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Abstract

Introduction: Cervical intraepithelial neoplasias (CIN) represent precursor lesions of cervical cancer. These neoplastic lesions
are traditionally subdivided into three categories CIN 1, CIN 2, and CIN 3, using microscopical criteria. The relation between
grades of cervical intraepithelial neoplasia (CIN) and its fractal dimension was investigated to establish a basis for an
objective diagnosis using the method proposed.

Methods: Classical evaluation of the tissue samples was performed by an experienced gynecologic pathologist. Tissue
samples were scanned and saved as digital images using Aperio scanner and software. After image segmentation the box
counting method as well as multifractal methods were applied to determine the relation between fractal dimension and
grades of CIN. A total of 46 images were used to compare the pathologist’s neoplasia grades with the predicted groups
obtained by fractal methods.

Results: Significant or highly significant differences between all grades of CIN could be found. The confusion matrix,
comparing between pathologist’s grading and predicted group by fractal methods showed a match of 87.1%. Multifractal
spectra were able to differentiate between normal epithelium and low grade as well as high grade neoplasia.

Conclusion: Fractal dimension can be considered to be an objective parameter to grade cervical intraepithelial neoplasia.
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Introduction

Prior to becoming invasive, cervical cancer is preceded by

progressively worsening lesions that remain inside of the epithe-

lium, known as cervical intraepithelial neoplasia (CIN). These

precursor lesions are typically classified into: CIN 1 (‘‘mild

dysplasia’’) or low grade, CIN 2 (‘‘moderate dysplasia’’), and

CIN 3 (for a spectrum that includes ‘‘severe dysplasia and

carcinoma in situ’’) also referred to as high grade squamous

intraepithelial lesions [1,2].

For patients with CIN 1 lesions, the typical treatment is watchful

waiting, because these lesions often turn back into normal tissue.

In contrast, for patients with CIN 2 and 3 lesions, the

recommended strategy is excision, intended to stop progress

toward carcinoma, followed by intensified surveillance [3,4]. Thus,

cervical cancer is considered largely curable if caught before it

progresses to invasive disease, and most national as well as

international guidelines propose early detection, individualised

treatment, prevention programs and follow-up procedures [3–6].

Currently, lesions are typically graded by pathologists using

microscopes to assess tissue samples based on features such as the

amount of dysplastic cells. CIN (synonyms: dysplasia, squamous

intraepithelial lesion, SIL) is characterized by abnormal matura-

tion and architectural abnormalities with atypical squamous cells

showing nuclear atypia/pleomorphism. Based on the degree of

architectural abnormalities and cytologic atypia, CIN is tradition-

ally classified in low-grade (mild dysplasia), intermediate (moderate

dysplasia) and high-grade (severe dysplasia/cancer in situ). While

CIN 1 (mild dysplasia) shows low-grade architectural abnormality

of atypical cells confined to the lower third epithelium, CIN 2 and

CIN 3 are associated with markedly atypical squamous cells

confined to more than half, but less than upper third of the

epithelium (CIN 2) or even replace almost the entire native

epithelium (CIN 3). Cervical intraepithelial neoplasia grade 2

(CIN 2) and grade 3 (CIN 3) are also regarded as high grade

squamous intraepithelial lesions (HGSIL) according to the

Bethesda- classification system [7]. In difficult and/or uncertain

cases, immunohistochemical methods can be used to increase the

accuracy of diagnosis [8].

In any case, grading depends on the expertise of the pathologist

because these methods are semi-quantitative and not objective.

Indeed there is no parameter in use that quantifies CIN grades

based on an exact mathematical method [3–6].

One mathematical model that may be able to resolve this

problem is fractal analysis. Fractal methods have been widely

applied in medicine for many years and are especially relevant to
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the study of cancer due to the surface characteristics of the

spreading tumor and tissue characteristics that may include

protein deposits within the cytoplasm or staining anomalies with

known stains or changes in nuclear morphology. Fractal dimen-

sions have been used to assess tumor growth [11,12,13],

chemotherapy-induced apoptosis [14], hematological cell pheno-

types [15], grades of anal intraepithelial neoplasia [16], cerebral

arteriovenous malformations [17], and oligodendrogliomas [18].

Recently, fractal analyses have been reviewed for chromatin in

[19] and in neurosciences in [20,21].

Some investigators have attempted to develop objective fractal

analysis-based methods for grading CIN, but a practical and

reliable method has not yet been found. Sedivy et al., for instance,

concluded that the fractal dimension of single nuclei differed

between CIN 1, CIN 2 and CIN 3 [9], but their method involves

the very cumbersome task of extracting individual nuclei.

Jayalalitha and Uthayakumar also used fractal methods to show

how normal tissue could be divided from CIN lesions in general

[10].

The current study proposes a new approach for using fractal

methods to objectively grade CIN and normal tissue. Having a

predefined ROI selected out of each tissue sample, we show how

box counting can be applied to digital images of suspicious

epithelium. In addition multifractal analysis was also investigated

as differences in complexity throughout a biological image such as

squamous epithelium can be attributed to multiple processes

acting on the tissue during development and at different scales

such that both microscopic and macroscopic influences determine

the final structural attributes of the tissue. Fractal and multifractal

analysis provide an easy, inexpensive and reliable method sensitive

enough to establish an automated image diagnosis system from

Haematoxylin-Eosin stained tissue samples.

Methods

Material Acquisition
Tissue samples, already described in a previous study were used

for this analysis [22]. After Haematoxylin-Eosin (H&E) staining, a

pathologist diagnosed the grades of CIN according to international

guidelines. Regions of interest with constant size were chosen,

focusing exactly on the suspicious part of the epithelium and

avoiding background such as the object slide itself or non-epithelial

tissue representing all grades of CIN as well as normal tissue to

obtain best comparable and relevant image details for both ways of

calculating fractal dimensions used later on. Overall, 46 samples

were evaluated and categorized into 4 groups: CIN 1 (8 samples),

CIN 2 (6 samples), CIN 3 (17 samples) and normal epithelium (15

samples). Figure 1 shows examples of these morphologies.

Image acquisition and segmentation
Histological slices were digitally scanned using a digital whole

slide scanner (Scan Scope T3, Aperio, Leica, Vienna) at a

Figure 1. Morphology of CIN grades and normal epithelium. All samples are Haematoxylin-Eosin (H&E) stained and digitally scanned at a
magnification of 40. Boxes show witch area to focus on. (A) Atypical cells in the first third are typically for CIN 1. (B) CIN 2 contains atypical cells in the
lower two thirds of the epithelium. (C) If the whole epithelium is covered by atypical cells, the grade is called CIN 3. (D) Atypical cells are missing in
normal epithelium.
doi:10.1371/journal.pone.0108457.g001
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magnification of 40 (100000 pixel/inch). Images were saved in 24

Bit RGB colour format. To obtain comparable extracts out of the

whole images, tiles of 102461024 pixels showing the suspicious

epithelium were saved as TIFF files using ImageScope Viewer

(Aperio) separately. Initially, the complete image of a histological

slice was about 700 MB, tiles reduced to approximately 3.5 MB.

Segmentation and monofractal (global) fractal analysis was

performed with the software IQM [25]. Multifractal analysis,

which provides a multifractal spectrum and based on box counting

was performed with public domain software Fraclac V2.5, and

available as a Plugin to ImageJ [24,26]. Nuclei can be seen very

clearly using relative RGB segmentation with a ratio setting of 41

in IQM (Figure 2B). Binary images were created by setting the

blue nuclei to white and every other part of the image to black. In

order to improve image segmentation quality, small residual blobs

were eliminated. Blobs were identified by the absence of adjacent

pixels so that only nuclei remained for assessment [25]. Magnified

sample images can be seen in Figures 2C and 2D.

Box counting method
Theoretical fractals are self-similar objects following a scaling

relationship or power law when certain measures are calculated at

different scales. Biological objects may have fractal characteristics

and are scale-invariant [23]. A measured value (e.g., length of an

object) changes according to the resolution that the object is

watched at. There exist several methods in order to estimate a

value for the fractal dimension of objects in digital images, but the

box counting method is inherently very well suited for that

purpose. It uses boxes, which can be easily overlaid on an image’s

pixel grid. To determine the box counting dimension dBOX, the

size r of the boxes building the grid is defined and the number of

boxes N(r) covering the object in an image determined. The

formal relation is:

dBOX ~{ lim
r?0

logN(r)

r

The limit cannot be calculated for digitized images, because of

the discrete nature of the pixel grid. Therefore, an estimation of

the fractal dimension is determined.

If the size of the box is exactly the length of an image’s margin, r
equals 1. In that case N(r) equals 1, too, because, certainly the

object is inside this box. By halving the length (r = 1/2), four

boxes result and the object could be overlaid by 1 up to 4 boxes,

yielding N(r) to be 1 up to 4. The box length can further be

divided into quarters (r = 1/4), eighths (r = 1/8), and so on,

increasing the resolution step by step. If N(r) and r are double

logarithmically plotted a scatter plot can be produced. Linear

regression gives an approximation with a straight line and finally,

the negative slope of this line equals dBOX.

Multifractal method
We also used the basic box counting data gathering method to

calculate the multifractal spectra. Multifractal spectra assess how

scaling varies over an image. The parameter we used was the

Figure 2. The use of RGB relative makes nuclei appearing blue (A). B shows the same image having set blue to white and all other pixels to
black. The picture containing blobs (C) can be improved by erasing them to focus on the nuclei (D).
doi:10.1371/journal.pone.0108457.g002
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generalized dimension spectra, denoted Dq vs q, calculated using

FracLac for ImageJ [24,26]. Dq vs q spectra is calculated by setting

an arbitrary range for q, = 210 to +10.75 with 0.25 increments.

The multifractal spectrum has been most often estimated using the

box counting method:

Dq~ lim
e?0

1

q{1

log
PN(e)

u~1 ½pu(e)�q

loge

Figure 3. Relation between grades of neoplasia and normal epithelium. (A) Multifractal spectra and (B) Box plots of box counting dimension
dBOX.
doi:10.1371/journal.pone.0108457.g003
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Here e is the scaling factor, index u labels the individual box and

pu(e) denotes the relative weight of the uth box. For finite data sets

pu(e) is approximated by

pu(e)~
Nu(e)

N
,

where Nu(e) is the number of points falling into the uth box [27].

Statistics
Statistics were calculated using SPSS 20 (IBM, USA). In some

cases it was possible to extract more than one area from the

histological slice of one patient. To keep statistics valid, the median

was calculated and counted as one sample. T-tests, ANOVA,

Tukey HSD post hoc tests and Kolmogorov Smirnov-tests were

used where applicable. Student’s t-tests were performed for

comparing low grade neoplasia (including CIN 1) to high grade

neoplasia (including CIN 2 and CIN 3). In every case a p-value

was considered to be significant if p,0.05 or highly significant if

p,0.01. To evaluate sensitivity and specificity of the new method

a confusion matrix assuming the pathologist’s grading being the

correct one was constructed.

Results

The Dq vs q multifractal spectra we generated for the images

indicated that there was some variation in the degree of

multifractal scaling in between the neoplasia groups and between

the neoplasia groups and the normal epithelium group. Based on

ANOVA for the scales of q applied, there were significant

differences between all groups and also between low and high

grade neoplasia and normal epithelium. Tukey HSD post hoc tests

indicated that for the group comparisons (CINu1, CINu2, CINu3
and normal epithelium), CINu3 was significantly different to

normal epithelium (pu,u0.001), CINu1 (pu,u0.01) and CINu2
(pu,u0.05), and normal epithelium further significantly different to

CINu1 (pu,u0.05) and CINu2 (pu,u0.01). These results held for

all comparisons between -10u#uqu#u10.75, up to qu.u27 when

CINu2 ceased to be significantly different to CINu3, and qu.u
24.25 when no so significant difference could be seen between

normal epithelium and CINu1 (see Figure 3A). Based on the box

counting dimension dBOX, however, a clear dependency emerged.

Figure 3B shows box plots of the results. The lowest fractal

dimension (dBOXu= u1.460) was found in normal epithelium and

the highest (dBOXu= u1.9507) in CIN 3. Table 1 shows the

minimum and maximum values as well as median values of dBOX,

Table 1. Detailed values of fractal dimensions as well as the calculated values of minimum, maximum and median.

normal epithelium CIN 1 CIN 2 CIN 3 low grade neoplasia high grade neoplasia

n 15 8 6 17 8 23

median 1,59 1,63 1,71 1,80 1,63 1,78

min 1,46 1,55 1,63 1,66 1,55 1,63

max 1,67 1,74 1,78 1,95 1,74 1,95

fractal dimension dBOX 1,67 1,74 1,78 1,95 1,74 1,95

1,67 1,67 1,77 1,87 1,67 1,87

1,67 1,66 1,72 1,86 1,66 1,86

1,65 1,64 1,70 1,83 1,64 1,83

1,62 1,62 1,68 1,82 1,62 1,82

1,61 1,58 1,63 1,82 1,58 1,82

1,60 1,56 - 1,81 1,56 1,81

1,59 1,55 - 1,80 1,55 1,80

1,58 - - 1,80 - 1,80

1,57 - - 1,79 - 1,79

1,56 - - 1,79 - 1,79

1,55 - - 1,78 - 1,78

1,52 - - 1,77 - 1,78

1,51 - - 1,77 - 1,77

1,46 - - 1,75 - 1,77

- - - 1,75 - 1,77

- - - 1,66 - 1,75

- - - - - 1,75

- - - - - 1,72

- - - - - 1,70

- - - - - 1,68

- - - - - 1,66

- - - - - 1,63

Cases are grouped into normal epithelium and according to the grade of neoplasia.
doi:10.1371/journal.pone.0108457.t001
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calculated out of n cases grouped in normal epithelium, low grade

neoplasia, high grade neoplasia and CIN 1, CIN 2, CIN 3.

The medians of dBOX increase according to the grade of

neoplasia from 1.59 in normal epithelium to 1.80 in CIN 3 and

1.78 in high grade neoplasia.

Considering minimum and maximum values of dBOX, it can be

seen that groups do overlap to some extent, e.g. the maximum of

dBOX for normal epithelium reaches the median of dBOX for CIN

1.

All groups were normally distributed. ANOVA and Tukey HSD

post hoc tests yielded significant results: CIN 1 was highly

significantly different from CIN 3 (p,0.01), and normal epithe-

lium was highly significantly different from both CIN 2 (p,0.01)

and CIN 3 (p,0.01). In the significantly different category, CIN 1

differed from CIN 2 (p = 0.049) and CIN 2 from CIN 3

(p = 0.028).

The confusion matrix (Table 2) gives details about the reliability

of the method. Comparing the CIN grade predicted by the box

counting dimension to the pathologist’s grading, corresponding

results were achieved in 65.2% of the cases. CIN 3 matched in

82.4%, CIN 2 in 50%, CIN 1 in 50% and normal epithelium in

60% of cases.

For further statistical examinations, two groups were formed:

high-grade (CIN 2 and 3) and low-grade (CIN 1) neoplasia.

Statistical comparison between low grade neoplasia and high

grade neoplasia using multifractal spectra provided a highly

significant result (Student’s t-test, pu,u0.002) and is depicted in

Figure 4A. For box counting dimension dBOX, Kolmogorov

Smirnov-testing confirmed normal distributions and tu-utesting

yielded a highly significant (p,0.01) difference between the two

groups as can be seen in Figure 4B. Overall, the lowest value

measured for the fractal dimension was 1.5460 (low-grade

neoplasia) and the highest was 1.9507 in the group of high-grade

neoplasia.

The confusion matrix of the high grade group and the low grade

case yielded an overall success of 87.1% as can be seen in Table 3.

Low-grade neoplasia matched in 87.5% of the cases and high-

grade neoplasia matched in 86.96% of the cases.

Discussion

Recent studies by others have shown that quantitative CIN

grading using fractal methods is possible, but those studies have

had major limitations. One approach was to determine the fractal

dimension of sub-images of single nuclei [9], but it is cumbersome

and time consuming to segment and extract many nuclei from an

image. In addition the form of the nuclei is dependent on the

section and therefore slide processing is a confounding factor with

this method. In another study the fractal dimension was used to

discriminate between normal tissue and abnormal tissue (CIN 1,

CIN 2, CIN 3) using the whole image of epithelium [10].

Unfortunately, the discrimination of the distinct grades of

neoplasia was not shown in this study.

The methods we propose have an advantage over the single

nuclei approach in being much easier to implement and

incorporate information from the whole of the tissue. Image

segmentation using a ROI to apply fractal analysis (common box-

counting as well as multifractal spectra) also improves on the state

of the art by presenting a high correspondence with the

pathologist’s grading despite a rather low number of images

under investigation. It is a fact that there are actually only few

cases, especially in the groups CIN 1 and CIN 2. However, the

trend of increasing fractal dimension according to the grade of

neoplasia is considerable and it can be assumed that further studies
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will confirm our findings. Multifractality is relevant to patterns in

which a spectrum of fractal dimensions can be identified rather

than a single global dimension. The theory and calculations

behind multifractal measures are available elsewhere [24,28].

Multifractal systems are common in nature and our analysis

indicates that the type of lesions discussed in this paper also has

these characteristics and may provide additional information to

the clinician with reference to the scale of investigation. By using

these methods we show, that it is possible to find significant or

highly significant differences between all grades of CIN, between

higher grades and normal epithelium and between low and high

grade lesions as applied in clinical pathology classification.

Figure 4. High grade and low grade neoplasia. (A) Multifractal spectra. Error bars represent standard errors of mean. (B) Box plots of box
counting dimension dBOX.

doi:10.1371/journal.pone.0108457.g004
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Although we found one potential limitation in that there was no

statistically significant difference between normal epithelium and

low grade neoplasia using the global box counting method.

Multifractal analysis, however, did show significant differences

between low grade neoplasia and normal epithelium and thus

provides a more sensitive measure for certain scales. The

sensitivity of differentiating between low grade neoplasia and

normal epithelium images as well as low grade to high grade

neoplasia using the multifractal spectrum highlights the differences

that may be involved in the pathophysiological process that not

only characterize the formation of the low grade neoplasia but

suggests a different process that may be involved in the

pathophysiological processes leading to high grade neoplasia.

The limitation of the box counting method not to differentiate

between low grade neoplasia and normal epithelium is not likely to

cause problems when using automated image diagnosis in clinical

practice, because surgery is inappropriate for low grade neoplasia

as well as for normal epithelium. In addition screening is carried

out annually and therefore the likelihood of detecting the low

grade neoplasia increases. This is further improved by low grade

neoplasia being significantly different to the high grade neoplasia

shown in our experiments. As with all clinical studies of this

nature, the pathologist diagnosis may in some instances be

inaccurate, especially when identifying differences between normal

and grade CIN 1. As such the classification system used by the

pathologist may also have some bearing on the accuracy of any

fractal analysis in the classification task.

Conclusions

We have demonstrated that objective parameters for grading of

CIN can be found by applying the proposed methods including

image segmentation and fractal analyses. Compared to other

approaches, the proposed methods are fast, easy and reliable. The

next step in developing this technology is to establish a clinical

standard based on fractal measures. Involvement of a larger

number of pathologists as well as a larger number of images could

help to reinforce this effort. Since the method seems to be very

appropriate, a comparison study of the proposed objective method

and the rather subjective grading in clinical practice could be

performed. Another application could be the development of

software that yields a specific prognosis, e.g. using fractal

dimensions to predict if a CIN 1 lesion is more likely to turn

into CIN 2 or might become normal tissue again, or to further

characterize changes within the low grade neoplasia and

specifically CIN 3 identified in multifractal spectra.
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