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Moment-to‐moment brain signal variability is a ubiquitous neural
characteristic, yet remains poorly understood. Evidence indicates that
heightened signal variability can index and aid efficient neural func-
tion, but it is not known whether signal variability responds to precise
levels of environmental demand, or instead whether variability is rela-
tively static. Using multivariate modeling of functional magnetic reson-
ance imaging-based parametric face processing data, we show here
that within-person signal variability level responds to incremental ad-
justments in task difficulty, in a manner entirely distinct from results
produced by examining mean brain signals. Using mixed modeling, we
also linked parametric modulations in signal variability with modu-
lations in task performance. We found that difficulty-related
reductions in signal variability predicted reduced accuracy and longer
reaction times within-person; mean signal changes were not predic-
tive. We further probed the various differences between signal var-
iance and signal means by examining all voxels, subjects, and
conditions; this analysis of over 2 million data points failed to reveal
any notable relations between voxel variances and means. Our results
suggest that brain signal variability provides a systematic task-driven
signal of interest from which we can understand the dynamic function
of the human brain, and in a way that mean signals cannot capture.
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Introduction

Mounting neuroscientific evidence suggests that greater
moment-to-moment brain signal variability serves as an excel-
lent proxy measure of well-functioning neural systems, reflect-
ing features such as greater network complexity, system
criticality, long-range functional connectivity, increased
dynamic range and information transfer, heightened signal de-
tection, human development, superior cognitive processing,
and neural health (e.g., Li et al. 2006; Faisal et al. 2008; McIn-
tosh et al. 2008, 2010; Shew et al. 2009, 2011; Garrett et al.
2010, 2011, 2013; Garrett, Samanez-Larkin et al. 2013; Deco
et al. 2011; Misic et al. 2011; Vakorin et al. 2011; Raja Beharelle
et al. 2012). Importantly, although signal variability has
proven consistently relevant to both task effects and perform-
ance in human neuroimaging (e.g., Misic et al. 2010; Garrett
et al. 2011, 2013; Garrett, Samanez-Larkin et al. 2013), we do
not yet understand the extent to which signal variability is a
sensitive task-responsive measure of interest. Specifically, it is
unknown whether within-person signal variability responds
dynamically to precise levels of environmental demand, or
instead, whether within-person signal variability is relatively
static. If signal variability does adjust to specific level of cogni-
tive demand, it could then be better characterized as a highly

plastic and sensitive brain measure for examining human brain
function.

Properly testing the effect of cognitive demand in this context
requires tight control of task design, ideally ensuring a para-
metric manipulation with adequate numbers of measurements
in the same domain/task type. Titrating demand for a single
task type will better ensure that similar brain systems are re-
cruited across levels, and that changes in variability across levels
will be somewhat bound to, and constrained within, these
systems. Further, with enough levels of a parametric manipu-
lation, it is also possible to model potential nonlinear trends in
signal variability levels across levels of task difficulty. Broadly,
we can ask how carefully increasing external demands relates to
changes in neural variability, and what the “shape” of changes
in variability might be across level of demand.

In the present study, we examined modulations in functional
magnetic resonance imaging (fMRI)-based signal variability
across 7 difficulty levels of a face-matching task in a sample of
young adults. Although it remains unknown whether within-
person signal variability would increase or decrease with incre-
mental changes in task difficulty, previous between-subject re-
search indicates that greater signal variability reflects accurate,
fast, and stable cognitive performance across multiple cognitive
domains (e.g., McIntosh et al. 2008; Misic et al. 2010; Garrett
et al. 2011, 2013; Garrett, Samanez-Larkin et al. 2013; Raja
Beharelle et al. 2012). Accordingly, in line with these positive
relations between signal variability and performance, we antici-
pated that within-person signal variability would decrease as
subjects are forced to their own processing limits (i.e., toward
chance performance). In turn, we hypothesized that task
difficulty-related decreases in brain signal variability would
covary with decreases in accuracy and reaction time perform-
ance. We also compared signal variance and signal mean effects
to gauge whether these measures continue to prove statistically
and spatially orthogonal, as in our previous work (Garrett et al.
2010, 2011).

Materials and Methods

Sample
Our original sample consisted of 20 young adults. We found that 2 sub-
jects from this sample were extreme outliers (> ±2.5 standard deviations
(SDs) from group levels) on several variables utilized in the current
study (i.e., brain scores reported in Figs 3a and 4a; within-person
relations between signal variability and performance, Table 2). As a
result, these 2 participants were removed from all model runs. Our final
sample thus consisted of 18 young adults (mean age = 27.17 years,
range 20–34 years, 8 women). Only one participant was left-handed,
and all were screened using a detailed health questionnaire to exclude
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health problems and/or medications that might affect cognitive function
and brain activity (e.g., neurological disorders, brain injury). The
present experiment was approved by the Research Ethics Board at
Baycrest. All participants gave informed consent and were paid for their
participation.

Fixation and Cognitive Task Blocks
All fMRI analyses were performed using volumes acquired during
fixation and task blocks. During scanning, we utilized a parametric
face-matching task (adapted from Grady et al. 2000), during which 2
grayscale faces were shown side by side, and participants were re-
quired to make a “same person/different person” judgment for each
face pair (2-choice, using left and right index fingers on an fMRI-
compatible response board). For all trials, one of the 2 faces was de-
graded to 1 of 7 different degrees (i.e., 0%, 20%, 30%, 40%, 50%, 60%,
and 70% degradation; we did not include a 10% condition in the design
of the current study due to scanner-related time constraints) by repla-
cing a percentage of pixels in the face image with random grayscale
values (see Fig. 1). Each functional scanning run served as a single per-
centage degradation condition (i.e., all task blocks in each run were
from a single condition), each of which contained 30 trials. For each
trial, participants had 4 s to respond, followed by a ∼2 s (variable;
between 1.5 and 2.5 s) intertrial interval (fixation cross in the center of
the screen). Within run, each task block contained 5 trials, followed by
a 20 s fixation block. The order of conditions was counterbalanced
across subjects, and stimuli within condition were randomized (for
left/right face orientation, location of nondegraded faces (left/right),
and gender). Face pairs on each trial were always gender-matched.
Accuracy and RTwere measured for each condition.

MRI Scanning and Preprocessing
We acquired images with a Siemens Trio 3T magnet. We first obtained
a T1-weighted anatomical volume using MPRAGE (TE = 2.63 ms,
TR = 2000 ms, FOV = 256 mm, slice thickness = 1 mm, axial plane) for
co-registration with the functional images. T2* functional images
(TE = 30 ms, TR = 2000 ms, flip angle = 70°, FOV = 200 mm) were ob-
tained using EPI acquisition. Each functional sequence consisted of 30
5-mm thick oblique axial slices, positioned to image the whole brain. A
total of 144 volumes were collected for each functional scanning run.

Functional Data
Functional data were slice-time corrected using AFNI (http://afni.nimh.
nih.gov/afni) and motion-corrected using AIR (http://bishopw.loni.
ucla.edu/AIR5/) by registering all functional volumes to the 100th
volume within-run. By averaging all functional volumes within a
motion-corrected run, we calculated mean functional volumes. For
each run, mean functional volume was registered with each subject’s
structural volume using rigid body transformation. After appropriate
transform concatenations, we obtained a direct nonlinear transform
from each initial fMRI volume into an unbiased, in-house developed
“Common Template” space (see Garrett et al. 2010, 2011, 2013 for

further details). We then applied FNIRT registration algorithm (in FSL)
to derive a nonlinear transform between our anatomical Common Tem-
plate and MNI 152_T1 provided with FSL software (www.fmrib.ox.ac.
uk/fsl). Data were smoothed using a 7-mm Gaussian kernel.

We also performed various subsequent preprocessing steps in-
tended to further reduce data artifacts and improve the predictive
power of our SDBOLD measure (see Garrett et al. 2010, 2011, 2013). We
first examined our functional volumes in the Common Template space
for artifacts via independent component analysis (ICA) within-run,
within-person, as implemented in FSL/MELODIC (Beckmann and
Smith 2004). A “training set” was obtained by manually classifying
noise components (via visual inspection of MELODIC default thre-
sholded component maps, and associated time series and Fourier spec-
trum) from a small set of runs (∼20) within randomly selected subjects.
In general, we adopt and expand upon noise component characteriz-
ation specified previously (Kelly et al. 2010). Noise components were
targeted according to several key criteria: 1) Spiking (components
dominated by abrupt time series spikes ∼≥6 SDs); 2) Motion (promi-
nent edge or “ringing” effects, sometimes [but not always]
accompanied by large time series spikes); 3) Susceptibility and flow ar-
tifacts (prominent air-tissue boundary or sinus activation; typically rep-
resents cardio/respiratory effects); 4) White matter (WM) and ventricle
activation (another potential proxy for cardio/respiratory effects; Birn
2012); 5) Low-frequency signal drift (∼≤0.009 Hz; linear or nonlinear
drift, perhaps representing scanner instabilities; see Smith et al. 1999);
6) High power in high-frequency ranges unlikely to represent neural
activity (∼≥75% of total spectral power present above ∼0.13 Hz;); and
7) Spatial distribution (“spotty” or “speckled” spatial pattern that
appears scattered randomly across ∼≥25% of the brain, with few if any
clusters with ∼≥10 contiguous voxels [at 4 × 4 × 4 mm voxel size]). In
line with these criteria, brief examples of several components we typi-
cally deem to be noise are highlighted in Supplementary Material. By
default, we utilize a conservative set of rejection criteria; if manual
classification decisions are difficult due to the co-occurrence of appar-
ent “signal” and “noise” in a single component, we typically elect to
keep such components. Thus, when in doubt, we do not reject. Two in-
dependent raters of noise components were utilized (one of which was
D.D.G.); >90% inter-rater reliability was required before proceeding.
Next, and related to Tohka et al. (2008), our manually classified “train-
ing set” was used to train a quadratic discriminant classifier to auto-
matically separate components from all runs into artifact and
nonartifact categories in those data not already manually classified
(“test set”). Components identified as artifact were then regressed from
corresponding fMRI runs using the FSL regfilt command.

Following ICA denoising, voxel time series were further adjusted
by regressing out motion-correction parameters, and WM and cere-
brospinal fluid (CSF) time series using in-house MATLAB code. For
WM and CSF regression, we extracted time series from unsmoothed
data within small ROIs in the corpus callosum and ventricles of the
Common Template, respectively. ROIs were selected such that they
were deep within each structure of interest (corpus callosum and
ventricles) to avoid partial volume effects. The choice of a one
4-mm3 voxel within corpus callosum for WM and a same size voxel
within one lateral ventricle for CSF was based on our experience in
having excellent registration of these structures across groups and
studies. Our rationale for applying these preprocessing steps follow-
ing ICA denoising was simply a conservative choice intended to
remove any within-subject artifacts that ICA may have missed, prior
to calculating voxel variability values for each subject and task (see
Data Analyses section).

Our additional preprocessing steps had dramatic effects on the pre-
dictive power of SDBOLD in past research, effectively removing 50% of
the variance still present after traditional preprocessing steps, while
simultaneously doubling the predictive power of SDBOLD (Garrett et al.
2010). Thus, calculating BOLD signal variance from relatively artifact-
free BOLD time series permits the examination of what is more likely
meaningful neural variability. Finally, to localize regions from our
functional output, we submitted MNI coordinates to the Anatomy
Toolbox (version 1.8) in SPM8, which applies probabilistic algorithms
to determine the cytoarchitectonic labeling of MNI coordinates (Eickh-
off et al. 2005, 2007).

Figure 1. Example stimulus slides from our D30 and D60 conditions. The images on
the right of each example slide are degraded by overlaying random gray values over
30% and 60% of pixels, respectively. Subjects are asked to judge (yes/no) whether the
2 images on each slide are of the same person or not.
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Data Analyses

Reaction Time Measures
Prior to computing reaction time means and standard deviations per
person, per task condition, we first set a lower bound (150 ms) for le-
gitimate responses for each task on the basis of minimal RTs suggested
by prior research (MacDonald et al. 2006; Dixon et al. 2007). We then
trimmed extreme outliers relative to the rest of the sample on each task
(≥4000 ms). We established final bounds for each task by dropping all
trials more than 3 SDs from within-person means. The number of trials
dropped across all participants and tasks was negligible (213/3780
total trials). For each task, to maintain realistic variability within the
data, we then imputed missing values for outlier trials by using mul-
tiple imputation (100 imputations, fully conditional specification [itera-
tive Markov chain Monte Carlo method]), and predictive mean
matching (using subject ID, condition, and RT as predictors of inter-
est), as implemented in SPSS 20.0 (IBM, Inc.). We then calculated
mean reaction times (meanRT) for each task condition, for each subject.
Prior to calculating intraindividual measures of reaction time variability
(ISDRT), we first sought to disentangle potential practice effects from
legitimate response variability. We used split-plot regression to resi-
dualize the effects of block order, trial, and all interactions from all RT
trials separately for each face degradation condition. Using these resi-
dualized values, we calculated ISDRT for each participant on each task
as in previous studies (Dixon et al. 2007; Hultsch et al. 2008).

Calculation of MeanBOLD and SDBOLD

To calculate mean signal (meanBOLD) for each experimental condition,
we first expressed each signal value as a percent change from its
respective block onset value, and then calculated a mean percent
change within each block and averaged across all blocks for a given
condition. To calculate SDBOLD, we first performed a block normaliza-
tion procedure to account for residual low-frequency artifacts. We nor-
malized all blocks for each condition such that the overall 4D mean
across brain and block was 100. For each voxel, we then subtracted the
block mean and concatenated across all blocks. Finally, we calculated
voxel standard deviations across this concatenated time series (see
Garrett et al. 2010, 2011, 2013).

Partial Least Squares Analysis of Relations Between Task Difficulty
and Brain Function (SDBOLD and MeanBOLD)
To examine multivariate relations between experimental conditions and
brain function, we employed separate partial least squares (PLS) ana-
lyses (Task PLS; see McIntosh et al. 1996; Krishnan et al. 2011) using (1)
SDBOLD and (2) meanBOLD as our brain measures. Task PLS begins by
calculating a between-subject covariance matrix (COV) between exper-
imental conditions and each voxel’s signal (“signal” here refers to either
SDBOLD or to meanBOLD, depending on the model). COV is then decom-
posed using singular value decomposition (SVD).

SVDCOV ¼ USV 0 ð1Þ

This decomposition produces a left singular vector of experimental con-
dition weights (U), a right singular vector of brain voxel weights (V), and
a diagonal matrix of singular values (S). Simply stated, this analysis pro-
duces orthogonal latent variables (LVs) that optimally represent relations
between experimental conditions and brain voxels. Each LV contains a
spatial activity pattern depicting the brain regions that show the stron-
gest relation to task contrasts identified by the LV. Each voxel weight (in
V) is proportional to the covariance between voxel measures and the
task contrast. To obtain a summary measure of each participant’s
expression of a particular LV’s spatial pattern, we calculated within-
person “brain scores” by multiplying each voxel (i)’s weight (V) from
each LV ( j) (produced from the SVD in equation (1)) by voxel (i)’s value
for person (k), and summing over all (n) brain voxels. For example,
using SDBOLD as the voxel measure, we have:

Xn

i¼1

VijSDBOLD ik ð2Þ

A meanBOLD brain score for each subject was calculated as in equation
(2) using data/values from a separate PLS model run.

Significance of detected relations between multivariate spatial pat-
terns and experimental conditions was assessed using 1000 permu-
tation tests of the singular value corresponding to each LV. A
subsequent bootstrapping procedure revealed the robustness of voxel
saliences across 1000 bootstrapped resamples of our data (Efron and
Tibshirani 1993). By dividing each voxel’s mean salience by its boot-
strapped standard error, we obtained “bootstrap ratios” (BSR) as nor-
malized estimates of robustness. We thresholded BSRs at a value of
≥3.00, which approximates a 99% confidence interval. Finally, all
models were run on gray matter (GM) only, following the creation of a
custom GMmask within our common template space.

Modeling Parametric Within-Subject Effects for Task Performance
and Brain Function
Several standard repeated-measures general linear models were run to
examine parametric effects separately for accuracy, meanRT, ISDRT,
SDBOLD brain scores, and meanBOLD brain scores. First, all 5 models
were run using “condition” as an independent variable, which was
entered as a series of dummy codes to capture all variance attributed to
parametric manipulation. Second, orthogonal linear and nonlinear
trends were simultaneously fit (up to a cubic trend) to measure their
relative contribution.

Modeling Relations Between SDBOLD, MeanBOLD, and Behavior
Across Levels of Task Difficulty
In the context of parametric experimental designs, establishing clear
relations between BOLD measures and behavior requires explicitly ex-
amining both between-subject effects (e.g., do higher levels of SDBOLD

coincide with higher levels of performance?) and within-subject effects
(e.g., do changes in SDBOLD across conditions covary with changes in
performance?). This can be achieved through mixed modeling, in
which between- and within-subject relations can be simultaneously es-
timated (Snijders and Bosker 1999; van de Pol and Wright 2009). We
were also interested in comparing SDBOLD and meanBOLD in predicting
task performance (accuracy, meanRT, and ISDRT), necessitating the sim-
ultaneous estimation of between- and within-subject effects for each
brain measure. Prior to modeling, we first structured the data in
person-period format, in which measurement occasions/conditions for
each measure of interest were contained in a single column, with mul-
tiple rows per participant coinciding with the number of measure-
ments taken (i.e., 7 rows per subject, one for each face degradation
condition). Then, separately for accuracy, meanRT, and ISDRT, we fit a
model of the form:

Task performanceij ¼ b0 þ bSD between�xj þ bSD withinðxij � �xjÞ
þ bMean between�xj þ bMean withinðxij � �xjÞ
þ e0ij ð3Þ

Here, the task performance value for each face degradation condition
(i) and participant ( j) is modeled as a function of: 1) a model intercept
(β0); 2) the between-subjects SDBOLD effect (bSD between�xj), in which �xj

represents the subject SDBOLD brain score average across task con-
ditions; 3) the within-subjects SDBOLD effect ðbSD withinðxij � �xjÞÞ, in
which each condition-based SDBOLD brain score is mean-centered
within-person; 4) the between-subjects meanBOLD effect
(bmean between �xj), in which �xj represents the subject meanBOLD brain
score average across task conditions; 5) the within-subjects meanBOLD

effect ðbmean withinðxij � �xjÞÞ, in which each condition-based meanBOLD

brain score is mean-centered within-person; and 6) residual error
(e0ij). We chose compound symmetry (CS) as the covariance structure
for all 3 models given that Akaike Information Criteria (AIC) fits were
significantly better than the default diagonal covariance structure for 2
of the 3 model runs (P < 0.05), and required 5 fewer parameters to esti-
mate (CS = 7 parameters). We also compared AIC levels for CS and the
most bias-free available covariance structure (i.e., “unstructured”
covariance, which required 33 estimated parameters for each model
run). Owing to this increased number of estimated parameters and our

Cerebral Cortex November 2014, V 24 N 11 2933



modest sample size, models either did not converge or were not signifi-
cantly better fitting than our CS models. Thus, overall, CS was a logical
choice for all model runs. Finally, we did not model a random intercept
because it is statistically redundant with the between-subject effects we
modeled. All models were run using SPSS 20 (IBM, Inc.).

Results

Behavioral Manipulation
Using a series of repeated-measures general linear models, we
first examined whether accuracy, mean reaction time (meanRT),
and intraindividual standard deviations of reaction time (ISDRT)
varied across our face degradation task conditions (face degra-
dation levels varied from 0% to 70%; see Materials and Methods
section). These models serve as a test of the success of our para-
metric task manipulation. All 3 behavioral measures exhibited
robust effects over conditions (See Fig. 2 and Table 1 [models 1–
6]). Accuracy decreased and meanRT and ISDRT increased over
conditions; all trends were largely linear in form. Although ISD
scores reached an apparent peak at D50 (see Fig. 2), no signifi-
cant nonlinear trend was noted.

Experimental Manipulation of Brain Signal
Variability (SDBOLD)
Next, we examined whether within-person brain signal varia-
bility levels changed across conditions. We first utilized multi-
variate PLS (task PLS; McIntosh et al. 1996; McIntosh and
Lobaugh 2004; Krishnan et al. 2011) analysis to examine differ-
ences in signal variability across all conditions (fixation + all 7
face degradation conditions). A single robust LV resulted
(singular value = 2.98; 42.29% crossblock covariance; per-
muted P < 0.0001); Figure 3a contains a plot of PLS “brain
scores” for each subject across conditions (see Formula 2 in
Materials and Methods section for details). The PLS brain
pattern (see Fig. 3b) highlighted a unidirectional effect; the
higher the brain score in Figure 3a, the higher the level of
brain signal variability in regions noted in Figure 3b. Signal
variability during fixation could not be distinguished from the
D0 condition. However, there was a substantial increase in
signal variability at D20 (i.e., the easiest condition that also in-
cluded image noise) that gradually reduced through to D70
(which was reliably lower in variability than fixation and D0).
A complementary repeated-measures test of these brain scores
revealed both linear and quadratic effects (see Table 1, model

Figure 2. Behavioral trends for accuracy, and reaction time means (meanRT) and intraindividual standard deviations (ISDRT) across face degradation conditions. Error bars represent
bootstrapped 95% confidence intervals.

Table 1
Task performance and brain measure repeated-measures models

Model Conditions Dependent variable Predictor df (num/denom) F P Partial η2

1 D0–D70 Accuracy Condition (6, 102) 44.05 <0.0001 0.72
2 D0–D70 Accuracy Linear (1, 106) 255.49 <0.0001 0.71

Quadratic (1, 106) 7.02 0.01 0.06
3 D0–D70 MeanRT Condition (6, 102) 33.73 <0.0001 0.67
4 D0–D70 MeanRT Linear (1, 106) 204.41 <0.0001 0.66

Quadratic (1, 106) 1.73 0.19 0.02
5 D0–D70 ISDRT Condition (6, 102) 2.89 0.01 0.15
6 D0–D70 ISDRT Linear (1, 106) 14.08 <0.0001 0.12

Quadratic (1, 106) 2.63 0.11 0.02
7 Fixation–D70 SDBOLD brain score Linear (1, 124) 10.16 <0.01 0.08

Quadratic (1, 124) 20.90 <0.0001 0.14
8 Fixation–D70 MeanBOLD LV1 brain score Linear (1, 123) 121.89 <0.0001 0.50

Quadratic (1, 123) 81.89 <0.0001 0.40
Cubic (1, 123) 50.94 <0.0001 0.29

9 Fixation–D70 MeanBOLD LV2 brain score Linear (1, 123) 2.71 0.10 0.02
Quadratic (1, 123) 0.33 0.57 0.00
Cubic (1, 123) 0.22 0.64 0.00
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7). Regions with declining variability as difficulty increased
from D20 included the inferior frontal gyrus, calcarine gyrus,
and medial and lateral temporal regions. See Supplementary
Table S1 for cluster maxima, MNI coordinates, peak BSRs, and
cluster sizes for our standard threshold (BSR = 3.00) model.

Further, because PLS highlights relative changes in signal
variability across conditions, it is important also to quantify the
magnitude of within-person change in signal variability. Re-
markably, the average between-subject magnitude of SDBOLD

decrease from D20 (the peak of signal variability) to D70 (the
trough) was 11.2% (SD = 3.6%), with some voxels decreasing
by as much as 26.4%.

Examination of meanBOLD Effects
A task PLS analysis of mean brain signal across all conditions
revealed 2 robust LVs. In clear contrast to our SDBOLD contrast
and spatial pattern, a largely “task negative” (at fixation) versus
“task positive” (all other conditions) contrast resulted for LV1,
accounting for the majority of variance (singular value = 25.30,
crossblock covariance = 70.51%, permuted P < 0.0001); see
Figure 4a for a plot of brain scores across conditions, and
Figure 4b for its accompanying spatial pattern. Characteristic
task negative regions (shown in blue) were more active at fix-
ation (e.g., medial prefrontal, posterior cingulate/precuneus)
than on task, whereas task positive regions (e.g., inferior
frontal gyrus (p. opercularis), inferior parietal lobule, middle
and dorsolateral PFC; shown in yellow/red) were more active
on task than during fixation. Subsequent repeated-measures
tests of LV1 brain scores revealed both linear, quadratic, and
cubic effects (see Table 1, model 8).

LV2 (see Fig. 4c,d) revealed a modest contrast that largely
captured subtle differences between D0, D20, and D30, and
corresponded to a much sparser spatial pattern (singular
value = 9.77, crossblock covariance = 10.53%, permuted
P = 0.01). See Supplementary Table S2 for cluster maxima,
MNI coordinates, peak BSRs, and cluster sizes for LV1 and LV2

results. Follow-up repeated-measures tests of LV2 brain scores
revealed only a marginal linear trend (see Table 1, model 9).

Linking SDBOLD and Task Performance, and
Comparisons to meanBOLD

Next, we examined whether SDBOLD brain scores from our PLS
model above (see Fig. 3a) covaried with cognitive perform-
ance across the 7 face degradation conditions using mixed
modeling. To avoid conflating levels of data aggregation when
linking brain and behavior in our parametric task design, we
simultaneously modeled between-subject (e.g., do higher
levels of SDBOLD covary with higher levels of performance?)
and within-subject (e.g., do changes in SDBOLD across con-
ditions covary with changes in performance?) effects in
relation to 1) accuracy, 2) meanRT, and 3) ISDRT in 3 separate
model runs. To compare the relative predictive power of
SDBOLD and meanBOLD brain scores, we also simultaneously
modeled between- and within-subject effects for meanBOLD in
each model run (from LV1, which was by far the strongest
mean signal-based LV accounting for the vast majority of cross-
block covariance; LV2 brain scores offered no predictive utility,
all Ps > 0.25).

Our first model results (D0 through D70 conditions) indi-
cated reliable within-person relations between SDBOLD and
accuracy and between SDBOLD and meanRT (i.e., within-person
reductions in signal variability followed poorer accuracy and
longer meanRT within-person; see Table 2); meanBOLD held no
predictive power in any model. We also ran a second set of
models using data only from D20 to D70, to test the apparently
linear change seen across these conditions in both SDBOLD (see
Fig. 3a) and meanBOLD (see Fig. 4a) brain scores. For both
brain measures, this should represent their best chance of relat-
ing to notable linear changes in task performance across con-
ditions noted in Figure 1. Model results remained similar to the
D0–D70 models (i.e., SDBOLD covaried with accuracy and
meanRT within-person; meanBOLD had no predictive impact),

Figure 3. SDBOLD multivariate analyses. (a) Contrast expressing differences across all conditions. (b) Spatial pattern expressing the contrast in (a). The effect was such that higher
brain scores reflected higher signal variability in yellow/red regions. Error bars represent bootstrapped 95% confidence intervals. Statistical robustness (BSR, or bootstrap ratio)
increases from red to yellow in (b).
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although robust SDBOLD effects were somewhat stronger in this
model (see Table 2).

Further Comparison of SDBOLD andMeanBOLD

From our SDBOLD and meanBOLD models, it is clear that several
statistical and spatial differences exist in the LVs that meet our
resampling-based thresholds, and exist in relation to cognitive
performance. We explored a more direct examination of this
lack of relation (i.e., lack of robust contrast similarity and
spatial overlap) between SDBOLD and meanBOLD brain
measures by comparing all meanBOLD voxel data (i.e.,
meanBOLD-based preprocessed data for each voxel) with all
SDBOLD voxel data (i.e., SDBOLD-based preprocessed data for

each voxel) across subjects. Such an analysis should produce
results unbiased by any particular SVD or by choices of explicit
contrasts that could be fit. In our data, there were 14 346
voxels/subject/condition/brain measure; with 18 subjects and
8 conditions (i.e., fixation, D0, D20–D70), this provided
2 065 824 data points per brain measure for comparison.
Despite massive power to overfit, and in line with our previous
work (Garrett et al. 2010, 2011, 2013), there was no notable
relation between the 2 brain measures across our sample (e.g.,
linear r = 0.07). We present these data (Fig. 5a) as a density-
weighted scatter plot. Because of the number of data points
examined in only 2 dimensions (2D), massive numbers of data
points will overlap in a standard scatter plot, potentially

Figure 4. MeanBOLD multivariate analyses. (a) Contrast expressing differences across all conditions for latent variable (LV) 1. (b) Spatial pattern expressing the contrast in (a). Here,
higher brain scores (on task) reflected higher meanBOLD in yellow/red regions and lower meanBOLD in blue regions (and vice versa for fixation). (c) Contrast expressing differences
across all conditions for LV2. (d) Spatial pattern expressing the contrast in (c). Here, higher brain scores reflect greater meanBOLD activation in yellow/red regions. Error bars represent
bootstrapped 95% confidence intervals. Statistical robustness (BSR, or bootstrap ratio) increases from red to yellow in (a) and (b), and from dark to light blue in (b).
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disguising where the majority of the data lie within the scatter.
Density-weighting utilizes the color spectrum to help visualize
such high volume data.

We further examined the relation between meanBOLD and
SDBOLD by calculating 2 additional measures of SDBOLD. One
possible source of differences between meanBOLD and SDBOLD

measures in our data could be that our meanBOLD measure is
calculated in percent change metric (from initial block scan)
and our SDBOLD measure is not. Instead, we typically block
center our trial data within-person prior to calculating SDBOLD

to account for any low-frequency drift effects (see Materials
and Methods section for details). Our decision to calculate
SDBOLD in this way, rather than by using a percent change
metric, theoretically allows our current and past results to be
more comparable with work in which a reference condition
does not exist (e.g., resting-state research). However, it is not
yet known whether this choice introduces differences between
meanBOLD and SDBOLD measures. To test this, we calculated 2
different percent change-based SDBOLD measures: 1) using the
block mean as the anchor point for block data (i.e.,
100 × [block scan− block mean]/block mean), and taking the
SD over all concatenated blocks for each condition; and 2)
using the initial block scan as the anchor point for block data
(i.e., 100× [block scan− initial block scan]/initial block scan),
and taking the SD over all concatenated blocks for each con-
dition. The first measure is the percent change equivalent of
our typical SDBOLD measure, and the second measure rep-
resents SD values calculated using exactly the same trial data
calculation we use prior to computing our meanBOLD measure
(see Materials and Methods section). Regardless, relations
between meanBOLD and our 2 alternative SDBOLD measures
were equally weak (e.g., linear r = 0.05 and r = 0.04, respect-
ively; see Fig. 5b,c for density-weighted scatter plots).

From these additional analyses, it becomes clearer why
spatial and statistical differences may exist across meanBOLD

and SDBOLD measures in our current results. Dimensionality
reduction (and subsequent relations to cognitive performance)

cannot at all be assumed to produce similar findings across
meanBOLD and SDBOLD measures in our data. There were no
noteworthy relations between the 2 measures across voxels,
subjects, and conditions, no matter how we calculated SDBOLD.

Discussion

In the present study, our primary focus was whether BOLD
variability could be “tuned” via parametric manipulation of
task difficulty, and in turn, whether task-based modulations in
SDBOLD would covary with modulations in behavioral perform-
ance. We confirmed the presence of a robust difference in
signal variability across fixation and our 7 face degradation
conditions. Although fixation and D0 (the easiest performance
condition in which no noise was applied to any face images)
exhibited similar levels of SDBOLD, a sizable increase in
SDBOLD occurred at D20 that then decreased to D70. Interest-
ingly, a unidirectional pattern of variability existed across brain
regions, regardless of threshold level; SDBOLD was highest at
D20, and variability levels only decreased with increasing task
difficulty (an average 11.32% decrease in SDBOLD by D70)
across a host of regions. Conversely, our meanBOLD-based
analysis of all conditions largely revealed a typical “task nega-
tive” (fixation-based, default mode-type activation) versus
“task positive” contrast.

We then found reliable within-person covariation between
lower SDBOLD and decreasing accuracy and longer meanRT,
thus expanding previous work indicating robust relations
between brain signal variability and behavioral performance
(McIntosh et al. 2008; Misic et al. 2010; Garrett et al. 2011,
2013; Garrett, Samanez-Larkin et al. 2013) and further support-
ing the functional implications of variability levels in a variety
of brain regions. Notably, our results were reliable within a
sample of only healthy young adults. Most previous studies of
neuroimaging-based signal variability have focused largely on
more heterogeneous samples to achieve effects of interest (e.
g., maturation, aging, clinical populations; McIntosh et al.

Table 2
Mixed models linking within- and between-subjects brain effects to task performance

Model Conditions Dependent variable Predictor df (num, denom) t P Partial η2

1 D0–D70 Accuracy SDBOLD (w/in subjects) (1, 106) 3.03 <0.01 0.08
SDBOLD (b/w subjects) (1, 15) 0.21 0.84 0.00
MeanBOLD (w/in subjects) (1, 106) −0.84 0.40 0.01
MeanBOLD (b/w subjects) (1, 15) 1.56 0.14 0.02

2 D0–D70 MeanRT SDBOLD (w/in subjects) (1, 106) −3.30 <0.001 0.09
SDBOLD (b/w subjects) (1, 15) 0.66 0.52 0.00
MeanBOLD (w/in subjects) (1, 106) 1.44 0.15 0.02
MeanBOLD (b/w subjects) (1, 15) −0.24 0.81 0.00

3 D0–D70 ISDRT SDBOLD (w/in subjects) (1, 106) −0.26 0.79 0.00
SDBOLD (b/w subjects) (1, 15) 1.21 0.25 0.01
MeanBOLD (w/in subjects) (1, 106) 1.80 0.08 0.03
MeanBOLD (b/w subjects) (1, 15) −0.46 0.65 0.00

4 D20–D70 Accuracy SDBOLD (w/in subjects) (1, 88) 3.47 <0.001 0.12
SDBOLD (b/w subjects) (1, 15) 0.42 0.68 0.00
MeanBOLD (w/in subjects) (1, 88) −1.03 0.30 0.01
MeanBOLD (b/w subjects) (1, 15) 2.00 0.06 0.04

5 D20–D70 MeanRT SDBOLD (w/in subjects) (1, 88) −4.38 <0.0001 0.18
SDBOLD (b/w subjects) (1, 15) 0.50 0.63 0.00
MeanBOLD (w/in subjects) (1, 88) 1.67 0.10 0.03
MeanBOLD (b/w subjects) (1, 15) −0.29 0.78 0.00

6 D20–D70 ISDRT SDBOLD (w/in subjects) (1, 88) −0.99 0.32 0.01
SDBOLD (b/w subjects) (1, 15) 1.17 0.26 0.01
MeanBOLD (w/in subjects) (1, 88) 1.41 0.16 0.02
MeanBOLD (b/w subjects) (1, 15) −0.67 0.52 0.00

Note: Effects in bold font are statistically significant.
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2008; Garrett et al. 2010, 2011, 2013; Misic et al. 2010; Vakorin
et al. 2011; Raja Beharelle et al. 2012; Garrett, Samanez-Larkin
et al. 2013). Our current results thus greatly strengthen the
future applicability of signal variability measures in more
homogeneous, constrained samples. However, the absence of
between-subject relations between SDBOLD and behavior in
our present study indicates that, in future work, sample hom-
ogeneity may limit SDBOLD-behavior relations primarily to the
within-subject level. In any case, convergent with our first
paper on BOLD variability (Garrett et al. 2010), meanBOLD pro-
vided no unique between- or within-subject effects over and
above SDBOLD, thus further supporting the utility of future
examinations of signal variability in relation to cognition.

Finally, by plotting all voxel data across subjects and con-
ditions, we revealed largely spherical relations between

meanBOLD and SDBOLD. Essentially, little can be learned or pre-
sumed about SDBOLD and its corresponding spatial patterns by
knowing something about meanBOLD; they are simply very
different measures of brain function.

ACloser Look at our SDBOLD andMeanBOLD Patterns
Although we did not explicitly measure them via a functional
localizer scan, key face processing areas such as the fusiform
face area and occipital face area (e.g., Kanwisher et al. 1997;
Grady et al. 2000; Pessoa et al. 2002; Pitcher et al. 2011) were
noted within our meanBOLD task PLS model, which revealed
that these regions were more active on task than at fixation
(see Fig. 4b). However, none of the prototypical face proces-
sing areas showed robust SDBOLD changes. The fact that typical
mean-based face-processing regions did not appear in our
SDBOLD spatial pattern is not unexpected; the current results,
and our previous work (Garrett et al. 2010, 2011), suggest that
mean- and variability-based spatial patterns are largely nono-
verlapping. Beyond face-processing regions, SDBOLD areas that
decreased with task difficulty were most prominent in the right
calcarine gyrus, inferior frontal gyrus, rolandic operculum, and
middle temporal gyrus. Notably, our largest cluster (calcarine
gyrus peak) extended broadly into the precuneus/posterior
cingulate. Increasing evidence suggests that these latter
regions are not only prominent hubs of functional and structur-
al connectivity in the human brain (Hagmann et al. 2008, 2010;
Buckner et al. 2009), they can also serve as key centers for task
and group related signal variability effects (Misic et al. 2010,
2011; Raja Beharelle et al. 2012), perhaps owing to the heigh-
tened information flow characteristic of such hub regions
(Misic et al. 2011). In addition, our current spatial pattern of
task-modulated signal variability (see Fig. 3b) was much
broader than would be expected based on network centrality
alone, with our highest peak regions existing outside of the
precuneus/posterior cingulate. This suggests that incremental
task demands can modulate brain signal variability in a variety
of regions over and above what may be considered central hub-
based information flow.

Interpreting Task-Related Modulations in Signal
Variability
In the present study, we found that SDBOLD increased from fix-
ation only once noise was applied to our stimuli (D20). As the
quality of incoming stimuli further degraded (toward D70),
our subjects became less variable in their hemodynamic
responses. First, we address points regarding the early part of
the “tuning curve” (fixation, D20/30/40; see Fig. 3a). In a pre-
vious study (Garrett et al. 2013), we found similar broad-scale
within-person increases in SDBOLD from internal (fixation) to
externally oriented cognitive tasks (visual tasks using gabor
patch stimuli; constrained within-person at ∼80% accuracy). In
that study, we argued that unidirectional increases in SDBOLD

from fixation to task could reflect: 1) greater required dynamic
range on task (greater range of responses required to process
varying versus static incoming stimuli); 2) stimulus uncertainty
(would naturally be greater on task vs. at fixation, perhaps
yielding greater response variability); and 3) “kinetic energy”
(greater variability can allow the brain to transition from state
to state to process differentiated and ongoing demands). In the
present study, we indeed replicate this general upward trajec-
tory from fixation to D20/30/40, supporting our previous

Figure 5. Lack of relations between meanBOLD and 3 types of SDBOLD. SDBOLD in (a)
represents our typical method of calculation. In (b), SDBOLD is calculated on percent
change data derived from using block means as the anchor points for trial data (i.e., “%
change 1”). In (c), SDBOLD is calculated on percent change data derived from using
initial block scans as the anchor points for trial data (i.e., “% change 2”). This latter
calculation on trial data is identical to what we used prior to calculating MeanBOLD (%
change). In each figure, data clouds represent all voxels per subject and condition
(14 346 voxels × 18 subjects × 8 conditions = 2 065 824 data points). Color bars
reflect density within the data clouds.
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work in younger and older adults (Garrett et al. 2013), as well
as other studies (Wutte et al. 2011).

However, why would fixation not differ from D0 (an exter-
nally oriented task)? One possibility is that dynamic range,
stimulus uncertainty, and/or kinetic energy are simply less
present, required, or invoked when a task is too easy. Our D0
condition only required participants to judge whether 2 nonde-
graded faces were of the same person or not; unsurprisingly,
all D0 behavioral measures were at their highest level, and
accuracy was near ceiling. Previous work suggests that the
level of transition from rest to task modes depends upon the
difficulty of tasks administered; easier tasks do not easily force
the brain out of resting state (McKiernan et al. 2003), and this
plausibly could have occurred for D0 in the present study.
Further, the human brain’s natural affinity to process faces in
their natural, upright orientation (as in the current D0 con-
dition) may require relatively few resources (e.g., Yin 1969;
Rhodes 1993; Tanaka and Farah 1993; Farah et al. 1995; Freire
and Lee 2001; Mondloch et al. 2002), resulting in no fixation to
D0-related change in SDBOLD level.

With regard to the reduction in SDBOLD from D20 to D70,
there are several potential reasons this could occur. In general,
greater moment-to-moment brain signal variability may serve
as a proxy measure for a brain at the “edge of criticality”
between various potential brain states (Ghosh et al. 2008;
Deco et al. 2009, 2011), and this criticality can represent an
optimal dynamic range/variability of possible responses and
information transfer within networks (Shew et al. 2009, 2011;
Yang et al. 2012). Computational work suggests that when
variability is too low however, there is a reduced capacity for
the brain to explore its dynamic range of possible brain states
to converge on optimal neural responses (Ghosh et al. 2008;
Deco et al. 2009, 2011; McIntosh et al. 2010). In the current
study, we found that SDBOLD decreased from D20 with increas-
ing task difficulty, suggesting that the ability to vary between
brain states across moments (insofar as signal variability serves
as a proxy for such a phenomenon) modulates with even incre-
mental changes in task demand. At any given moment, the
more difficult a task, the more brain resources are engaged,
leaving fewer resources available to process other potential
tasks that may arise in one’s environment or to transition to
other brain states when required. In this way, the brain may be
less able to spontaneously explore or even access its full
dynamic repertoire (Ghosh et al. 2008; Deco et al. 2009, 2011;
McIntosh et al. 2010) when forced to its processing limits, re-
presenting reduced signal variability from moment to moment,
and potentially a compressed or constrained multistable attrac-
tor landscape (Deco and Jirsa 2012). Accordingly, in simple
terms, signal variability may be analogous to the neural
“degrees of freedom” available in the human brain at any given
moment.

Thus, we refine our previous notion of condition-modulated
signal variability (Garrett et al. 2013) as now encompassing a
combination of internal vs. external cognitive demands, absol-
ute level of cognitive demand, and finite processing resources.
Future parametric work in other task domains is required to
address our various points made here, and such work would
be particularly informative should it include both signal var-
iance measures and more dynamic measures of brain signal, as
experimental designs allow (e.g., power-law scaling, Hurst ex-
ponents, entropy measures; McIntosh et al. 2008; He et al.
2010, 2011; Misic et al. 2010, 2011; Vakorin et al. 2011).

Regardless of interpretation, SDBOLD appears incrementally
modifiable via the experimental control of targeted cognitive
processes, and outweighs meanBOLD in predicting cognitive
performance. Critically, our findings highlight that signal
stabilization (He 2011, 2013) and expansion (Wutte et al. 2011;
Garrett et al. 2013) from fixation to task can occur in the same
brain, depending on exactly what it is being asked to do
(Garrett, Samanez-Larkin et al. 2013).

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/
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