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Summary

Intelligent animals devote much time and energy to exploring and obtaining information, but the

underlying mechanisms are poorly understood. We review recent developments on this topic that

have emerged from the traditionally separate fields of machine learning, eye movements in natural

behavior, and studies of curiosity in psychology and neuroscience. These studies show that

exploration may be guided by a family of mechanisms that range from automatic biases toward

novelty or surprise, to systematic search for learning progress and information gain in curiosity-

driven behavior. In addition, eye movements reflect visual information search in multiple

conditions and are amenable for cellular-level investigations, suggesting that the oculomotor

system is an excellent model system for understanding information sampling mechanisms.

Information seeking in machine learning, psychology and neuroscience

For better or for worse, during our limited existence on earth we humans have altered the

face of the world. We invented electricity, submarines and airplanes, and we developed

farming and medicine to an extent that has massively changed our lives. There is little doubt

that these extraordinary advances are made possible by our cognitive structure, particularly

the ability to reason and build causal models of external events. In addition, we would argue,

this extraordinary dynamism is made possible by our high degree of curiosity - the burning

desire to know and understand. Many animals, and especially humans, seem constantly to

seek knowledge and information in behaviors ranging from the very small (such as looking

at a new storefront) to the very elaborate and sustained (such as reading a novel or carrying
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out research). Moreover, especially in humans, the search for information can be

independent of a foreseeable profit, as if learning were reinforcing in and of itself.

Despite the importance of information seeking for intelligent behavior, our understanding of

its mechanisms is in its infancy. In psychology, research on curiosity surged during the

1960s and 1970s and subsequently waned (for a comprehensive review, see (Lowenstein

1994)), and shows a mild revival in neuroscience in recent years (Kang, Hsu et al. 2009;

Jepma, Verdonschot et al. 2012). Our focus here is on evaluating recent developments

related to this question from three lines of investigation that have remained largely separate

– namely, studies of active learning and exploration in the machine learning and robotics

fields, studies of eye movements in natural behavior, and studies of curiosity in psychology

and neuroscience. As we describe below, although using different terminology and methods,

these three lines of research grapple with strikingly similar questions and propose

overlapping mechanisms. We suggest that achieving a closer integration holds much

promise for expanding this research field.

Information seeking obeys the imperative to reduce uncertainty and can be

extrinsically or intrinsically motivated

Multiple paradigms have been devoted to exploration, and have used a common definition

of this process as the choice of actions with the goal of obtaining information. Although

exploratory actions can involve physical acts, they are distinct from other motor acts in that

their primary goal is not to exert force on the world, but to alter the observer’s epistemic

state. For instance, when we turn to look at a new storefront, the goal of the orienting action

is not to affect a change in the external world (as we would, for instance, when we reach and

grasp an apple) but to obtain information. Thus, the key questions we have to address when

studying exploration and information seeking pertain to the ways in which observers handle

their own epistemic states. Specifically, as we will see below, information seeking in its

many manifestations is related to the ability of an observer to estimate his or her uncertainty

and to find strategies that reduce that uncertainty.

While information seeking is often geared toward uncertainty reduction, the motivations

behind this process can be diverse and derive from extrinsic or intrinsic factors. In

extrinsically motivated contexts, information gathering is a means to an end – i.e., it is used

to maximize the agent’s progress toward a separate goal. Paradigmatic examples of this type

of sampling are the eye movements that subjects make in natural behavior – such as

glancing at the traffic light at a busy intersection (Tatler, Hayhoe et al. 2011), an example

we discuss in detail below (Fig. 1A). In reinforcement learning (RL) terms, task-related

information sampling is in this case a feature of pure exploitation. The agent is engaged in a

task that seeks to maximize an extrinsic reward (e.g., food or money) and information

gathering is an intermediate step in attaining this reward. A more complex form of this

process arises while learning a task - when the agent wishes to reach a goal but must explore

in order to discover an appropriate strategy for reaching that goal (for instance, learning to

drive or to play chess).
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In intrinsically motivated contexts, on the other hand, the search for information is a goal in

itself – a process we would intuitively call “curiosity” or “interest”. The fact that animals,

and particularly humans, seem avidly to seek out information without an apparent ulterior

motive suggests that the brain generates intrinsic rewards that assign value to information,

and raises complex questions regarding the benefits and computations of such rewards.

In the following sections we first discuss task-defined forms of information search and their

links with eye movements and attention, followed by the more complex curiosity-like

mechanisms.

Task-directed search for information through the prism of eye movements

Information sampling while executing a known task

Computational studies have shown that, when an agent knows a task, the controllers

implementing that task can select actions that harvest immediate rewards, or actions that

have indirect benefits by facilitating future actions. For example, in order to get a cookie

from a high shelf, you may first pull up a chair and climb on it before reaching and grasping

the cookie. Information gathering actions are a special type of intermediate step that obey

the imperative to reduce uncertainty and adjudicate among competing interpretations. As we

discuss below (Fig. 1A) a driver who seeks to arrive safely home may glance at a traffic

light before crossing an intersection, as an intermediate step that reduces uncertainty and

increases the chance of success of his future actions.

Many computational approaches can model this type of information seeking in a sound way,

and a commonly used one relies on partially-observable Markov decision processes

(POMDPs)(Kaelbling, Littman et al. 1998; Dayan and Daw 2008) (see (Bialek, Nemenman

et al. 2001; Singh, James et al. 2004) for alternative representations). A POMDP is a

mathematical formalism that describes a task as a series of states, each with its set of

possible actions and immediate or future outcomes (rewards or punishments). The states are

“partially observable”, in the sense that their identities are not deterministic but described by

probability distributions, making POMDPs useful tools for measuring uncertainty and the

value of new information.

For purposes of illustration, let us consider the example we mentioned above – the task of

driving safely across an intersection (Fig. 1A). In a POMDP, the agent performing the task

would be described as starting in an initial state (e.g., the intersection, denoted by xa) from

which he can choose two possible actions, S (stop) or G (go). However, the agent has

uncertainty about the true nature of state xa,. For example, xa may be a state where only

stopping receives a reward (p(rS) = 1 and p(rG) = 0) or one where only going receives a

reward (p(rG) = 1 and p(rS) = 0). If these two states are equally likely, the agent has maximal

uncertainty and can only expect a 0.5 rate of reward no matter which action he takes.

However, rather than acting directly under this uncertainty, the agent can choose to obtain

more information through an intermediate “observing action” such as looking at a traffic

light. This action is modeled as a transition to a different state, xb, where the probability

distributions are more clearly separated, and the agent can be certain whether the optimal

action is to stop (the light is red and p(rS) = 1, bottom panel), or to proceed (the light is
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green and p(rG) = 1, top panel). Regardless of which alternative turns out to be correct, the

agent has a much higher likelihood of obtaining a reward after rather than before having

taken the observing action.

It is clear from this POMDP-based analysis that, as an intermediate step in a sequence, an

observing action is only valuable if it increases the likelihood of reward of subsequent

actions. In the short term, the observing action delivers no reward but has a cost in terms of

the time and effort needed to discriminate the information (indicated by ro < 0 in Fig. 1A).

This cost becomes worthwhile only if the observing action transitions the agent to a better

state - i.e., if the cumulative future value of state xb exceeds that of state xa by a sufficient

amount. Balancing the costs and benefits of information sampling can also be cast in an

information theoretic perspective (Tishby and Polani 2011).

Whether or not information sampling has positive value depends on two factors. First, the

observer must know the significance of the information and use it to plan future actions. In

the traffic example, glancing at the light is only valuable if the observer understands its

significance and if he takes the appropriate action (e.g., if he steps on the brake at the red

light). This makes the strong computational point that uncertainty and information value are

not defined unless observers have prior knowledge of the links between stimuli and actions.

A second factor that determines information value is the observer’s momentary uncertainty.

Although in a given task uncertainty is typically associated with specific junctures (e.g.,

when driving one generally expects high uncertainty at an intersection) this may quickly

change depending on the observer’s momentary state. If, for example, the driver looked

ahead and saw that there was a car in the intersection, his uncertainty would be resolved at

this point, rendering the light redundant and reducing the value of looking at it. This raises

the question (which has not been so far explored in empirical investigations) to what extent

informational actions such as task-related eye movements are habitual, immutable aspects of

a task and to what extent they rapidly respond to changing epistemic conditions (Box 1).

Information sampling while searching for a task strategy

Strategies for solving a task, including those for generating informational actions, are not

known in advance but must also be learnt. This implies an exploratory process whereby the

learner experiments, selects and tries to improve alternative strategies. For instance, when

learning how to drive one must also learn where to look to efficiently sample information,

and when learning chess one must discover which strategy is most powerful in a given

setting.

Deciding how to explore optimally when searching for strategy is a very difficult question,

and is almost intractable in the general case. This question has been tackled in machine

learning for individual tasks as an optimization problem, where the task is modeled as a cost

function and the system searches for the strategy that minimizes this function. The search

may use approaches ranging from reinforcement learning (Kaelbling, Littman et al. 1998;

Sutton and Barto 1998; Jens Kober 2012), to stochastic optimization (Spall 2005),

evolutionary techniques (Goldberg 1989), or Bayesian optimization (Jones, Schonlau et al.

1998). It may operate in model-based approaches, by learning a model of the world
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dynamics and using it to plan a solution (Brafman and Tennenholtz 2003), or it may directly

optimize parameters of a solution in model-free approaches (Sutton, McAllester et al. 1999).

Approximate general methods have been proposed in reinforcement learning, which are

based on random action selection, or give “novelty” or “uncertainty” bonuses (in addition to

the task-specific reward) for collecting data in regions that have not been recently visited, or

that have a high expected gain in information (Sutton ; Dayan and Sejnowski 1996; Sutton

and Barto 1998; Kearns and Singh 2002; Brafman and Tennenholtz 2003; Kolter and Ng;

Lopes, Lang et al.) (we discuss these factors in more detail in the following section). Yet

another approach to strategy learning involves generalizing from previously learnt

circumstances (e.g., if I previously found food in a supermarket, I will look for a

supermarket if I am hungry in a new town) (Dayan 2013). Many of these methods can be

seen as a POMDP whose uncertainty is not on the task-relevant state but on the task

parameters themselves. It is important to note that, while these processes require significant

exploration, they are goal directed in the sense that they seek to maximize a separate, or

extrinsic, reward (e.g., drive successfully to a destination).

Eye movements reflect active information search

In foveate animals such as humans and monkeys, visual information is sampled by means of

eye movements, and in particular saccades – rapid eye movements that occur several times a

second and point the fovea to targets of interest. While some empirical and computational

approaches have portrayed vision as starting with a passive input stage that simply registers

the available information (Blake and Yuille 1992; Tsotsos 2011), the active control of eye

movements makes it clear that information sampling is a highly active process (Blake and

Yuille 1992; Tsotsos 2011). Far from being a passive recipient, the brain actively selects and

proactively seeks out the information it wishes to sample, and this active process has been

argued to play a key role in the construction of conscious perception (O'Regan 2011).

Converging evidence suggests that, when deployed in the service of a task, eye movements

may be explained by the simple imperative to sample information in order to reduce

uncertainty regarding future states (Tatler, Hayhoe et al. 2011; Friston and Ao 2012). In

well-practiced tasks that involve visuo-manual coordination (such as moving an object to a

target point) the eyes move ahead of the hand to critical locations such as potential collision

or target points, and wait there until the hand has cleared those locations (Johansson,

Westling et al. 2001) (Fig. 1B). Notably, the eyes never track the hand, which relies on

motor and proprioceptive guidance and, for short periods of time, follows a predictable path;

instead, they are strategically deployed to acquire new information. Additional evidence that

gaze is proactively guided by estimates of uncertainty comes from a virtual reality study

where groups of observers walked along a track (Jovancevic-Misic and Hayhoe 2009).

Subjects preferentially deployed gaze to oncoming pedestrians whose trajectory was

expected to be uncertain (i.e., who had a history of veering onto a collision course) relative

to those who had never shown such deviations. This suggests that the observers monitor the

uncertainty or predictability of external items and use these quantities proactively to deploy

gaze (i.e., before and regardless of an actual collision). Finally, the eye movements patterns

made while acquiring a task differ greatly from those made after learning (Sailer, Flanagan

et al. 2005; Land 2006), suggesting that eye movements are also coupled with exploring for
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a task strategy. These observations, together with the fact that eye movements are well

investigated at the single neuron level in experimental animals and use value-based decision

mechanisms (Kable and Glimcher 2009; Gottlieb 2012), suggest that the oculomotor system

may be an excellent model system for understanding information seeking in the context of a

task (Box 1).

Curiosity and autonomous exploration

While for task-related behaviors the goal of a task is known in advance and can be

quantified in terms of extrinsic rewards, the open-ended nature of curiosity-like behaviors

raises more difficult questions. To explain such behaviors and the high degree of motivation

associated with them, it seems necessary to assume that the brain generates intrinsic rewards

related to learning or acquiring information (Berlyne 1960). Some support for this idea

comes from the observation that the dopaminergic system, the brain’s chief reward system,

is sensitive to intrinsic rewards (Redgrave, Gurney et al. 2008), responds to anticipated

information about rewards in monkeys (Bromberg-Martin and Hikosaka 2009) and is

activated by paradigms that induce curiosity in humans (Kang, Hsu et al. 2009; Jepma,

Verdonschot et al. 2012). However, important questions remain about the nature of intrinsic

rewards at what David Marr would call the computational, representational and physical

levels of description (Marr 2010). At the computational level, it is not clear why the brain

should generate intrinsic motivation for learning - how such a motivation would benefit the

organism and what are the problems that it seeks to resolve. At the algorithmic and physical

levels, it is unclear how these rewards are calculated and how they are implemented in the

brain.

The benefits and challenges of information seeking

The most likely answer to the first, why question is that, by having an intrinsic motivation to

learn, agents can maximize their long-term evolutionary fitness in rapidly changing

environmental conditions (e.g., due to human social and cultural structures, which can

evolve much faster than the phylogenetic scale). In such a context, Singh et al. (Singh,

Lewis et al. 2010) have shown with computer simulations that even if the objective fitness/

reward function of an organism is to survive and reproduce, it may be more efficient to

evolve a control architecture that encodes an innate surrogate reward function rewarding

learning per se. The benefits of such a system arise because of the limited cognitive

capacities of the agent (i.e., its inability to solve the fitness function directly) (Sorg, Lewis et

al. 2010; Lehman and Stanley 2011; Sequeira, Melo et al. 2011) or because information or

skills that are not immediately useful may be re-used in the future. This idea resonates with

the free-energy principle, which states that the possession of a large array of skills can be

useful to avoid future surprises by “anticipating a changing and itinerant world” (Friston

2010; Friston, Thornton et al. 2012). In fact, it is possible to show that making the

environment predictable (through minimizing the dispersion of its hidden states) necessarily

entails actions that decrease uncertainty about future states (Friston, Thornton et al. 2012).

This idea also resonates with the notion of Gestalt psychologists that humans have a “need

for cognition” – i.e., an instinctive drive to make sense of external events that operates

automatically in mental processes ranging from visual segmentation to explicit inference and
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causal reasoning (Lowenstein 1994). In one way or another, all these formulations are

consistent with the idea that intrinsically motivated cognitive activities, including

information seeking, acquired value through long-term evolutionary selection in dynamic

conditions.

If we accept that learning for its own sake is evolutionarily adaptive, the question arises

regarding the challenges that such a system must solve. To appreciate the full scope of this

question, let us consider the challenges that are faced by a child who learns life skills

through an extended period of play and exploration (Weng, McClelland et al. 2001; Asada,

Hosoda et al. 2009; Oudeyer 2010; Lopes and Oudeyer 2012; Baldassare and Mirolli 2013).

One salient fact that emerges regarding this question is the sheer vastness of the learning

space, especially given the scarce time and energy available for learning. In the sensorimotor

domain alone, and in spite of significant innate constraints, the child needs to learn to

generate an enormous repertoire of movements by orchestrating multiple interdependent

muscles and joints that can be accessed at many hierarchical levels and interact in a

potentially infinite number of ways with a vast number of physical objects/situations

(Oudeyer, Baranes et al. 2013). Similarly in the cognitive domain, infants must acquire a

vast amount of factual knowledge, rules and social skills.

A second salient fact regarding this question is that, while sampling this very large space,

the child must avoid becoming trapped in unlearnable situations, i.e. where it cannot detect

regularities or improve. In stark distinction with controlled laboratory conditions where

subjects are given solvable tasks, in real world environments many of the activities that an

agent can choose are inherently unlearnable either because of the learner’s own limitations

or because of irreducible uncertainty in the problem itself. For instance, a child is bound to

fail if she tries to learn to run before learning to stand, and she is bound to fail if she tries to

predict the details of white noise pattern on a television screen. Thus, the challenge of an

information seeking mechanism is to learn efficiently a large repertoire of diverse skills

given its limited resources, and avoid being trapped in unlearnable situations.

A number of processes for open-ended exploration have been described in the literature,

which, as we describe below, have individual strengths and weaknesses and may act in

complementary fashion to accomplish these goals. We consider first heuristics based on

random action selection/novelty/surprise, followed by deliberate strategies for acquiring

knowledge and skills.

Randomness, novelty, surprise and uncertainty

In neuroscience research, the most commonly considered exploration strategies are based on

random action selection or automatic biases toward novel, surprising or uncertain events.

Sensory novelty, defined as a small number of stimulus exposures, is known to enhance

neural responses throughout visual, frontal and temporal areas (Ranganath and Rainer 2003)

and activate reward responsive dopamine-recipient areas. This is consistent with the

theoretical notion that novelty acts as an intrinsic reward for actions and states that had not

been recently explored or that produce high empirical prediction errors (Duzel, Bunzeck et

al. 2010). A more complex form of “contextual novelty” (also called surprise) has been

suggested to account for attentional attraction toward salient events (Boehnke, Berg et al.
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2011) and may be quantified using Bayesian inference as a difference between a prior and

posterior world model (Itti and Baldi 2009) or as a high prediction error for high-confidence

states (Oudeyer and Kaplan 2007). Computational models have also incorporated

uncertainty-based strategies, generating biases toward actions or states that have high

variance or entropy (Cohn, Ghahramani et al. 1996; Rothkopf and Ballard 2010).

As discussed above, actions driven by randomness, novelty, uncertainty or surprise are

valuable for allowing agents to discover new tasks. However, these actions have an

important limitation in that they do not guarantee that an agent will learn. The mere fact that

an event is novel or surprising does not guarantee that it contains regularities that are

detectable, generalizable or useful. Therefore, heuristics based on novelty can guide efficient

learning in small and closed spaces, where the number of tasks is small (Thrun 1995) but are

very inefficient in large open ended spaces, where they only allow the agent to collect very

sparse data and risk trapping him in unlearnable tasks (Oudeyer, Kaplan et al. 2007;

Oudeyer, Baranes et al. 2013; Schmidhuber 2013). This motivates the search for additional

solutions that use more targeted mechanisms designed to maximize learning per se.

Information gap hypothesis of curiosity

Based on a synthesis of psychological studies on curiosity and motivation, G.E. Lowenstein

proposed an “information gap” hypothesis to explain so-called “specific epistemic curiosity”

– an observer’s desire to learn about a specific topic (Lowenstein 1994). According to the

information gap theory, this type of curiosity arises because of a discrepancy between what

the observer knows and what he would like to know, where knowledge can be measured with

traditional measures of information. As a concrete illustration, consider a mystery novel

where the author initially introduces 10 suspects who are equally likely to have committed a

murder, and the reader’s goal is to identify the single, true culprit. The reader can be

described as wanting to move from a state of high entropy (or uncertainty, with 10 possible

alternative murderers) to one of low entropy (with a single culprit identified), and his

curiosity arises through his awareness of the difference between his current and goal

(reference) uncertainty states. Defined in this way, curiosity can be viewed as a deprivation

phenomenon that seeks to fill a need similar to other reference-point phenomena or

biological drives. Just as animals seek to fill gaps in their physical resources (e.g., energy,

sex or wealth) they seek to fill gaps in their knowledge by taking learning-oriented actions.

This brings us back again to the imperative to minimize uncertainty about the state of the

world, and suggests that this imperative is similar to a biological drive.

It is important to recognize, however, that, while biological drives are prompted by salient

and easily recognizable signs (e.g., somatic signals for hunger or sex), recognizing and

eliminating information gaps requires a radically different, knowledge-based mechanism.

First, the agent needs some prior knowledge in order to set the starting and the reference

points. When reading a novel, we cannot estimate the starting level of entropy unless we

have read the first few pages and acquired some information about the setting. Similarly, we

cannot set the reference point unless we know that mystery novels tell us about culprits

rather than, for example, the properties of DNA (meaning that we should define our

reference state in terms of the possible culprits). In other words, one cannot be curious about
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what one does not know, similar to the requirements for prior knowledge of stimulus-action

links that arise in eye movement control (Fig. 1). Second, to define an information gap one

has to monitor one’s level of uncertainty, again similar to eye movement control. Thus, the

information gap theory links the study of epistemically-based action systems with that of

motivated behaviors.

Exploration based on learning progress (LP)

Despite its considerable strengths, a potential limitation of the information gap hypothesis is

that agents may not be able to estimate the starting or desired levels of uncertainty given

their necessarily limited knowledge of the broader context. In scientific research for

example, the results of an experiment typically open up new questions that had not been

foreseen, and it is not possible to estimate in advance what is the current entropy and the

final, desired, state. Thus, a difficult question posed by this theory is how the brain can

define information gaps in general situations.

An alternative mechanism for targeted learning has been proposed in the field of

developmental robotics, which eschews this difficulty by tracking an agent’s local learning

progress without setting an absolute goal (Oudeyer, Kaplan et al. 2007; Oudeyer, Baranes et

al. 2013; Schmidhuber 2013) (following an early formulation presented in (Schmidhuber)).

The central objective of developmental robotics is to design agents that can explore in open-

ended environments and develop autonomously without a pre-programmed trajectory, based

on their intrinsic interest. A system that has been particularly successful in this regard

explicitly measures the agent’s learning progress in an activity (defined as an improvement

in its predictions of the consequences of its actions (Oudeyer, Kaplan et al. 2007) or in its

ability to solve self-generated problems over time (Baranes and Oudeyer 2013; Srivastava,

Steunebrink et al. 2013)), and rewards activities in proportion to their ability to produce

learning progress (see legend to Fig. 2). Similar to an information gap mechanism, this

system produces a targeted search for information that drives the agent to learn. By using a

local measure of learning the system avoids difficulties associated with defining an absolute

(and potentially unknowable) competence or epistemic goal.

This progress-based approach has been used most successfully in real-world situations. First,

it allows robots to efficiently learn repertoires of skills in high dimensions and under strong

time constraints and to avoid unfruitful activities that are either well learnt and trivial, or

which are random and unlearnable (L. Pape 2012; Ngo, Luciw et al. 2012; Baranes and

Oudeyer 2013; Nguyen and Oudeyer 2013). Second, the system self-organizes development

and learning trajectories that share fundamental qualitative properties with infant

development, in particular the gradual shift of interest from simpler to more complex skills

(Oudeyer and Kaplan 2006; Oudeyer, Kaplan et al. 2007; Kaplan and Oudeyer 2011;

Moulin-Frier and Oudeyer 2012) (Fig. 2). This led to the hypothesis that some of the

progressions in infant sensorimotor development may not be pre-programmed but emerge

from the interaction of intrinsically motivated learning and the physical properties of the

body and the environment (Smith 2003; Kaplan and Oudeyer 2007; Oudeyer, Kaplan et al.

2007). Initially applied to sensorimotor tasks such as object manipulation, the approach was

also shown to spontaneously lead a robot to discover vocal communication with a peer
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(while traversing stages of babbling that resemble those of infants as a consequence of its

drive to explore situations which the learner estimates to be learnable (Oudeyer and Kaplan

2006; Moulin-Frier and Oudeyer 2012)).

In sum, a system based on learning progress holds promise for achieving efficient,

intrinsically motivated exploration in large open-ended spaces. It must be noted however

that, while computationally powerful, this approach entails a complex meta-cognitive

architecture for monitoring learning progress that still awaits empirical verification. Possible

candidates for such a system include frontal systems that encode the uncertainty or

confidence in humans and monkeys (Fleming, Weil et al. 2010; Fleming, Huijgen et al.

2012; De Martino, Fleming et al. 2013) or which respond selectively for behavioral change

or the beginning of exploratory episodes (Isoda and Hikosaka 2007; Quilodran, Rothe et al.

2008). However, a quantitative response to learning progress (which is distinct from phasic

responses to novelty, surprise or arousal) has not been demonstrated in empirical

investigations.

Conclusions

While the question of active exploration is vast and cannot be exhaustively covered in a

single review, we attempted to outline a few key ideas that are relevant to this topic from

psychology, neuroscience and the machine learning fields. Three main themes emerge from

the review. First, understanding information seeking requires that we understand how agents

monitor their own competence and epistemic states, and specifically how they estimate their

uncertainty and generate strategies for reducing that uncertainty. Second, this question

requires that we understand the nature of intrinsic rewards that motivate information seeking

and learning. Finally, eye movements are natural indicators of the brain’s active information

search. By virtue of their amenability to neurophysiological investigations, may be an

excellent model system for tackling this question, especially if studied in conjunction with

computational approaches and the brain’s intrinsic reward and cognitive control

mechanisms.

Acknowledgments

Fulbright visiting scholar grant (AB), HSFP Cross-Disciplinary Fellowship LT000250 (AB), ERC Starting Grant
EXPLORERS 240007 (PYO), Inria Neurocuriosity grant (JG, PYO, ML, AB). We thank Andy Barto and two
anonymous reviewers for their insightful comments on this paper.

References

Asada M, Hosoda K, et al. Cognitive developmental robotics: A survey. IEEE Trans. Autonomous
Mental Development. 2009; 1(1)

Bach DR, Dolan RJ. Knowing how much you don't know: a neural organization of uncertainty
estimates. Nat Rev Neurosci. 2012; 13(8):572–586. [PubMed: 22781958]

Baldassare, G.; Mirolli, M. Intrinsically motivated learning in natural and artificial systems. Berlin:
Springer-Verlag; 2013.

Baranes A, Oudeyer PY. Active learning of inverse models with intrinsically motivated goal
exploration in robots. Robotics and Autonomous Systems. 2013; 61(1):49–73.

Berlyne, D. Conflict, arousal and curiosity. McGraw-Hill; 1960.

Gottlieb et al. Page 10

Trends Cogn Sci. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Bialek W, Nemenman I, et al. Predictability, complexity, and learning. Neural Computation. 2001;
13(11):2409–2463. [PubMed: 11674845]

Blake, A.; Yuille, AAL. Active Vision. Mit Press; 1992.

Boehnke SE, Berg DJ, et al. Visual adaptation and novelty responses in the superior colliculus. Eur J
Neurosci. 2011; 34(5):766–779. [PubMed: 21864319]

Brafman RI, Tennenholtz M. R-max-a general polynomial time algorithm for near-optimal
reinforcement learning. The Journal of Machine Learning Research. 2003; 3:213–231.

Bromberg-Martin ES, Hikosaka O. Midbrain dopamine neurons signal preference for advance
information about upcoming rewards. Neuron. 2009; 63(1):119–126. [PubMed: 19607797]

Cohn DA, Ghahramani Z, et al. Active learning with statistical models. J Artificial Intelligence
Research. 1996; 4:129–145.

Dayan, P. Intrinsically Motivated Learning in Natural and Artificial Systems. Springer; 2013.
Exploration from generalization mediated by multiple controllers; p. 73-91.

Dayan P, Daw ND. Decision theory, reinforcement learning, and the brain. Cogn Affect Behav
Neurosci. 2008; 8(4):429–453. [PubMed: 19033240]

Dayan P, Sejnowski TJ. Exploration bonuses and dual control. Machine Learning. 1996; 25(1):5–22.

De Martino B, Fleming SM, et al. Confidence in value-based choice. Nature Neuroscience. 2013;
16(1):105–110.

Ding L, Hikosaka O. Comparison of reward modulation in the frontal eye field and caudate of the
macaque. Journal of Neuroscience. 2006; 26(25):6695–6703. [PubMed: 16793877]

Duzel E, Bunzeck N, et al. Novelty-related motivation of anticipation and exploration by dopamine
(NOMAD): implications for healthy aging. Neurosci Biobehav Rev. 2010; 34(5):660–669.
[PubMed: 19715723]

Fleming SM, Huijgen J, et al. Prefrontal contributions to metacognition in perceptual decision making.
The Journal of Neuroscience. 2012; 32(18):6117–6125. [PubMed: 22553018]

Fleming SM, Weil RS, et al. Relating introspective accuracy to individual differences in brain
structure. Science. 2010; 329:1541–1543. [PubMed: 20847276]

Friston K. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience. 2010;
11(2):127–138.

Friston K, Ao P. Free energy, value, and attractors. Comput Math Methods Med. 2012; 2012:937860.
[PubMed: 22229042]

Friston K, Thornton C, et al. Free-energy minimization and the dark-room problem. Frontiers in
psychology. 2012; 3

Goldberg, DE. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley
Longman Publishing Co; 1989.

Gottlieb J. Attention, learning, and the value of information. Neuron. 2012; 76(2):281–295. [PubMed:
23083732]

Gottlieb J, Balan PF. Attention as a decision in information space. Trends in cognitive science. 2010;
14(6):240–248.

Hogarth, L.; Dickinson, A., et al., editors. Attention and associative learning. Oxford: Oxford
University Press; 2010. Selective attention to conditioned stimuli in human discrimination
learning: untangling the effects of outcome prediction, valence, arousal and uncertainty.

Holland, PC.; Maddux, J-M. Brain systems of attention in associative learning. In: Mitchell, CJ.; Le
Pelley, ME., editors. Attention and associative learning. Oxford University Press; 2010.

Isoda M, Hikosaka O. Switching from automatic to controlled action by monkey medial frontal cortex.
Nat Neurosci. 2007; 10(2):240–248. [PubMed: 17237780]

Isoda M, Hikosaka O. A neural correlate of motivational conflict in the superior colliculus of the
macaque. J Neurophysiol. 2008; 100(3):1332–1342. [PubMed: 18596188]

Itti L, Baldi P. Bayesian surprise attracts human attention. Vision research. 2009; 49(10):1295–1306.
[PubMed: 18834898]

Jens Kober JP. Reinforcement learning in robotics: A survey. Reinforcement Learning Adaptation,
Learning, and Optimization. 2012; 12:579–610.

Gottlieb et al. Page 11

Trends Cogn Sci. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Jepma M, Verdonschot RG, et al. Neural mechanisms underlying the induction and relief of perceptual
curiosity. Front Behav Neurosci. 2012; 6:5. [PubMed: 22347853]

Johansson RS, Westling G, et al. Eye-hand coordination in object manipulation. J Neurosci. 2001;
21(17):6917–6932. [PubMed: 11517279]

Jones DR, Schonlau M, et al. Efficient global optimization of expensive black-box functions. Journal
of Global optimization. 1998; 13(4):455–492.

Jovancevic-Misic J, Hayhoe M. Adaptive gaze control in natural environments. J Neurosci. 2009;
29(19):6234–6238. [PubMed: 19439601]

Kable JW, Glimcher PW. The neurobiology of decision: consensus and controversy. Neuron. 2009;
63(6):733–745. [PubMed: 19778504]

Kaelbling LP, Littman ML, et al. Planning and acting in partially observable stochastic domains.
Artificial intelligence. 1998; 101(1):99–134.

Kang MJ, Hsu M, et al. The wick in the candle of learning: epistemic curiosity activates reward
circuitry and enhances memory. Psychol Sci. 2009; 20(8):963–973. [PubMed: 19619181]

Kaplan F, Oudeyer P-Y. In search of the neural circuits of intrinsic motivation. Frontiers in
Neuroscience. 2007; 1(1):225–225. [PubMed: 18982131]

Kaplan, F.; Oudeyer, PY. Neuromorphic and brain-based robots. Krichmar, JL.; Wagatsuma, H.,
editors. 2011. p. 217-250.

Kearns M, Singh S. Near-optimal reinforcement learning in polynomial time. Machine Learning. 2002;
49(2–3):209–232.

Kolter, JZ.; Ng, AY. Near-Bayesian exploration in polynomial time; Proceedings of the 26th Annual
International Conference on Machine Learning; 2009.

Pape L, Controzzi CMOM, Cipriani C, Foerster A, Carrozza MC, Schmidhuber J. Learning tactile
skills through curious exploration. Frontiers in Neurorobotics. 2012; 6(6)

Land MF. Eye movements and the control of actions in everyday life. Prog Retin Eye Res. 2006;
25(3):296–324. [PubMed: 16516530]

Leathers ML, Olson CR. In monkeys making value-based decisions, LIP neurons encode cue salience
and not action value. Science. 2012; 338(6103):132–135. [PubMed: 23042897]

Lehman J, Stanley KO. Abandoning objectives: evolution through the search for novelty alone.
Evolutionary Computation. 2011; 19(2):189–223. [PubMed: 20868264]

Lopes M, Lang T, et al. Exploration in model-based reinforcement learning by empirically estimating
learning progress. Neural Information Processing Systems (NIPS 2012). 2012

Lopes, M.; Oudeyer, P-Y. The strategic student approach for life-long exploration and learning;
Development and Learning and Epigenetic Robotics (ICDL), 2012 IEEE International Conference
on; 2012.

Lowenstein G. The psychology of curiosity: a review and reinterpretation. Psychological Bulletin.
1994; 116(1):75–98.

Marr, D. Vision: A computational investigation into the human representation and processing of visual
information. Cambridge, Massachusetts: The MIT Press; 2010.

Moulin-Frier, C.; Oudeyer, P-Y. Curiosity-driven phonetic learning; Development and Learning and
Epigenetic Robotics (ICDL), 2012 IEEE International Conference on; 2012.

Ngo, H.; Luciw, M., et al. Learning skills from play: Artificial curiosity on a Katana robot arm;
International Joint Conference on Neural Networks (IJCNN); 2012.

Nguyen SM, Oudeyer P-Y. Socially guided intrinsic motivation for robot learning of motor skills.
Autonomous Robots. 2013

O'Regan, JK. Oxford Scholarship; 2011. Why red doesn’t sound like a bell: Understanding the feel of
consciousness.

Oristaglio J, Schneider DM, et al. Integration of visuospatial and effector information during
symbolically cued limb movements in monkey lateral intraparietal area. J Neurosci. 2006; 26(32):
8310–8319. [PubMed: 16899726]

Oudeyer, P-Y.; Baranes, A., et al. Intrinsically Motivated Learning in Natural and Artificial Systems.
Springer; 2013. Intrinsically motivated learning of real-world sensorimotor skills with
developmental constraints; p. 303-365.

Gottlieb et al. Page 12

Trends Cogn Sci. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Oudeyer PY. On the impact of robotics in behavioral and cognitive sciences: from insect navigation to
human cognitive development. IEEE Transactions on Autonomous Mental Development. 2010;
2(1):2–16.

Oudeyer PY, Kaplan F. Discovering communication. Connection Science. 2006; 18(2):189–206.

Oudeyer PY, Kaplan F. What is Intrinsic Motivation? A Typology of Computational Approaches.
Frontiers of Neurorobotics. 2007; 1(6–1):6.

Oudeyer PY, Kaplan F, et al. Instrinsic motivation systems for autonomous mental development. IEEE
Transactions on Evolutionary Computations. 2007; 11(2):265–286.

Pearce, JM.; Mackintosh, NJ. Two theories of attention: a review and a possible integration. New
York: Oxford University Press; 2010.

Peck CJ, Jangraw DC, Suzuki M, et al. Reward modulates attention independently of action value in
posterior parietal cortex. J Neurosci. 2009; 29(36):11182–11191. [PubMed: 19741125]

Quilodran R, Rothe M, et al. Behavioral shifts and action valuation in the anterior cingulate cortex.
Neuron. 2008; 57(2):314–325. [PubMed: 18215627]

Ranganath C, Rainer G. Neural mechanisms for detecting and remembering novel events. Nat Rev
Neurosci. 2003; 4(3):193–202. [PubMed: 12612632]

Redgrave P, Gurney K, et al. What is reinforced by phasic dopamine signals? Brain Res Rev. 2008;
58(2):322–339. [PubMed: 18055018]

Rothkopf CA, Ballard D. Credit assignment in multiple goal embodied visuomotor behavior. Frontiers
in Psychology. 2010; 1(173)

Sailer U, Flanagan JR, et al. Eye-hand coordination during learning of a novel visuomotor task. J
Neurosci. 2005; 25(39):8833–8842. [PubMed: 16192373]

Schmidhuber, J. Curious model-building control systems; IEEE International Joint Conference on
Neural Networks; 1991.

Schmidhuber, J. Maximizing fun by creating data with easily reducible subjective complexity. In:
Baldassarre, G.; Mirolli, M., editors. Intrinsically Motivated Learning in Natural and Artificial
Systems. Springer; 2013. p. 95-128.

Sébastien Bubeck NC-B. Regret analysis of stochastic and nonstochastic multiarmed bandit problems.
2012

Sequeira, P.; Melo, FS., et al. Emerging social awareness: Exploring intrinsic motivation in multiagent
learning; Development and Learning (ICDL), 2011 IEEE International Conference on; 2011.

Singh, S.; James, MR., et al. Predictive state representations: A new theory for modeling dynamical
systems; Proceedings of the 20th conference on Uncertainty in artificial intelligence; 2004.

Singh S, Lewis RL, et al. Intrinsically motivated reinforcement learning: An evolutionary perspective.
Autonomous Mental Development, IEEE Transactions on. 2010; 2(2):70–82.

Smith LB, Thelen E. Development as a dynamic system. Trends in cognitive sciences. 2003; 7(8):343–
348. [PubMed: 12907229]

Sorg, J.; Lewis, RL., et al. Reward design via online gradient ascent. Advances in Neural Information
Processing Systems (NIPS); 2010.

Spall, JC. Introduction to stochastic search and optimization: estimation, simulation, and control.
Wiley. com; 2005.

Srivastava RK, Steunebrink BR, et al. First experiments with PowerPlay. Neural Networks. 2013;
41:130–136. [PubMed: 23465562]

Sutton, RS. Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming; Proceedings of the seventh international conference (1990) on Machine
learning; 1990.

Sutton, RS.; Barto, AG. Reinforcement Learning: An Introduction. MIT Press; 1998.

Sutton RS, McAllester DA, et al. Policy gradient methods for reinforcement learning with function
approximation. Neural Information Processing Systems (NIPS). 1999; 99:1057–1063.

Suzuki M, Gottlieb J. Distinct neural mechanisms of distractor suppression in the frontal and parietal
lobe. Nature Neuroscience. 2013; 16(1):98–104.

Tatler BW, Hayhoe MM, et al. Eye guidance in natural vision: reinterpreting salience. J Vis. 2011;
11(5):5. [PubMed: 21622729]

Gottlieb et al. Page 13

Trends Cogn Sci. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Tatler BW, Hayhoe MN, et al. Eye guidance in natural vision: reinterpreting salience. J Vis. 2011;
11(5):5–25. [PubMed: 21622729]

Thompson KG, Bichot NP. A visual salience map in the primate frontal eye field. Prog Brain Res.
2005; 147:251–262. [PubMed: 15581711]

Thompson KG, Biscoe KL, et al. Neuronal basis of covert spatial attention in the frontal eye field. J
Neurosci. 2005; 25(41):9479–9487. [PubMed: 16221858]

Thrun, S. Exploration in active learning. In: Arbib, MA., editor. Handbook of Brain Science and
Neural Networks. MIT Press; 1995. p. 381-384.

Tishby, N.; Polani, D. Information theory of decisions and actions. In: Cutsuridis, V.; Hussain, A.;
Taylor, JG., editors. Perception-Action Cycle. New York: Springer; 2011. p. 601-636.

Tsotsos, JK. A computational perspective on visual attention. MIT Press; 2011.

Weng J, McClelland J, et al. Autonomous mental development by robots and animals. Science. 2001;
291(5504):599–600. [PubMed: 11229402]

Wurtz, RH.; Goldberg, ME. The neurobiology of saccadic eye movements, Reviews of Oculomotor
Research. Vol. III. Amsterdam: Elsevier; 1989.

Yasuda M, Yamamoto S, et al. Robust representation of stable object values in the oculomotor basal
ganglia. J Neurosci. 2012; 32(47):16917–16932. [PubMed: 23175843]

Glossary

Developmental
Robotics

Research field modeling how embodied agents can acquire novel

sensorimotor, cognitive and social skills in open-ended fashion over

a developmental time-span, through integration of mechanisms that

include maturation, intrinsically and extrinsically motivated learning,

and self-organization.

Intrinsic and
extrinsic rewards

Normative accounts of behavior based upon computational

reinforcement learning and optimal control theory rely on the

concept of a reward to assign value to alternative options, and often

distinguish between extrinsic and intrinsic rewards. Extrinsic

rewards are associated with classical task-directed learning, and

encode objectives like finding food or winning a chess game. In

contrast, intrinsic rewards are associated with internal cognitive

variables such as aesthetic pleasure, information seeking or

epistemic disclosure. Examples of intrinsic rewards include

measures of uncertainty, surprise or learning progress, and they may

be either learnt or innate.

Markov process
(MP)

mathematical model of the evolution of a system where the

prediction of a future state depends only on the current state and on

the applied action, but not on the path by which the system reached

the current state.

Markov decision
process (MDP)

defines the problem of selecting the optimal actions at each state in

order to maximize future expected rewards.

POMDP extension of MDP for the case where the state is not entirely or

directly observable but is described by probability distributions.
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Computational
Reinforcement
learning

Defines the problem of how to solve an MDP (or a POMDP) through

learning (including trial and error), as well as associated

computational methods.

Optimization A mechanism that is often used in machine learning to search for the

best solution among competing solutions with regard to given

criteria. Stochastic optimization is an approach to optimization

where improvements over current best estimates of the solution are

searched by iteratively trying random variations of these best

estimates.

Metacognition The capability of a cognitive system to monitor its own abilities –

e.g., its knowledge, competence, memory, learning or thoughts - and

act based on the results of this monitoring. An example is a system

capable of estimating how much confidence or uncertainty it has or

how much learning progress it has achieved, and use these estimates

to select actions.
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Box 1: Using eye movements to probe multiple processes of information
search

Because of its amenability to empirical investigations and the large amount of research

devoted to it, the oculomotor system is a potentially excellent model system for probing

information seeking. In human observers, eye movements show consistent patterns that

are highly reproducible within and across observers, both in laboratory tasks and natural

behaviors (Land 2006; Tatler, Hayhoe et al. 2011). Moreover, eye movements show

distinctive patterns during the learning versus skilled performance of visuo-manual tasks

(Sailer, Flanagan et al. 2005), suggesting that they can be used to understand various

types of information search.

In non-human primates, the main oculomotor pathways are well characterized at the level

of single-cells, and include sensory inputs from the visual system, and motor mechanisms

mediated by the superior colliculus and brainstem motor nuclei that generate a saccade

(Wurtz and Goldberg 1989). Interposed between the sensory and motor levels is an

intermediate stage of target selection that highlights attention-worthy objects, and seems

to encode a decision of when and to what to attend (Thompson and Bichot 2005; Gottlieb

2012). Importantly, responses to target selection are sensitive to expected reward in the

lateral intraparietal area (LIP), the frontal eye field (FEF), the superior colliculus and the

substantia nigra pars reticulata (Ding and Hikosaka 2006; Isoda and Hikosaka 2008;

Gottlieb 2012; Yasuda, Yamamoto et al. 2012), suggesting that they encode

reinforcement mechanisms relevant for eye movement control.

On the background of these results, the oculomotor system can be used to address

multiple questions regarding exploration. Two especially timely questions pertain to

saccade guidance by extrinsic and intrinsic rewards, and to the integration of various

information seeking mechanisms.

Multiple valuation processes select stimuli for eye movement control

Animal studies of the oculomotor system have so far focused on the coding of extrinsic

rewards, using simple tasks where monkeys receive juice for making a saccade.

However, as we have discussed, eye movements in natural behavior are not motivated by

physical rewards but by more indirect metrics related to the value of information.

Evidence suggests (but does not yet conclusively establish) that such higher order values

are encoded in target selection cells. Converging evidence showsthe entity that is selected

by cells is not the saccade itself but a stimulus of interest, and this selection is

independent of extrinsic rewards that the monkeys receive for making a saccade (Gottlieb

and Balan 2010; Suzuki and Gottlieb 2013). In addition, the cells seem to reflect two

reward mechanisms – i.e., the learning of direct associations between stimuli and rewards

independently of actions, and a measure of the information value of action-relevant cues

(e.g., Fig. 1A).

Evidence for the role of Pavlovian associations comes from a task where monkeys were

informed whether or not they will receive a reward by means of a visual cue.

Importantly, the cues were not relevant for the subsequent action – i.e., did not allow the

monkeys to plan ahead and increase their odds of success in the task. Nevertheless, the
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positive (reward predictive) cues had higher salience and elicited stronger LIP responses

than the negative (no-reward predicting) cues (Peck, Suzuki et al. 2009). This valuation

differs fundamentally from the types of valuation we discussed in the text: not only is it

independent of action, but it is also independent of uncertainty reduction, as the positive

and negative cues provided equally reliable information about forthcoming rewards.

Thus, the brain seems to employ a process that weights visual information based on

direct reward associations, possibly related to a phenomenon dubbed “attention for

liking” in behavioral research (Hogarth, Dickinson et al. 2010). Although a bias to attend

to good news is suboptimal from a strict information seeking perspective, it may be

adaptive in natural behavior by rapidly drawing resources to potential rewards.

Additional evidence suggests that, along with this direct stimulus-reward process, the

cells may be sensitive to an indirect (potentially normative) form of valuation such as that

shown in Fig. 1A. Thus, the cells select select cues that provide actionable information

even when the monkeys examine those cues covertly, without making a saccade

(Thompson, Biscoe et al. 2005; Oristaglio, Schneider et al. 2006), In addition, an

explanation based on information value may explain a recent report that LIP neurons had

enhanced responses for targets threatening large penalties in a choice paradigm (Leathers

and Olson 2012). While this result is apparently at odds with the more commonly

reported enhancement by appetitive rewards, in the task that the monkeys performed the

high penalty target was also an informative cue. The monkeys were presented with

choices between a high-penalty target and a rewarded or lower penalty option, and in

either case to the optimal decision (which the monkeys took) was to avoid the former

target and orient to the alternative options. It is possible therefore that the LIP cells

encoded a two-stage process similar to that shown in Fig. 1A, where the brain first

attended to the more informative high penalty cue (without generating a saccade) and

then, based on the information obtained from this cue, made the final saccade to the

alternative option.

In sum, existing evidence is consistent with the idea that target selection cells encode

several valuation processes for selecting visual items, but the details of these processes

remain poorly understood.

Integrating extrinsic and intrinsically motivated search

Although information sampling in task and curiosity-driven contexts seems to answer a

common imperative for uncertainty reduction, these behaviors evoke very different

subjective experiences, suggesting that they recruit different mechanisms. The neural

substrates of these differences are very poorly understood. Behavioral and

neuropsychological studies in rats suggest that the brain contains two attentional systems.

A system of “attention for action” that relies on the frontal lobe and directs resources to

familiar and reliable cues, and a system of “attention for learning” that relies on the

parietal lobe and preferentially weights novel, surprising or uncertain cues (Holland and

Maddux 2010; Pearce and Mackintosh 2010). However, this hypothesis has not been

investigated in individual cells. Thus an important and wide open question concerns the

representation of task-related versus open-ended curiosity mechanisms, and in particular

the coding of factors such as the novelty, uncertainty or surprise of visual cues. While

Gottlieb et al. Page 17

Trends Cogn Sci. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



responses to novelty and uncertainty are reported in cortical and subcortical structures

(Bach and Dolan 2012), it is unknown how they relate to attention and eye movement

control.
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Highlights

Information seeking can be driven by extrinsic or intrinsic rewards.

Curiosity may result from an intrinsic desire to reduce uncertainty.

Curiosity-driven learning is evolutionarily useful and can self-organize development.

Eye movements can provide an excellent model system for information seeking.

Computational and neural approaches converge to understand information seeking.
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Fig. 1. Information search while executing a known task
A. Description of an observing action – looking at the traffic light at an intersection – using

a POMDP. The observer starts in state xa, where he arrives at an intersection and can take

two actions, stop (S) or proceed (G). State xa can be described as a stochastic mixture of two

states xa1 and xa2, which are consistent with, respectively, stopping or proceeding and have

equal probabilities of 0.5. Thus, the expected probability of successfully crossing the

intersection for either action from this state is 0.5. (For simplicity we assume that reward

magnitudes are equal and constant for S and G.) On the other hand, the agent can take an

observing action that transitions him to states xb1 or xb2. These two states are equiprobable

(p = 0.5), and transitioning to each is associated with a cost, ro < 0, related to the time and

effort of the visual discrimination. However, these states no longer have uncertainty. The

agent can take action S from xb1 (where the light is red), or action G from xb2 (where the

light is green) and in either case have a high likelihood of success. B. Eye movements
during a visuomanual task. The top panel shows the manual task. Starting from an initial

position (Pre-reach), subjects reached and grasp a rectangular block (Grasp), brought the

block up to touch a target (Target) and returned it to the initial position (not shown). The

bottom panel shows the distribution of fixations during the task. Fixations precede the

hand’s trajectory, with 90% of them (solid circles) falling within landmark zones (dotted

circles), which are the task-relevant contact points (of the fingers with the block, the block

with the table and the block with the target) and a potential obstacle (the protruding corner).

This fixation pattern is highly consistent across observers and notably, includes almost no
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extraneous fixations, or fixations on the hand itself, Adapted with permission from

(Johansson, Westling et al. 2001).
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Fig. 2. Curiosity-driven exploration through maximization of learning progress
A The Playground Experiment studies curiosity-driven exploration, and how it can self-

organize development, with a quadruped robot placed on an infant play mat with a set of

nearby objects, as well as an “adult” robot peer. The robot is equipped with a repertoire of

motor primitives parameterized by several continuous numbers, which can be combined to

form a large continuous space of possible actions. The robot learns how to use and tune

them to affect various aspects of its surrounding environment, and exploration is driven by

maximization of learning progress. One observes the self-organization of structured

developmental trajectories, where the robot explores objects and actions in a progressively

more complex stage-like manner, while acquiring autonomously diverse affordances and

skills that can be reused later on. The robot also discovers primitive vocal interaction as a

result of the same process (Oudeyer and Kaplan 2006; Moulin-Frier and Oudeyer 2012).

Internally, the categorization system of such architecture progressively builds abstractions

which allow it to differentiate its own body (the self) from physical objects but also animate

objects (the other robot)(Kaplan and Oudeyer 2011). B The R-IAC architecture implements

this curiosity-driven process with several modules (Oudeyer, Kaplan et al. 2007; Oudeyer,

Baranes et al. 2013). A prediction machine (M) learns to predict the consequences of actions
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taken by the robot in given sensory states. A meta-cognitive module (metaM) estimates the

evolution of errors in prediction of M in various subregions of the sensorimotor space,

which in turn is used to compute learning progress as an intrinsic reward. Since the

sensorimotor flow does not come pre-segmented into activities and tasks, a system that

seeks to maximize differences in learnability is also used to progressively categorize the

sensorimotor space into regions, which incrementally model the creation and refining of

activities/tasks. Then, an action selection system chooses activities to explore where

estimated learning progress is high. This choice is stochastic in order to monitor other

activities which learning progress might rise, and is based on algorithms of the bandit family

(Lopes and Oudeyer ; Sébastien Bubeck 2012)

C. Confronted with four sensorimotor activities characterized by different learning profiles

(i.e. evolution of prediction errors), exploration driven by maximizing learning progress

results in avoiding activities already predictable (curve 4) or too difficult to learn to predict

(curve 1), in order to focus first on the activity with the fastest learning rate (curve 3) and

eventually, when the latter starts to reach a “plateau” to switch to the second most promising

learning situation (curve 2). This allows the creation of an organized exploratory strategy

necessary to engage in open-ended development. Adapted with permission from (Kaplan

and Oudeyer 2007).
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