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Interfacial buffer layers often attribute the improved device performance in organic optoelectronic device.
Herein, a water-soluble hydrochloric acid doped polyanilines (HAPAN) were utilized as p-type electrode
buffer layer in highly efficient polymer solar cells (PSC) based on PBDTTT-EFT and several representative
polymers. The PBDTTT-EFT-based conventional PSC featuring ultrathin HAPAN (1.3 nm) delivered high
PCE approximately 9%, which is one of the highest values among conventional PSC devices. Moreover,
ultrathin HAPAN also exhibited wide applicability in a variety of efficient photovoltaic polymers including
PBDTTT-C-T, PTB7, PBDTBDD, PBTTDPP-T, PDPP3T and P3HT. The excellent performances were
originated from the high transparency, small film roughness and suitable work function.

D
uring the past decades, electrode buffer layers have played a vital role in promoting the performance of
organic optoelectronic devices, in particular for organic photovoltaic devices (as shown in Figure 1a),
which consist of electrodes (anode and cathode), photoactive layers, and electrode buffer layers (EBLs)1–4.

Both inorganic and organic materials can be used for making the EBLs. Recently, important progresses have been
achieved in developing new n-type organic EBLs, and the power conversion efficiencies (PCEs) of polymer solar
cells (PSCs) over 8% have been achieved in various groups via polymer interlayers such as amino-substituted
polyfluorene derivatives (PFN)5–9, ethoxylated polyethyleneimine (PEIE)10, fullerene derivatives11,12. Compared
to the rapid progresses in n-type organic EBL materials, the development of solution processable p-type organic
materials is comparatively lagged behind. Although, the applications of a few p-type organic materials in PSCs
were reported in recent works13–16, the classical p-type EBL material, poly(3,4-ethylenedioxythiophene):poly(s-
tyrenesulfonate) (PEDOT: PSS), is predominantly used as the p-type EBL material in PSCs, and also the highest
PCE values in PSCs were obtained by utilizing PEDOT: PSS as EBLs17. To explore a new solution processable
organic p-type EBL material with superior properties is still an interesting and important topic for the field of
PSCs.

A superior p-type organic EBL material should meet several requirements: (i) Processing solvent of the buffer
layer should be orthogonal with that of the active layer. (ii) As known, the state-of-the-art donor polymers often
exhibited HOMO levels of 5.0 , 5.4 eV (see Figure 1b)18–27, and thereby the work function (WF) of the p-type EBL
material should exceed 5.0 eV to form ohmic contact with the active layers. (iii) In PSCs, the EBL should have very
high transparency and thus the active layer can utilize more sunlight. Usually, more than 5% of the incident light
was loss in the 35 nm PEDOT:PSS layer. To minimize the light loss, two strategies can be considered: the first
choice is to explore new materials with no or extremely low absorption in visible region; an alternative strategy is
to utilize ultrathin buffer layers. For example, Heeger et al.16 reported a novel p-type conjugated polyelectrolyte,
which can fulfill all these above requirements simultaneously and thus exhibited comparable performance with
PEDOT:PSS in PSCs.

As a type of classical conducting polymers, polyanilines have been widely studied in the past decades due to
their high conductivities, environmental stabilities and ease of synthesis for multiple energy-related applications
such as sensors, supercapacitors and organic light-emitting diodes28–31. Polyanilines with good solution proces-
sibilities in commonly used solvents can be prepared through internal or external doping. For instance, when
doped by sulfonic acid, polyanilines can be dissolved into water32, and the water soluble polyanilines can be used
as the p-type EBL materials in organic solar cells33. A few of acid doped polyanilines like acid-doped polyaniline
nanotubes (a-PANIN), self-doped sulfonic acid polyaniline (SPAN) and graft copolymers (PAN-PEG) have been
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explored in P3HT:PCBM based PSCs and achieved relatively poor or
comparable performance with PEDOT: PSS34–36. Overall, although
polyaniline based p-type EBLs have been utilized in classical PSCs,
their applications and underlying potentials in highly efficient PSCs
based on novel photovoltaic polymers have not been intensively
investigated yet.

Herein, a water-soluble hydrochloric acid doped polyanilines
(named as HAPAN in Figure 1a) were employed as the p-type EBL
material in highly efficient PSCs based on Poly(2-ethylhexyl 6-(4,
8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b9]dithiophen-
2-yl)-3-fluorothieno[3,4-b]thiophene-2-carboxylate) (designated as
PBDTTT-EFT in Figure 1a)11. Notably, when the blend of PBDTTT-
EFT:PC71BM was used as the active layer, the PSC with only 5.0 nm
HAPAN film as the p-type EBL exhibited excellent photovoltaic
performance with PCE exceeding 9%. Interestingly, the HAPAN-
based PSC still achieved a high PCE up to 8.94% when the thickness
of HAPAN film is reduced to only 1.3 nm under the illumination of
AM 1.5G 100 mW/cm2.

Results
HAPAN is prepared by a cost-effective method, namely a direct
sulfonation of emeraldine salts with chlorosulfonic acid in dichlor-
oethane at 80uC and subsequently hydrated in water at 100uC, and
the synthesis details have been reported elsewhere37. The FT-IR spec-
trum and XPS spectra of HAPAN are provided (see Figure S1 and
Table S1 in supporting information). HAPAN exhibits good solubil-
ity (up to 30 mg/ml) in water while insoluble in o-DCB. Under the
concentration of 1 mg/ml, the corresponding pH of HAPAN solu-
tion is 4.2, which is slightly higher than that of the well-known
PEDOT:PSS (VP AI 4083 from H. C. Stark, PEDOT4083).

Initially, the work functions (WF) of HAPAN films were charac-
terized by ultraviolet photoelectron spectroscopy (UPS). Figure 2a

presented the UPS results of the pristine ITO and HAPAN films with
different thickness (1.3 nm, 5.0 nm and 30 nm) covered indium-tin-
oxide (ITO) samples. The thicknesses of HAPAN were measured and
controlled by spectroscopic ellipsometer and surface profilometer
(see Figure S2a), meanwhile, the photographs of HAPAN films with
different thickness were depicted in Figure S2b. The WF value of ITO
measured by UPS was consistent with the reported results35. The WF
of 30 nm HAPAN film was determined to be 5.12 eV, which is
similar as the WF (5.16 eV) of PEDOT:PSS35. It is interesting to note
that the ultrathin HAPAN film (5.0 nm) exhibited the same WF
value of 5.12 eV as that of the thicker HAPAN film (30 nm). The
results demonstrated that the WF of ITO can be well modified by
coating 5.0 nm HAPAN buffer layer. As the thickness of HAPAN
film reduced to 1.3 nm, the WF was 4.75 eV and close to that of the
bare ITO film (4.72 eV).

The transmittance of the EBL is an important parameter that
affects the photovoltaic performance especially short-circuit current
density (Jsc) of PSCs. As known, the optimized thickness of the
PEDOT:PSS layers are ca. 35 nm, which blocks some of solar light38.
Figure 2b depicted the optical transmittance spectra of the HAPAN
films with varied thicknesses on quartz glass in the UV-Vis-NIR
region. We found that the transmittance of the 30 nm HAPAN film
is lower than that of the PEDOT:PSS (35 nm)35. When the thickness
of HAPAN reduced to 5.0 nm or even to 1.3 nm, the corresponding
transmittance of the whole absorption range was 95% , 98%, which
was much higher than that of the PEDOT:PSS film (35 nm).

Surface morphologies of the HAPAN film on the ITO coated glass
were probed by tapping-mode atomic force microscopy (AFM) mea-
surements. Height topography images and the corresponding root-
mean-square roughness (Rq) were taken for each film and shown in
Figure 2c. After modified with 5.0 nm HAPAN film, the Rq value of
ITO is significantly reduced from 3.50 nm to 1.32 nm. Interestingly,
when 1.3 nm thick HAPAN was coated, the surface roughness of
ITO still can be reduced effectively, i.e. the Rq value is 1.67 nm.
Clearly, the ultrathin HAPAN (1.3 nm–5.0 nm) films are suitable
p-type buffer material to meet the three key characteristics: high
transmittance, suitable WF as well as relatively smooth surface.

Recently, Benzo[1,2-b:4,5-b9]dithiophene-based photovoltaic
materials like PBDTTT-EFT, PBDTTT-C-T, PTB7 made a series
of outstanding progress in polymer photovoltaic field5–8,11,19–25,38–40.
Herein, a newly developed polymer PBDTTT-EFT11,39 was selected as
the model polymer to verify the suitability of ultrathin HAPAN in
highly efficient PSCs. Initially, to investigate the thickness depend-
ence of HAPAN on photovoltaic performance, the PSCs based on
PBDTTT-EFT: PC71BM with the conventional device configuration
(ITO/p-type EBL/active layer/Ca/Al) were fabricated and character-
ized under AM 1.5G illumination (100 mW/cm2), as depicted in
Figure 3a. The optimal D/A ratio (151.5) and processing solvent
(DCB/3% DIO) were consistent with the reported work11. As shown
in Figure S3 and Table 1, when the thickness of the HAPAN buffer
layer increased from 1.3 nm to 30 nm, the Voc values of the devices
were ca. 0.79 V, indicating that the thickness of the HAPAN film
does not affect the Voc of the PSC at all. Noting that the ITO anode
modified with 1.3 nm HAPAN showed a WF of 4.75 eV, it is inter-
esting to get a Voc of 0.79 V for the device with 1.3 nm HAPAN. We
speculate that the UPS result of the 1.3 nm HAPAN sample might be
affected by the bared ITO part on the substrates, because the Rq of
ITO (Rq 5 3.5 nm, see Figure 2c) is much higher than the thickness
of the ultrathin HAPAN (1.3 nm).

When the thickness of the HAPAN buffer layer was changed from
1.3 nm to 30 nm, the Jsc values kept ,15 mA/cm2 with a peak value
of 16.54 mA/cm2 (see Figure 3b and Table 1). For the PSCs without
p-type EBL, poor PCE of 4.28 6 0.28% were recorded. When modi-
fied with 5.0 nm HAPAN, the PSCs delivered the best PCE (9.00 6

0.12%) along with the highest Jsc of 16.51 mA/cm2, a Voc of 0.789 V,
and a FF of 0.695, which were among the highest values from con-

Figure 1 | (a) Device diagram of PSCs and the chemical structure of the

materials involved in the current work: hydrochloric acid doped

polyaniline (HAPAN) as well as the model polymer (PBDTTT-EFT); (b)

Energy level diagram of the state-of-the-art photovoltaic materials.
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Figure 3 | (a) Device architecture of the conventional PSC utilized in this study; J-V characteristics of PBDTTT-EFT based PSC devices employing

ultrathin HAPAN with different thickness under (b) 100 mW/cm2 AM 1.5G illumination and (c) in the dark; (d) The corresponding EQE curves of the

PBDTTT-EFT based PSC devices employing ultrathin HAPAN with different thickness.

Figure 2 | (a) UPS spectra of indium-tin oxide (ITO), PEDOT: PSS (35 nm), different thickness of HAPAN (1.3 nm, 5.0 nm and 30 nm) film on

ITO substrate, respectively. (b) UV-Vis absorption spectra of the different thickness of HAPAN layers (1.3 nm, 5.0 nm, 10 nm, 30 nm) on the quartz

glass. (c) AFM height images of bare ITO film, 5.0 nm HAPAN-coated ITO film and 1.3 nm HAPAN-coated ITO film.

www.nature.com/scientificreports
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ventional PSC devices. The active layers also exhibited favorable
morphology with appropriate nanoscale feature size of ca. 30 nm
on the ultrathin HAPAN film. (See AFM and TEM images in
Figure S4). It is worth noting that when the thickness of HAPAN
is 1.3 nm only, a considerable PCE of 8.84 6 0.10% still can be
obtained, and the results reveal that the ITO anode can be effectively
modified by coating an ultrathin layer of HAPAN with even 1.3 nm.
The series resistance (Rs) and shunt resistance (Rsh) were derived
from the J-V curves. The series resistance (Rs) reduced to
7.96 V?cm2 and the shunt resistance (Rsh) increased to
0.89 kV?cm2 for the devices with 5.0 nm HAPAN buffer layer. As
clearly seen in the dark J-V curves (Figure 3c), a relatively low leakage
current and a high rectification ratio was recorded in ultrathin
HAPAN-based PSC. In the parallel experiment, the best-performing
PSC with PEDOT: PSS (35 nm) as p-type EBL showed a slightly
lower PCE of 8.78% (see Figure S5).

The corresponding incident photon conversion efficiency (IPCE)
spectra of the PSCs were characterized and collected in Figure 3d.
The Jsc values integrated from the IPCE curves were 13.45 mA/cm2,
16.45 mA/cm2, 16.30 mA/cm2 correspond to the no buffer layer,
1.3 nm and 5.0 nm HAPAN device, respectively. Clearly, the Jsc

values integrated from the IPCE curves agreed well with the Jsc of
J-V tests. Compared with the PSC without p-type EBL, the best-
performing PSC with 5.0 nm HAPAN film as p-type EBL exhibited
a higher IPCE ranging from 300 nm to 800 nm, particular in
550 nm–750 nm. The 1.3 nm HAPAN also exhibited better IPCE
in the region from 350 nm to 550 nm with a peak value of 72% at
450 nm, indicating efficient photon harvest and charge collection.

In addition, the long-term stability of PSCs based on ultrathin p-
type EBL was also investigated (see Figure 4 and Figure S6). The
PBDTTT-EFT: PC71BM-based unencapsulated PSCs in nitrogen
glove-box employing 1.3 nm-thick HAPAN was collected and the
PSCs employing PEDOT:PSS (35 nm) was also as controls. The PCE
measured from PEDOT:PSS-based PSC was reduced to 70% of the
pristine value within 30 days. In contrast, as observed in Figure 4, the
PSC employing the ultrathin HAPAN film as the p-type EBL still
attained more than 85% of the pristine PCE in a long period, which
implied the device stability based on ultrathin HAPAN (1.3 nm) is
much better than that of PEDOT:PSS (35 nm). The possible reasons
might be the morphological changes of the active layer41, the high pH
value as well as minimal usage of ultrathin HAPAN film.

To further investigate the applicability of this ultrathin p-type
EBL, ultrathin HAPAN was also employed in the other efficient
BHJ systems consisting PC71BM and photovoltaic polymers, such
as PBDTTT-C-T9,21, PTB720, PBDTBDD40,42, PBTTDPP-T43 and
PDPP3T26,44, and their molecular structures were provided in
Figure 5a. The identical device fabrication processes were used
according to the previous works besides of the p-type EBLs. All of
the photovoltaic parameters were summarized in Table 2. The sim-

ilar trends can be observed in PBDTTT-C-T/PC71BM, PTB7/
PC71BM, PBDTBDD/PC71BM, PBTTDPP-T/PC71BM and PDPP3T/
PC71BM-based PSC devices (see Figure 5b–5f). Besides, the ultrathin
HAPAN was also utilized in the PSC based on the classical P3HT (see
Figure 5g). It can be concluded that the ultrathin HAPAN film is a
universal and effective p-type EBL for various polymer: PCBM
blends.

In summary, PBDTTT-EFT based PSCs with the conventional
architecture were fabricated with ultrathin HAPAN film as anode
buffer layer, and high PCEs of approximately 9% were obtained on
only 5.0 nm or 1.3 nm-thick HAPAN film. This study suggests that
the application of ultrathin HAPAN film as the anode interfacial
layer is also an effective method to improve the device stability. To
the best of our knowledge, this is the first report about utilizing
ultrathin p-type EBLs in highly efficient PSCs. More importantly,
this ultrathin layer works well in several efficient photovoltaic poly-
mers including PBDTTT-C-T, PTB7, PBDTBDD, PBTTDPP-T,
PDPP3T and P3HT, so it gives a new option for fabricating higher
efficiency and long-term stability solar cells as well as ultrathin PSC
devices45. Further advances in photovoltaic performance would be
achieved by optimizing the intrinsic conductivity and pH values of
the polyaniline-based p-type anode buffer layers.

Methods
Materials. PBDTTT-EFT, PTB7, PDPP3T and PC71BM were commercial available
from Solarmer Material Inc. PBDTTT-C-T21, PBDTBDD42, PBTTDPP-T43 were
synthesized in our laboratory according to our previous works. The other materials
were commercially available and used as received.

Device fabrications. The different concentration HAPAN solution was prepared in
distilled water at 60uC for 3 hours in air. The anode buffer layer was spin-coated on
pre-cleaned ITO substrates from the HAPAN solution prepared at 4000 rpm for 40 s

Figure 4 | The long-term stability of the ultrathin HAPAN (1.3 nm) and
PEDOT: PSS (35 nm) based-PSC stored in N2 filled glove box.

Table 1 | The photovoltaic performance of PBDTTT-EFT/PC71BM-based PSC employing HAPAN with different thickness

HAPAN Thickness (nm) Voc (V) Jsc (mA/cm2) FF PCEst (%)[a] PCEmax (%)[b] Rs (V?cm2) Rsh (KV?cm2)

0 0.539 13.32 0.614 4.28 6 0.28 4.41 8.90 0.51
1.3 0.789 16.54 0.685 8.84 6 0.10 8.94 7.79 1.03
2.5 0.792 16.32 0.699 8.91 6 0.09 9.03 7.91 1.94
5.0 0.789 16.51 0.695 9.00 6 0.12 9.05 7.96 0.89
10 0.790 16.06 0.703 8.81 6 0.15 8.92 8.18 0.97
20 0.794 15.44 0.709 8.62 6 0.10 8.69 9.27 1.88
30 0.795 14.32 0.704 7.90 6 0.08 8.01 9.02 1.54
control device[c] 0.801 16.17 0.678 8.64 6 0.13 8.78 8.04 1.23
[a]PCEst is the statistical results of 15 devices.
[b]PCEmax is the maximum value of the best-performing devices.
[c]Control device is PBDTTT-EFT/PC71BM-based PSC device employing PEDOT: PSS (35 nm).
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and annealed at 150uC for 15 min. The thickness of HAPAN is 1.3 nm, 2.5 nm,
5.0 nm, 10 nm, 20 nm, 30 nm respectively corresponding to a concentration of
1 mg/ml, 2 mg/ml, 4 mg/ml, 10 mg/ml, 20 mg/ml 30 mg/ml. The concentration
of PBDTTT-EFT and PC71BM in o-dichlorobenzene (DCB) solution is 10 mg/ml
and 15 mg/ml, respectively. These HAPAN films were spin-coated at 4000 rpm
for 40 s. The film thickness of HAPAN was verified by several methods such as
spectroscopic ellipsometer and the film roughness was characterized using AFM

in tapping mode. For morphology modulation, 3% DIO (vol) was added into the
blend solution. Blend solutions based on other polymers are prepared according to
the previous works and also described in details in Table S2. Prior to evaporating
metal cathodes, the blend films were treated with ,60 mL methanol according to
our recent report46. The device fabrication was completed by thermal evaporation
of a 20 nm thick Ca and a 80 nm thick Al layer as cathode under vacuum at a
base pressure of 1 3 1024 Pa.

Figure 5 | (a) Molecular structures of other efficient polymers and P3HT; The J-V curves of PSC based on (b) PBDTTT-C-T: PC71BM, (c) PTB7: PC71BM,

(d) PBDTBDD: PC71BM, (e) PBTTDPP-T: PC71BM, (f) PDPP3T: PC71BM and (g) P3HT: PC61BM.
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