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Abstract

Understanding the growth patterns of the early brain is crucial to the study of neuro-development. 

In the early stages of brain growth, a rapid sequence of biophysical and chemical processes take 

place. A crucial component of these processes, known as myelination, consists of the formation of 

a myelin sheath around a nerve fiber, enabling the effective transmission of neural impulses. As 

the brain undergoes myelination, there is a subsequent change in the contrast between gray matter 

and white matter as observed in MR scans. In this work, gray-white matter contrast is proposed as 

an effective measure of appearance which is relatively invariant to location, scanner type, and 

scanning conditions. To validate this, contrast is computed over various cortical regions for an 

adult human phantom. MR (Magnetic Resonance) images of the phantom were repeatedly 

generated using different scanners, and at different locations. Contrast displays less variability 

over changing conditions of scan compared to intensity-based measures, demonstrating that it is 

less dependent than intensity on external factors. Additionally, contrast is used to analyze 

longitudinal MR scans of the early brain, belonging to healthy controls and Down’s Syndrome 

(DS) patients. Kernel regression is used to model subject-specific trajectories of contrast changing 

with time. Trajectories of contrast changing with time, as well as time-based biomarkers extracted 

from contrast modeling, show large differences between groups. The preliminary applications of 

contrast based analysis indicate its future potential to reveal new information not covered by 

conventional volumetric or deformation-based analysis, particularly for distinguishing between 

normal and abnormal growth patterns.
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1. INTRODUCTION

Understanding brain growth from birth to two years of age is crucial to the study of neuro-

development and neurological disorders. During this time period, brain development 

consists of a sequence of rapid biophysical, structural, and chemical changes. Myelination, 

or the formation of a myelin sheath around nerve fibers, is an important component of the 

changes taking place in the early brain.1 Myelination manifests in structural MR (Magnetic 

Resonance) images of the developing brain as changes in the intensity of white matter (WM) 

relative to gray matter (GM). These changes in MR appearance are captured in quantitative 

T1 and T2 values, and can be observed clearly in T1W (T1-weighted) and T2W (T2-

weighted) scans.

In MR (Magnetic Resonance) imaging, shortening of the T1 signal is hypothesized to occur 

due to the hydrophilic cholesterol and glycolipid components of the developing myelin 

sheath. T2 shortening is reported to occur at the time of tightening of myelin around the 

axon and may correlate best with the development of myelination determined based on 

histological methods.1 As a result of WM myelination and the subsequent shortening of T1 

and T2 relaxation times, it is observed that T1W (T1-weighted) MR images display 

increasing WM signal intensities with time, and T2W (T2-weighted) MR images display 

decreasing WM signal intensities as the brain develops during the first two years of age. At 

birth, the intensity of GM is higher than that of WM in T1W images, and the reverse is true 

for T2W images. With time, a reversal of the GM-WM intensity ratio takes place - i.e., the 

intensity of WM keeps increasing in T1W images, thereby exceeding the GM intensity, and 

in T2W images the intensity of WM keeps decreasing and becomes lower than that of GM. 

As a result of this, the white-gray contrast first decreases up to a time point between 3 and 6 

months of age, and then increases up to 2 years. Therefore, it can be concluded that 

appearance changes of MR images are direct indicators of maturational processes taking 

place in the brain. The latter stage of contrast change, consisting of the increase in contrast 

from around 6 months to 2 years of age, can be seen in Figure 1, and will be the focus of this 

work.

Although several previous studies have dealt with changes in morphometry, shape, and 

microstructure of the early brain,2-6 the use of appearance as an imaging measure has 

remained limited. The lack of extensive research based on image appearance could be 

primarily attributed to the fact that the intensities of MR scans are uncalibrated and hence 

result in images of variable intensity ranges. Appearance based research restricted to signal 

intensity changes in MR images of the pediatric brain demonstrated the rapid maturation 

process.7,8 In one of these studies, the Gompertz function was used to model longitudinal 

changes in MR signal intensity over time.7 A second study modeled changes in the 

appearance of subcortical structures during early brain development in a cross-sectional 
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manner,8 showing variable rates of maturation in central and peripheral cortical regions. A 

recent study used the relative intensity, or contrast, between gray matter and white matter to 

study patterns of regional brain growth.9 The contrast between gray matter and white matter 

was quantified by computing the Hellinger distance between their respective intensity 

histograms. When compared with using purely intensity to measure appearance, contrast 

was adopted as a metric in order to reduce dependence on external factors such as scanner 

type, scanning conditions, and intensity normalization.

The objective of this paper is to validate the application of this quantitative measure of 

contrast as a neuroimaging indicator of maturation. In this paper, we perform reliability 

analysis of contrast in comparison with conventional signal intensity measures. We show 

that for a single human phantom who has been scanned at different locations and time 

points, contrast remains relatively stable although the gray and white matter intensities are 

highly variable. This substantiates the statement that contrast as a metric is reliable even 

when external factors are changed at the time of scanning. Further, we compare the 

trajectories of contrast change for subjects with Down’s Syndrome (DS) and healthy 

controls. Finally, time-based biomarkers are extracted from the contrast change trajectories, 

demonstrating the clinical applicability of contrast in distinguishing patterns of normal and 

abnormal brain growth.

2. METHOD

The proposed method uses the Hellinger distance to measure the overlap between intensity 

distributions of gray and white matter.9 The Hellinger distance (HD) is a measure of the 

divergence between two distributions, derived from the Bhattacharyya coe cient (BC). It 

satisfies the properties of metrics such as identity, symmetry, non-negativity, and triangle 

inequality, therefore making it suitable for contrast computation compared with other 

measures. The intensity distributions for each tissue class are generated using Kernel 

Density Estimation (KDE). The measurement of overlap between these continuous intensity 

distributions is an improvement over the previous technique of measuring overlap between 

histograms.9 Intensity distributions generated by KDE are smooth and continuous, making 

them less susceptible to quantization errors than histograms.

Let I = (I1, I2,…IM)T denote a dataset of co-registered multimodal scans, such that Ii = (Ii,1, 

Ii,2, …Ii,M)T is the intensity of the i-th voxel, observed across all M modalities. The images 

are first segmented such that each voxel is classified into one of the major tissue classes c = 

{white matter, gray matter, csf, non-brain}, and the probability of a voxel i belonging to a 

tissue class ck is given by Pi,ck. This is done using the EM (Expectation-Maximization) 

algorithm, which performs segmentation with built-in intensity inhomogeneity correction.10 

This segmentation algorithm also uses an atlas prior, which improves the classification 

scheme and makes it more robust, based on previous knowledge.11 As a result of 

segmentation, the binary label map defining the presence or absence of a class ck at a 

specific voxel location i is given by Li,ck. When the voxel i is classified as belonging to class 

ck, the corresponding label map value Li,ck = 1, else Li,ck = 0.
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The intensity distributions for each tissue class ck, are generated from the binary label map 

Li,ck using KDE. Although segmentation is performed in a multimodal manner the intensity 

distributions are generated separately for each individual modality. In the experiment 

performed, we use a Gaussian kernel denoted by G for density estimation. The probability 

that a voxel belonging to the modality m and the tissue class ck would exhibit an intensity Ij 

is given by:

(1)

where there are a total of N voxels in the image, Ii,m refers to the intensity of voxel i in 

modality m, and h is the bandwidth of the kernel. Using KDE, a continuous probability 

distribution Pm(I|ck) is generated for each class ck, over all possible values of intensity Ij, for 

every modality m.

The Hellinger distance is then computed as the overlap between two probability 

distributions. The equation for the Hellinger distance as derived from the Bhattacharyya coe 

cient is defined in the following paragraph. The Bhattacharyya coe cient between two 

intensity distributions U and V defined over a range of y values is given by:

(2)

From the Bhattacharyya coe cient (BC) described above, the Hellinger distance (HD) can be 

defined as:

(3)

Contrast, measured as the overlap between white and gray matter intensity distributions, is 

given as:

(4)

2.1 Validation of Contrast Measure using Traveling Phantom Dataset

The traveling phantom study was designed to calibrate image data in a large multi-site 

pediatric neuroimaging study, and includes two subjects (Phantom 1 and Phantom 2), who 

have undergone repeated scans at various imaging sites. Two different scanners, a Siemens 

3T Allegra head-only scanner, and a Siemens 3T Tim Trio were used in the study, to 

estimate the reliability of MR measures under changing conditions of scan.12 The pulse 

sequences used were MPRage with 1 × 1 × 1 mm3 and high-resolution T2 (TSE) with 1 × 1 

× 1 mm3. The two healthy male human phantoms of ages 26 and 27 were scanned at four 

different sites within a week. Two repeated scans of the same phantom were obtained at 

each site, using the same scanner, within 24 hours. The age of the phantom and health status, 

as well as the short time period between repeated scans, both indicate that subject-related 

changes were minimized. Since the entire image dataset for each phantom was acquired 
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within a week, it is safe to assume that no major brain changes took place during this time 

period. The tuple of images belonging to each phantom p consists of a set of MR scans, 

attributed to different modalities, locations, time points, and scanners. Seven co-registered, 

multimodal scans of Phantom 1, obtained at 4 different scanning locations, using 2 different 

scanner types can be seen in Figure 2.

Initial pre-processing of the phantom images consisted of rigid registration to a template 

using the IRTK algorithm.13 This was followed by bias correction and tissue segmentation, 

which were both computed in an iterative manner as part of the EM algorithm.10 Prior to 

analysis of the traveling phantom images, we had to ensure that they were all co-registered 

in order to remove volumetric and morphometric differences. After co-registration by rigid 

transformation and bias correction, we created an unbiased atlas Ap from the set of T1W 

images from the Trio scans of Phantom p. Unbiased atlas building was done using an 

algorithm based on LDDMM (Large Deformation Diffeomorphic Metric Mapping).14 The 

T2W scans, and images belonging to the Allegra scanner were then deformed onto the atlas 

created using a fluid-based deformation method.12 As a result of the steps described above, 

the images from all scanners, obtained at all time points and locations, belonging to a 

phantom denoted by p, were co-registered to the corresponding atlas Ap. After being co-

registered, the entire tuple of images obtained for a single phantom p can be denoted by Ip, 

and the vector of intensities for a single voxel i is given by Ip,i. After atlas building, a 

parcellation map was registered to the generated atlas, and the major cortical regions were 

extracted. The final step in the processing pipeline consisted of intensity normalization of all 

images by linear scaling using the following normalization factors: (i) 90 percentile value of 

the fatty tissue region for T1W images, and (ii) 90 percentile value of the ventricular CSF 

region for the T2W images.

In order to measure the reliability of the contrast measure, we calculate the COV (Coe cient 

Of Variation) across all scans to obtain a normalized measure of variability. The COV of a 

quantity Q with mean value μ(Q), and standard deviation σ(Q) is given as:

(5)

Since contrast is a regional measure, the COV of contrast is computed for each cortical 

region. Let the set of images belonging to phantom p obtained under different scanning 

conditions be denoted by Ip. The corresponding vector of contrast values for a region R of 

the brain is given by Cp,R. The COV of the contrast for a region R can be written as

(6)

In comparison with contrast, signal intensity measurements are computed in a voxel-wise 

manner, therefore leading to voxel-wise maps of COV. To obtain a regional estimate of the 

COV of signal intensity, we compute the mean COV of signal intensity averaged over all 
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voxels in a distinct cortical region. As defined previously, for a set of images belonging to a 

phantom p, the voxel i has intensities denoted by Ip,i. The COV for the voxel i computed 

over the entire set of images is given by

(7)

From the above equation, the mean COV over all NR voxels in a region R can be computed 

as

(8)

2.2 Application of Contrast Measure: Down’s Syndrome vs. Controls

In the following section, we outline the method for testing the contrast measure on an infant 

dataset. The pediatric dataset used comes from the ACE-IBIS study (Autism Centers for 

Excellence, Infant Brain Imaging study), of which 2 subjects diagnosed with Down’s 

Syndrome, and 22 healthy controls, are analyzed. The dataset consists of longitudinal scans 

of each subject, taken at 6 months, 1 year, and 2 years of age. All the scans in the dataset 

were generated using the same imaging protocols. The pre-processing procedure described 

above was also followed here, consisting of bias correction, co-registration of images, 

segmentation using the EM algorithm, and parcellation into cortical regions. An improved 

registration-segmentation pipeline for processing of longitudinal, infant brain images was 

implemented. Intra-subject registration was performed such that all images belonging to a 

subject are deformed to the 2 year old scans of that particular subject using IRTK.13 Since 

gray-white matter structures are not fully developed at 6 and 12 months of age, the result of 

the two-year-old segmentation is used as a probabilistic prior to obtain a better segmentation 

at earlier time points.11

Contrast for the major cortical regions was computed at each time point of scan, and subject-

specific trajectories of contrast change were obtained using kernel regression. The contrast 

value at time instant t for a subject s is given by:

(9)

where s = subject, time of kth scan of sth subject = ts,k, Contrast for subject s at ts,k = Cs(ts,k).

Once the individual trajectories of contrast change were generated, it was necessary to 

extract time-based biomarkers that can intuitively describe specific features that characterize 

populations. A time based biomarker τ was derived from the trajectories of contrast change, 

given by

(10)
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This time marker indicates the minimum time at which the value of contrast reaches half that 

of the maximum value.

3. RESULTS

The following experiments will a) evaluate the variability of contrast as compared to MRI 

intensity values and b) demonstrate the use of contrast to compare early growth patterns in 

different populations.

3.1 Travelling Phantom Study

As described in the previous section, 2 phantoms were scanned repeatedly using 2 different 

scanners (Allegra and Trio), at 4 different locations. We apply the processing pipeline and 

the registration framework described above to the scans belonging to each phantom. The 

Coe cient Of Variation (COV) for contrast in each region R is computed. The mean COV for 

intensity in each region R is also computed, by averaging the voxel-wise COV over all 

voxels in the region R.

The results of the phantom experiment show that with changing external scanning 

conditions and scanner type, the COV of contrast is significantly lower than the mean COV 

of intensity values. This is illustrated in Figure 3, which shows the relative stability of 

contrast when external factors such as scanner type, locations, and conditions of scan are 

varied. Since the COV is analyzed in a region-wise manner, it is shown for each of the 15 

lobar parcellation regions. In most regions of the brain the regional COV of contrast lies 

between 2 and 5 percent. Therefore, any changes in contrast across scans that lie in a much 

higher range can be predominantly attributed to actual changes in the appearance of images 

rather than to artifacts due to scanning conditions. In comparison, the mean COV of 

intensity for a region is much higher, ranging between 5 and 10 percent for T1W scans, and 

between 10 and 20 percent for T2W scans.

3.2 Early Brain Development: Down’s Syndrome vs. Controls

In early brain development, contrast is initially low and shows a period of rapid growth, 

followed by relatively slower growth. The results of computing contrast values across time 

using kernel regression are shown in Figure 5. The contrast values were computed across all 

lobes, although only the values in the occipital lobe are displayed. Previous studies have 

established that DS subjects show slower myelination when compared to healthy controls.16 

The differences in contrast change trajectories between DS and controls are very apparent, 

and show that contrast has potential uses in the early diagnosis and study of brain 

abnormalities.

Several statistical markers can also be extracted from the modeling of contrast. Figure 5 

displays the time-based marker τ defined earlier, which computes the time taken to reach 

half the maximum value, but several other markers could also be derived from the contrast 

curves.
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4. CONCLUSIONS

The above research establishes that contrast may serve as a measure which provides new 

information on tissue properties that is complementary to conventional volumetric 

assessment. The contrast variations across different locations and scanning conditions were 

seen to be lower than that of intensity. In addition, contrast was modeled across time for 

each major cortical region using kernel regression. A major limitation of applying kernel 

regression to the longitudinal infant brain dataset used, is that the images belonging to each 

subject were obtained repeatedly at only a limited number of time points.15 However, kernel 

regression was still used due to its flexibility and applicability to both groups that were 

studied. Contrast showed distinct trajectories of variations with time for healthy controls and 

subjects diagnosed with Down’s Syndrome. Time based biomarkers that were extracted also 

showed interesting patterns of variation between the two groups. Future work will include 

extending the current applications of contrast studies to large databases, correlating contrast 

features with cognitive and behavioral scores, and performing in-depth statistical analysis of 

these features.
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Figure 1. 
Axial slices of longitudinal, multimodal MR scans of a single subject from 6 months to 2 

years of age.
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Figure 2. 
Seven T1W (top row) and T2W (bottom row) scans of Phantom 1, across 2 scanner types 

and 4 locations. The scans are all co-registered, with the five leftmost scans belong to the 

Trio scanner, while the two rightmost scans belong to the Allegra scanner.
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Figure 3. 
The COV values of contrast, and Mean COV values of intensity, plotted for T1W (left) and 

T2W (right) scans belonging to Phantom 1, for 15 brain regions.
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Figure 4. 
Longitudinal T1W (top) and T2W (bottom) MR images scanned at age 6, 12, and 24 months 

(from left to right). The brain parcellation with major lobar regions are shown as a color 

image on the right.
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Figure 5. 
Figures from left to right: a) and b) show contrast change for T1W and T2W scans in the 

Occipital Lobe in the left hemisphere, c) plots time-based biomarkers for T2W scans 

belonging to one subject each from the DS and Control groups. In c), the X-axis indicates 8 

major cortical lobes give by: Frontal L (Left) = 1, Temporal L = 2, Parietal L = 3, Occipital 

L = 4, Frontal R (right) = 5, Temporal R = 6, Parietal R = 7, Occipital R = 8.
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