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Abstract

Multiple hypothesis testing is a significant problem in nearly all neuroimaging studies. In order to

correct for this phenomena, we require a reliable estimate of the Family-Wise Error Rate (FWER).

The well known Bonferroni correction method, while simple to implement, is quite conservative,

and can substantially under-power a study because it ignores dependencies between test statistics.

Permutation testing, on the other hand, is an exact, non-parametric method of estimating the

FWER for a given α-threshold, but for acceptably low thresholds the computational burden can be

prohibitive. In this paper, we show that permutation testing in fact amounts to populating the

columns of a very large matrix P. By analyzing the spectrum of this matrix, under certain

conditions, we see that P has a low-rank plus a low-variance residual decomposition which makes

it suitable for highly sub–sampled — on the order of 0.5% — matrix completion methods. Based

on this observation, we propose a novel permutation testing methodology which offers a large

speedup, without sacrificing the fidelity of the estimated FWER. Our evaluations on four different

neuroimaging datasets show that a computational speedup factor of roughly 50× can be achieved

while recovering the FWER distribution up to very high accuracy. Further, we show that the

estimated α-threshold is also recovered faithfully, and is stable.

1 Introduction

Suppose we have completed a placebo-controlled clinical trial of a promising new drug for a

neurodegenerative disorder such as Alzheimer's disease (AD) on a small sized cohort. The

study is designed such that in addition to assessing improvements in standard cognitive

outcomes (e.g., MMSE), the purported treatment effects will also be assessed using

Neuroimaging data. The rationale here is that, even if the drug does induce variations in

cognitive symptoms, the brain changes are observable much earlier in the imaging data. On

the imaging front, this analysis checks for statistically significant differences between brain

images of subjects assigned to the two trial arms: treatment and placebo. Alternatively,

consider a second scenario where we have completed a neuroimaging research study of a

particular controlled factor, such as genotype, and the interest is to evaluate group-wise

differences in the brain images: to identify which regions are affected as a function of class
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membership. In either cases, the standard image processing workflow yields for each subject

a 3-D image (or voxel-wise “map”). Depending on the image modality acquired, these maps

are of cerebral gray matter density, longitudinal deformation (local growth or contraction) or

metabolism. It is assumed that these maps have been ‘co-registered’ across different subjects

so that each voxel corresponds to approximately the same anatomical location. [1, 2].

In order to localize the effect under investigation (i.e., treatment or genotype), we then have

to calculate a very large number (say, v) of univariate voxel-wise statistics – typically up to

several million voxels. For example, consider group-contrast t-statistics (here we will mainly

consider t-statistics, however other test statistics are also applicable, such as the F statistic

used in ANOVA testing, Pearson's correlation as used in functional imaging studies, or the

χ2 test of dependence between variates, so long as certain conditions described in Section

2.3 are satisfied). In some voxels, it may turn out that a group-level effect has been

indicated, but it is not clear right away what its true significance level should be, if any. As

one might expect, given the number of hypotheses tests v, multiple testing issues in this

setting are quite severe, making it difficult to assess the true Family-Wise Type I Error Rate

(FWER) [3]. If we were to address this issue via Bonferroni correction [4], the enormous

number of separate tests implies that certain weaker signals will almost certainly never be

detected, even if they are real. This directly affects studies of neurodegenerative disorders in

which atrophy proceeds at a very slow rate and the therapeutic effects of a drug is likely to

be mild to moderate anyway. This is a critical bottleneck which makes localizing real, albeit

slight, short-term treatment effects problematic. Already, this restriction will prevent us

from using a smaller sized study (fewer subjects), increasing the cost of pharmaceutical

research. In the worst case, an otherwise real treatment effect of a drug may not survive

correction, and the trial may be deemed a failure.

Bonferroni versus true FWER threshold

Observe that theoretically, there is a case in which the Bonferroni corrected threshold is

close to the true FWER threshold: when point-wise statistics are i.i.d. If so, then the

extremely low Bonferroni corrected α-threshold crossings effectively become mutually

exclusive, which makes the Union Bound (on which Bonferroni correction is based) nearly

tight. However, when variables are highly dependent – and indeed even without smoothing

there are many sources of strong non-Gaussian dependencies between voxels, the true

FWER threshold can be much more relaxed, and it is precisely this phenomenon which

drives the search for alternatives to Bonferroni correction. Thus, many methods have been

developed to more accurately and efficiently estimate or approximate the FWER [5, 6, 7, 8],

which is a subject of much interest in statistics [9], machine learning [10], bioinformatics

[11], and neuroimaging [12].

Permutation testing

A commonly used method of directly and non-parametrically estimating the FWER is

Permutation testing [12, 13], which is a method of sampling from the Global (i.e., Family-

Wise) Null distribution. Permutation testing ensures that any relevant dependencies present

in the data carry through to the test statistics, giving an unbiased estimator of the FWER. If

we want to choose a threshold sufficient to exclude all spurious results with probability 1 −
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α, we can construct a histogram of sample maxima taken from permutation samples, and

choose a threshold giving the 1 − α2 quantile. Unfortunately, reliable FWER estimates

derived via permutation testing come at excessive (and often infeasible) computational cost

– often tens of thousands or even millions of permutation samples are required, each of

which requires a complete pass over the entire data set. This step alone can run from a few

days up to many weeks and even longer [14, 15].

Observe that the very same dependencies between voxels, that forced the usage of

permutation testing, indicate that the overwhelming majority of work in computing so many

highly correlated Null statistics is redundant. Note that regardless of their description, strong

dependencies of almost any kind will tend to concentrate most of their co-variation into a

low-rank subspace, leaving a high-rank, low-variance residual [5]. In fact, for Genome wide

Association studies (GWAS), many strategies calculate the ‘effective number’ (Meff ) of

independent tests corresponding to the rank of this subspace [16, 5]. This paper is based on

the observation that such a low-rank structure must also appear in permutation test samples.

Using ideas from online low-rank matrix completion [17] we can sample a few of the Null

statistics and reconstruct the remainder as long as we properly account for the residual. This

allows us to sub-sample at extremely low rates, generally < 1%. The contribution of our

work is to significantly speed up permutation testing in neuroimaging, delivering running

time improvements of up to 50×. In other words, our algorithm does the same job as

permutation testing, but takes anywhere from a few minutes up to a few hours, rather than

days or weeks. Further, based on recent work in random matrix theory, we provide an

analysis which sheds additional light on the use of matrix completion methods in this

context. To ensure that our conclusions are not an artifact of a specific dataset, we present

strong empirical evidence via evaluations on four separate neuroimaging datasets of

Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI) patients as well as

cognitively healthy age-matched controls (CN), showing that the proposed method can

recover highly faithful Global Null distributions, while offering substantial speedups.

2 The Proposed Algorithm

We first cover some basic concepts underlying permutation testing and low rank matrix

completion in more detail, before presenting our algorithm and the associated analysis.

2.1 Permutation testing

Randomly sampled permutation testing [18] is a methodology for drawing samples under

the Global (Family-Wise) Null hypothesis. Recall that although point-wise test statistics

have well characterized univariate Null distributions, the sample maximum usually has no

analytic form due to the strong correlations across voxels. Permutation is particularly

desirable in this setting because it is free of any distribution assumption whatsoever [12].

The basic idea of permutation testing is very simple, yet extremely powerful. Suppose we

have a set of labeled high dimensional data points, and a univariate test statistic which

measures some interaction between labeled groups for every dimension (or feature). If we

randomly permute the labels and recalculate each test statistic, then by construction we get a

sample from the Global Null distribution. The maximum over all of these statistics for every

permutation sample is then used to construct a histogram, which therefore is a non-
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parametric estimate of the distribution of the sample maximum of Null statistics. For a test

statistic derived from the real labels, the FWER corrected p-value is then equal to the

fraction of permutation samples which were more extreme. Note that all of the permutation

samples can be assembled into a matrix  where v is the number of comparisons

(voxels for images), and T is the number of permutation samples.

There is a drawback to this approach, however. Observe that it is in the nature of random

sampling methods that we get many samples from near the mode(s) of the distribution of

interest, but fewer from the tails. Hence, to characterize the threshold for a small portion of

the tail of this distribution, we must draw a very large number of samples just so that the

estimate converges. Thus, if we want an α = 0.01 threshold from the Null sample maximum

distribution, we require many thousands of permutation samples — each requires

randomizing the labels and recalculating all test statistics, a very computationally expensive

procedure when v is large. To be certain, we would like to ensure an especially low FWER

by first setting very low, and then getting a very precise estimate of the corresponding

threshold. The smallest possible p-value we can derive this way is 1/T , so for very low p-

values, T must be very large.

2.2 Low-rank Matrix completion

Low-rank matrix completion [19] seeks to reconstruct missing entries from a matrix, given

only a small fraction of its entries. The problem is ill-posed unless we assume this matrix

has a low-rank column space. If so, then a much smaller number of observations, on the

order of r log(v), where r is the column space's rank, and v is its ambient dimension [19] is

sufficient to recover both an orthogonal basis for the row space as well as the expansion

coefficients for each column, giving the recovery. By placing an l1-norm penalty on the

eigenvalues of the recovered matrix via the nuclear norm [20, 21] we can ensure that the

solution is as low rank as possible. Alternatively, we can specify a rank r ahead of time, and

estimate an orthogonal basis of that rank by following a gradient along the Grassmannian

manifold [22, 17]. Denoting the set of randomly subsampled entries as , the matrix

completion problem is given as,

(1)

where  is the low-rank basis of P, Ω gives the measured entries, and W is the set

of expansion coefficients which reconstructs P̃ in U. Two recent methods operate in an

online setting, i.e., where rows of P arrive one at a time, and both U and W are updated

accordingly [22, 17].

2.3 Low rank plus a long tail

Real-world data often have a dominant low-rank component. While the data may not be

exactly characterized by a low-rank basis, the residual will not significantly alter the eigen-

spectrum of the sample covariance in such cases. Having strong correlations is nearly

synonymous with having a skewed eigen-spectrum, because the flatter the eigen-spectrum

becomes, the sparser the resulting covariance matrix tends to be (the “uncertainty principle”

between low-rank and sparse matrices [23]). This low-rank structure carries through for
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purely linear statistics (such as sample means). However, non-linearities in the test statistic

calculation, e.g., normalizing by pooled variances, will contribute a long tail of eigenvalues,

and so we require that this long tail will either decay rapidly, or that it does not overlap with

the dominant eigenvalues. For t-statistics, the pooled variances are unlikely to change very

much from one permutation sample to another (barring outliers) — hence we expect that the

spectrum of P will resemble that of the data covariance, with the addition of a long,

exponentially decaying tail. More generally, if the non-linearity does not de-correlate the

test statistics too much, it will preserve the low-rank structure.

If this long tail is indeed dominated by the low-rank structure, then its contribution to P can

be modeled as a low variance Gaussian i.i.d. residual. A Central Limit argument appeals to

the number of independent eigenfunctions that contribute to this residual, and, the

orthogonality of eigenfunctions implies that as more of them meaningfully contribute to

each entry in the residual, the more independent those entries become. In other words, if this

long tail begins at a low magnitude and decays slowly, then we can treat it as a Gaussian

i.i.d. residual; and if it decays rapidly, then the residual will perhaps be less Gaussian, but

also more negligible. Thus, our development in the next section makes no direct assumption

about these eigenvalues themselves, but rather that the residual corresponds to a low-

variance i.i.d. Gaussian random matrix — its contribution to the covariance of test statistics

will be Wishart distributed, and from that we can characterize its eigenvalues.

2.4 Our Method

It still remains to model the residual numerically. By sub-sampling we can reconstruct the

low-rank portion of P via matrix completion, but in order to obtain the desired sample

maximum distribution we must also recover the residual. Exact recovery of the residual is

essentially impossible; fortunately, for our purposes we need only need its effect on the

distribution of the maximum per permutation test. So, we estimate its variance, (its mean is

zero by assumption,) and then randomly sample from that distribution to recover the

unobserved remainder of the matrix.

A large component in the running time of online subspace tracking algorithms is spent in

updating the basis set U; yet, once a good estimate for U has been found this becomes

superfluous. We therefore divide the entire process into two steps: training, and recovery.

During the training phase we conduct a small number of fully sampled permutation tests

(100 permutations in our experiments). From these permutation tests, we estimate U using

sub-sampled matrix completion methods [22, 17], making multiple passes over the training

set (with fixed sub-sampling rate), until convergence. In our evaluations, three passes

sufficed. Then, we obtain a distribution of the residual S over the entire training set. Next is

the recovery phase, in which we sub-sample a small fraction of the entries of each

successive column t, solve for the reconstruction coefficients W(· , t) in the basis U by least-

squares, and then add random residuals using parameters estimated during training. After

that, we proceed exactly as in a normal permutation testing, to recover the statistics.

Bias-Variance tradeoff—By using a very sparse subsampling method, there is a bias-

variance dilemma in estimating S. That is, if we use the entire matrix P to estimate U, W
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and S, we will obtain reliable estimates of S. But, there is an overfitting problem: the least-

squares objective used in fitting W(·, t) to such a small sample of entries is likely to grossly

underestimate the variance of S compared to where we use the entire matrix; (the sub-

sampling problem is not nearly as over-constrained as for the whole matrix). This sampling

artifact reduces the apparent variance of S, and induces a bias in the distribution of the

sample maximum, because extreme values are found less frequently. This sampling artifact

has the effect of ‘shifting’ the distribution of the sample maximum towards 0. We correct for

this bias by estimating the amount of the shift during the training phase, and then shifting the

recovered sample max distribution by this estimated amount.

3 Analysis

We now discuss two results which show that as long as the variance of the residual is below

a certain level, we can recover the distribution of the sample maximum. Recall from (1) that

for low-rank matrix completion methods to be applied we must assume that the permutation

matrix P can be decomposed into a low-rank component plus a high-rank residual matrix S:

(2)

where U is a v × r orthogonal matrix that spans the r < < min(v, t) -dimensional column

subspace of P, and W is the corresponding coefficient matrix. We can then treat the residual

S as a random matrix whose entries are i.i.d. zero-mean Gaussian with variance σ2. We

arrive at our first result by analyzing how the low-rank portion of P's singular spectrum

interlaces with the contribution coming from the residual by treating P as a low-rank

perturbation of a random matrix. If this low-rank perturbation is sufficient to dominate the

eigenvalues of the random matrix, then P can be recovered with high fidelity at a low

sampling rate [22, 17]. Consequently, we can estimate the distribution of the maximum as

well, as shown by our second result.

The following development relies on the observation that the eigenvalues of PPT are the

squared singular values of P. Thus, rather than analyzing the singular value spectrum of P
directly, we can analyze the eigenvalues of PPT using a recent result from [24]. This is

important because in order to ensure recovery of P, we require that its singular value

spectrum will approximately retain the shape of UW's. More precisely, we require that for

some 0 < δ < 1,

(3)

where φi and  are the singular values of UW and P respectively. (Recall that in this

analysis P is the perturbation of UW.) Thm. 3.1 relates the rate at which eigenvalues are

perturbed, , to the parameterization of S in terms of σ2. The theorem's principal assumption

also relates σ2 inversely with the number of columns of P, which is just the number of trials

t. Note however that the process may be split up between several matrices Pi, and the results

can then be combined. For purposes of applying this result in practice we may then choose a

number of columns t which gives the best bound. Theorem 3.1 also assumes that the number

of trials t is greater than the number of voxels v, which is a difficult regime to explore
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empirically. Thus, our numerical evaluations cover the case where t < v, while Thm 3.1

covers the case where t is larger.

From the definition of P in (2), we have,

(4)

We first analyze the change in eigenvalue structure of SST when perturbed by UWWT UT ,

(which has r non-zero eigenvalues). The influence of the cross-terms (UWST and SWT UT )

is addressed later. Thus, we have the following theorem.

Theorem 3.1. Denote that r non-zero eigenvalues of  by λ1 ≥ λ2

≥ , . . . ,λr > 0; and let S be a v t random matrix such that , with unknown

σ2. As v, t → ∞ such that , the eigenvalues  of the perturbed matrix Q+SST will

satisfy

(*)

for some 0 < δ < 1, whenever 

Proof. The first half of the proof emulates Theorem 2.1 from [24]. Consider the matrix

. By the structure of S, each entry of X is i.i.d.Gaussian with zero–mean and

variance σ2t. Let  and denote its ordered eigenvalues as γi, i = 1, . . . , v (large to

small). Consider the random spectral measure

, The Marchenko–Pastur law [?] states that as v, t → ∞ such that , the random measure

μv → μ, where dμ is given by

where . Here 1[γ−, γ+] is an indicator function that is non–zero on [γ−, γ+].

 are the extreme points of the support of μ. It is well known that the

extreme eigenvalues converge almost surely to γ± [?]. Since v, t → ∞ and , the

length of [γ−, γ+] is much smaller than the values in it. Hence we have,

and the new dμ(a) is given by
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The form we have derived for dμ(a) shares some similarities with dμX(x) in Section 3.1 of

[24]. The analysis in [24] takes into account the phase transition of extreme eigen values.

This is done by imitating a time–frequency type analysis on compact support of extreme

spectral measure i.e. using Cauchy transform. For our case, the Cauchy transform of μ(a) is

Since we are interested in the asymptotic eigen values (and ), Gμ (γ±) and the

functional inverse  are

Hence, the asymptotic behavior of the eigen values of perturbed matrix Q + SST is

(observing that SST = Y and Q has r non–zero positive eigen values)

(*)

With λi, i = 1, . . . , v in hand, we now bound the unknown variance σ2 such that (*) is

satisfied. We only have two cases to consider,

We constrain the unknown σ2 such that case (2) does not arise. Substituting for  from (*)

in (*), we get,

These inequalities will hold when  (since γ = < < 1,σ < 1 and λ1 ≥ λ2 ≥, . . . ,λr).

Note that the missing cross-terms would not change the result of Theorem 3.1 drastically,

because UW has r non-zero singular values and hence UWST is a low-rank projection of a

low-variance random matrix, and this will clearly be dominated by either of the other terms.
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Having justified the model in (2), the following thorem shows that the empirical distribution

of the maximum Null statistic approximates the true distribution.

Theorem 3.2. Let mt = maxi Pi,t be the maximum observed test statistic at permutation trial

t, and similarly let m̂t = maxi P̂
i,t be the maximum reconstructed test statistic. Further, let the

maximum reconstruction error be [epsilon1], such that |Pi,t − P̂
i,t| ≤∈. Then, for any real

number k > 0, we have,

where b is the bias term described in Section 2, and b̂ is its estimate from the training phase.

Proof. Recall that there is a bias term in estimating the distribution of the maximum which

must be corrected for this is because var(Ŝ) underestimates var(S) due to the bias/variance

tradeoff. Let b be this difference:

Further, recall that we estimate b by taking the difference of mean sample maxima between

observed and reconstructed test statistics over the training set, giving b̂, which is an unbiased

estimator of b — it is unbiased because a difference in sample means is an unbiased

estimator of the difference of two expectations.

Let δt = mt − m̂t. To show the result we must derive a concentration bound on σt, which we

will do by applying Chebyshev's inequality. In order to do so, we require an expression for

the mean and variance of σt. First, we derive an expression for the mean. Taking the

expectation over t of mt − m̂t we have,

where the second equality follows from the linearity of expectation.

Next, we require an expression for the variance of δt. Let i be the index at which the

maximum observed test statistic occurs for permutation trial t, and likewise let j be the index

at which the maximum reconstructed test statistic occurs. Thus we have,

and so we have that
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and so

Applying Chebyshev's bound,

which completes the proof.

4 Experimental evaluations

Our experimental evaluations include four separate neuroimaging datasets of Alzheimer's

Disease (AD) patients, cognitively healthy age-matched controls (CN), and in some cases

Mild Cognitive Impairment (MCI) patients. The first of these is the Alzheimer's Disease

Neuroimaging Initiative (ADNI) dataset, a nation-wide multi-site study. ADNI is a landmark

study sponsored by the NIH, major pharmaceuticals and others to determine the extent to

which multimodal brain imaging can help predict onset, and monitor progression of AD.

The others were collected as part of other studies of AD and MCI. We refer to these datasets

as Dataset A—D. Their demographic characteristics are as follows: Dataset A: 40 subjects,

AD vs. CN, median age : 76; Dataset B: 50 subjects, AD vs. CN, median age : 68; Dataset

C: 55 subjects, CN vs. MCI, median age : 65.16; Dataset D: 70 subjects, CN vs. MCI,

median age : 66.24.

Our evaluations focus on three main questions: (i) Can we recover an acceptable

approximation of the maximum statistic Null distribution from an approximation of the

permutation test matrix? (ii) What degree of computational speedup can we expect at

various subsampling rates, and how does this affect the trade-off with approximation error?

(iii) How sensitive is the estimated -level threshold with respect to the recovered Null

distribution? In all our experiments, the rank estimate for subspace tracking (to construct the

low–rank basis U) was taken as the number of subjects.

4.1 Can we recover the Maximum Null?

Our experiments suggest that our model can recover the maximum Null. We use Kullback–

Leibler (KL) divergence and Bhattacharya Distance (BD) to compare the estimated

maximum Null from our model to the true one. We also construct a “Naive–Null”, where the

subsampled statistics are pooled and the Null distribution is constructed with no further

processing (i.e., completion). Using this as a baseline, Fig. 1 shows the KL and BD values

obtained from three datasets, at 20 different sub-sampling rates (ranging from 0.1% to 10%).

Note that our model involves a training module where the approximate ‘bias’ of residuals is

estimated. This estimation is prone to noise (for example, number of training frames). Hence
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Fig. 1 also shows the error bars pertaining to 5 realizations on the 20 sampling rates. The

first observation from Fig. 1 is that both KL and BD measures of the recovered Null to the

true distribution are < e−5 for sampling rates more than 0.4%. This suggests that our model

recovers both the shape (low BD) and position (low KL) of the null to high accuracy at

extremely low sub-sampling. We also see that above a certain minimum subsampling rate (~

0.3%), the KL and BD do not change drastically as the rate is increased. This is expected

from the theory on matrix completion where after observing a minimum number of data

samples, adding in new samples does not substantially increase information content. Further,

the error bars (although very small in magnitude) of both KL and BD show that the recovery

is noisy. We believe this is due to the approximate estimate of bias from training module.

4.2 What is the computational speedup?

Our experiments suggest that the speedup is substantial. Figs. 3 and 2 compare the time

taken to perform the complete permutation testing to that of our model. The three plots in

Fig. 3 correspond to the datasets used in Fig. 1, in that order. Each plot contains 4 curves

and represent the time taken by our model, the corresponding sampling and GRASTA [17]

recovery (plus training) times and the total time to construct the entire matrix P (horizontal

line). And Fig. 2 shows the scatter plot of computational speedup vs. KL divergence (over 3

repeated set of experiments on all the datasets and sampling rates). Our model achieved at

least 30 times decrease in computation time in the low sampling regime (< 1%). Around

0.5% − 0.6% sub-sampling (where the KL and BD are already < e−5), the computation

speed-up factor averaged over all datasets was 45× . This shows that our model achieved

good accuracy (low KL and BD) together with high computational speed up in tandem,

especially, for 0.4% − 0.7% sampling rates. However note from Fig. 2 that there is a trade–

off between the speedup factor and approximation error (KL or BD). Overall the highest

computational speedup factor achieved at a recovery level of e−5 on KL and BD is around

50× (and this occured around 0.4% − 0.5% sampling rate, refer to Fig. 2). It was observed

that a speedup factor of upto 55× was obtained for Datasets C and D at 0.3% subsampling,

where the KL and BD were as low as e−5.5 (refer to Fig. 1 and the extended version of the

paper).

4.3 How stable is the estimated α-threshold (clinical significance)?

Our experiments suggest that the threshold is stable. Fig. 4 and Table 1 summarize the

clinical significance of our model. Fig. 4 show the error in estimating the true max

threshold, at 1 − α = 0.95 level of confidence. The x–axis corresponds to the 20 different

sampling rates used and y–axis shows the absolute difference of thresholds in log scale.

Observe that for sampling rates higher than 3%, the mean and maximum differences was

0.04 and 0.18. Note that the binning resolution of max.statistic used for constructing the

Null was 0.01. These results show that not only the global shape of the maximum Null

distribution is estimated to high accuracy (see Section 4.1) but also the shape and area in the

tail. To support this observation, we show the absolute differences of the estimated

thresholds on all the datasets at 4 different levels in Table 1. The errors for 1 − α = 0.95,

0.99 are at most 0.16. The increase in error for 1 − α > 0.995 is a sampling artifact and is

expected. Note that in a few cases, the error at 0.5% is slightly higher than that at 0.3%
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suggesting that the recovery is noisy (see Sec. 4.1 and the errorbars of Fig. 1). Overall the

estimated α-thresholds are both faithful and stable.

5 Conclusions and future directions

In this paper, we have proposed a novel method of efficiently approximating the

permutation testing matrix by first estimating the major singular vectors, then filling in the

missing values via matrix completion, and finally estimating the distribution of residual

values. Experiments on four different neuroimaging datasets show that we can recover the

distribution of the maximum Null statistic to a high degree of accuracy, while maintaining a

computational speedup factor of roughly 50×. While our focus has been on neuroimaging

problems, we note that multiple testing and False Discovery Rate (FDR) correction are

important issues in genomic and RNA analyses, and our contribution may offer enhanced

leverage to existing methodologies which use permutation testing in these settings[6].
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Figure 1.
KL (blue) and BD (red) measures between the true max Null distribution (given by the full

matrix P) and that recovered by our method (thick lines), along with the baseline naive

subsampling method (dotted lines). Results for Datasets A, B, C are shown here. Plot for

Dataset D is in the extended version of the paper.
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Figure 2.
Scatter plot of computational speedup vs. KL. The plot corresponds to the 20 different

samplings on all 4 datasets (for 5 repeated set of experiments) and the colormap is from

0.1% to 10% sampling rate. The x–axis is in log scale.
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Figure 3.
Computation time (in minutes) of our model compared to that of computing the entire

matrix P. Results are for the same three datasets as in Fig. 1. Please find the plot for Dataset

D in the extended version of the paper. The horizontal line (magenta) shows the time taken

for computing the full matrix P. The other three curves include : subsampling (blue),

GRASTA recovery (red) and total time taken by our model (black). Plots correspond to the

low sampling regime (< 1%) and note the jump in y–axis (black boxes). For reference, the

speedup factor at 0.4% sampling rate is reported at the bottom of each plot.
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Figure 4.
Error of estimated t statistic thresholds (red) for the 20 different subsampling rates on the

four Datasets. The confidence level is 1 − α = 0.95. The y-axis is in log–scale. For

reference, the thresholds given by baseline model (blue) are included. Note that each plot

corresponds to two datasets.
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Table 1

Errors of estimated t statistic thresholds on all datasets at two different subsampling rates.

Data name Sampling rate 1 – α level

0.95 0.99 0.995 0.999

A 0.3% 0.16 0.11 0.14 0.07

0.5% 0.13 0.08 0.10 0.03

B 0.3% 0.02 0.05 0.03 0.13

0.5% 0.02 0.07 0.08 0.04

C 0.3% 0.04 0.13 0.21 0.20

0.5% 0.01 0.07 0.07 0.05

D 0.3% 0.08 0.10 0.27 0.31

0.5% 0.12 0.13 0.25 0.22
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