 2

Extracting the MPTPs from the frequent k-patterns.
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