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Abstract

We consider the problem of estimating high-dimensional Gaussian graphical models

corresponding to a single set of variables under several distinct conditions. This problem is

motivated by the task of recovering transcriptional regulatory networks on the basis of gene

expression data containing heterogeneous samples, such as different disease states, multiple

species, or different developmental stages. We assume that most aspects of the conditional

dependence networks are shared, but that there are some structured differences between them.

Rather than assuming that similarities and differences between networks are driven by individual

edges, we take a node-based approach, which in many cases provides a more intuitive

interpretation of the network differences. We consider estimation under two distinct assumptions:

(1) differences between the K networks are due to individual nodes that are perturbed across

conditions, or (2) similarities among the K networks are due to the presence of common hub nodes

that are shared across all K networks. Using a row-column overlap norm penalty function, we

formulate two convex optimization problems that correspond to these two assumptions. We solve

these problems using an alternating direction method of multipliers algorithm, and we derive a set

of necessary and sufficient conditions that allows us to decompose the problem into independent

subproblems so that our algorithm can be scaled to high-dimensional settings. Our proposal is

illustrated on synthetic data, a webpage data set, and a brain cancer gene expression data set.
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1. Introduction

Graphical models encode the conditional dependence relationships among a set of p

variables (Lauritzen, 1996). They are a tool of growing importance in a number of fields,

including finance, biology, and computer vision. A graphical model is often referred to as a

conditional dependence network, or simply as a network. Motivated by network

terminology, we can refer to the p variables in a graphical model as nodes. If a pair of

variables are conditionally dependent, then there is an edge between the corresponding pair

of nodes; otherwise, no edge is present.

Suppose that we have n observations that are independently drawn from a multivariate

normal distribution with covariance matrix Σ. Then the corresponding Gaussian graphical

model (GGM) that describes the conditional dependence relationships among the variables is

encoded by the sparsity pattern of the inverse covariance matrix, Σ−1 (see, e.g., Mardia et

al., 1979; Lauritzen, 1996). That is, the jth and j′ th variables are conditionally independent

if and only if (Σ−1)jj′ = 0. Unfortunately, when p > n, obtaining an accurate estimate of Σ−1

is challenging. In such a scenario, we can use prior information—such as the knowledge that

many of the pairs of variables are conditionally independent—in order to more accurately

estimate Σ−1 (see, e.g., Yuan and Lin, 2007a; Friedman et al., 2007; Banerjee et al., 2008).

In this paper, we consider the task of estimating K GGMs on a single set of p variables under

the assumption that the GGMs are similar, with certain structured differences. As a

motivating example, suppose that we have access to gene expression measurements for n1

lung cancer samples and n2 normal lung samples, and that we would like to estimate the

gene regulatory networks underlying the normal and cancer lung tissue. We can model each

of these regulatory networks using a GGM. We have two obvious options.

1. We can estimate a single network on the basis of all n1 + n2 tissue samples. But this

approach overlooks fundamental differences between the true lung cancer and

normal gene regulatory networks.

2. We can estimate separate networks based on then1 cancer and n2 normal samples.

However, this approach fails to exploit substantial commonality of the two

networks, such as lung-specific pathways.

In order to effectively make use of the available data, we need a principled approach for

jointly estimating the two networks in such a way that the two estimates are encouraged to

be quite similar to each other, while allowing for certain structured differences. In fact, these

differences may be of scientific interest.

Another example of estimating multiple GGMs arises in the analysis of the conditional

dependence relationships among p stocks at two distinct points in time. We might be

interested in detecting stocks that have differential connectivity with all other stocks across

the two time points, as these likely correspond to companies that have undergone significant

changes. Yet another example occurs in the field of neuroscience, in which it is of interest to

learn how the connectivity of neurons changes over time.
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Past work on joint estimation of multiple GGMs has assumed that individual edges are

shared or differ across conditions (see, e.g., Kolar et al., 2010; Zhang and Wang, 2010; Guo

et al., 2011; Danaher et al., 2013); here we refer to such approaches as edge-based. In this

paper, we instead take a node-based approach: we seek to estimate K GGMs under the

assumption that similarities and differences between networks are driven by individual

nodes whose patterns of connectivity to other nodes are shared across networks, or differ

between networks. As we will see, node-based learning is more powerful than edge-based

learning, since it more fully exploits our prior assumptions about the similarities and

differences between networks.

More specifically, in this paper we consider two types of shared network structure.

1. Certain nodes serve as highly-connected hub nodes. We assume that the same

nodes serve as hubs in each of the K networks. Figure 1 illustrates a toy example of

this setting, with p = 5 nodes and K = 2 networks. In this example, the second

variable, X2, serves as a hub node in each network. In the context of transcriptional

regulatory networks, X2 might represent a gene that encodes a transcription factor

that regulates a large number of downstream genes in all K contexts. We propose

the common hub (co-hub) node joint graphical lasso (CNJGL), a convex

optimization problem for estimating GGMs in this setting.

2. The networks differ due to particular nodes that areperturbed across conditions,

and therefore have a completely different connectivity pattern to other nodes in the

K networks. Figure 2 displays a toy example, with p = 5 nodes and K = 2 networks;

here we see that all of the network differences are driven by perturbation in the

second variable, X2. In the context of transcriptional regulatory networks, X2 might

represent a gene that is mutated in a particular condition, effectively disrupting its

conditional dependence relationships with other genes. We propose the perturbed-

node joint graphical lasso (PNJGL), a convex optimization problem for estimating

GGMs in this context.

Node-based learning of multiple GGMs is challenging, due to complications resulting from

symmetry of the precision matrices. In this paper, we overcome this problem through the use

of a new convex regularizer.

The rest of this paper is organized as follows. We introduce some relevant background

material in Section 2. In Section 3, we present the row-column overlap norm (RCON), a

regularizer that encourages a matrix to have a support that is the union of a set of rows and

columns. We apply the RCON penalty to a pair of inverse covariance matrices, or to the

difference between a pair of inverse covariance matrices, in order to obtain the CNJGL and

PNJGL formulations just described. In Section 4, we propose an alternating direction

method of multipliers (ADMM) algorithm in order to solve these two convex formulations.

In order to scale this algorithm to problems with many variables, in Section 5 we introduce a

set of simple conditions on the regularization parameters that indicate that the problem can

be broken down into many independent subproblems, leading to substantial algorithm

speed-ups. In Section 6, we apply CNJGL and PNJGL to synthetic data, and in Section 7 we
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apply them to gene expression data and to webpage data. The Discussion is in Section 8.

Proofs are in the Appendix.

A preliminary version of some of the ideas in this paper appear in Mohan et al. (2012).

There the PNJGL formulation was proposed, along with an ADMM algorithm. Here we

expand upon that formulation and present the CNJGL formulation, an ADMM algorithm for

solving it, as well as comprehensive results on both real and simulated data. Furthermore, in

this paper we discuss theoretical conditions for computational speed-ups, which are critical

to application of both PNJGL and CNJGL to data sets with many variables.

2. Background on High-Dimensional GGM Estimation

In this section, we review the literature on learning Gaussian graphical models.

2.1 The Graphical Lasso for Estimating a Single GGM

As was mentioned in Section 1, estimating a single GGM on the basis of n independent and

identically distributed observations from a Np(0, Σ) distribution amounts to learning the

sparsity structure of Σ−1 (Mardia et al., 1979; Lauritzen, 1996). When n > p, one can

estimate Σ−1 by maximum likelihood. But in high dimensions when p is large relative to n,

this is not possible because the empirical covariance matrix is singular. Consequently, a

number of authors (among others, Yuan and Lin, 2007a; Friedman et al., 2007; Ravikumar

et al., 2008; Banerjee et al., 2008; Scheinberg et al., 2010; Hsieh et al., 2011) have

considered maximizing the penalized log likelihood

(1)

where S is the empirical covariance matrix, λ is a nonnegative tuning parameter, 

denotes the set of positive definite matrices of size p, and ||Θ||1 = Σi,j|Θij|. The solution to (1)

serves as an estimate of Σ−1, and a zero element in the solution corresponds to a pair of

variables that are estimated to be conditionally independent. Due to the ℓ1 penalty

(Tibshirani, 1996) in (1), this estimate will be positive definite for any λ > 0, and sparse

when λ is sufficiently large. We refer to (1) as the graphical lasso. Problem (1) is convex,

and efficient algorithms for solving it are available (among others, Friedman et al., 2007;

Banerjee et al., 2008; Rothman et al., 2008; D’Aspremont et al., 2008; Scheinberg et al.,

2010; Witten et al., 2011).

2.2 The Joint Graphical Lasso for Estimating Multiple GGMs

Several formulations have recently been proposed for extending the graphical lasso (1) to

the setting in which one has access to a number of observations from K distinct conditions,

each with measurements on the same set of p variables. The goal is to estimate a graphical

model for each condition under the assumption that the K networks share certain

characteristics but are allowed to differ in certain structured ways. Guo et al. (2011) take a

non-convex approach to solving this problem. Zhang and Wang (2010) take a convex

approach, but use a least squares loss function rather than the negative Gaussian log
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likelihood. Here we review the convex formulation of Danaher et al. (2013), which forms

the starting point for the proposal in this paper.

Suppose that  are independent and identically distributed from a Np(0, Σk)

distribution, for k = 1, …, K. Here nk is the number of observations in the kth condition, or

class. Letting Sk denote the empirical covariance matrix for the kth class, we can maximize

the penalized log likelihood

(2)

where , λ1 and λ2 are nonnegative

tuning parameters, and  is a convex penalty function applied to each off

diagonal element of Θ1, …, ΘK in order to encourage similarity among them. Then the Θ̂1,

…, Θ̂K that solve (2) serve as estimates for (Σ1)−1, …, (ΣK)−1. Danaher et al. (2013) refer to

(2) as the joint graphical lasso (JGL). In particular, they consider the use of a fused lasso

penalty (Tibshirani et al., 2005),

(3)

on the differences between pairs of network edges, as well as a group lasso penalty (Yuan

and Lin, 2007b),

(4)

on the edges themselves. Danaher et al. (2013) refer to problem (2) combined with (3) as the

fused graphical lasso (FGL), and to (2) combined with (4) as the group graphical lasso

(GGL).

FGL encourages the K network estimates to have identical edge values, whereas GGL

encourages the K network estimates to have a shared pattern of sparsity. Both the FGL and

GGL optimization problems are convex. An approach related to FGL and GGL is proposed

in Hara and Washio (2013).

Because FGL and GGL borrow strength across all available observations in estimating each

network, they can lead to much more accurate inference than simply learning each of the K

networks separately.

But both FGL and GGL take an edge-based approach: they assume that differences between

and similarities among the networks arise from individual edges. In this paper, we propose a

node-based formulation that allows for more powerful estimation of multiple GGMs, under
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the assumption that network similarities and differences arise from nodes whose

connectivity patterns to other nodes are shared or disrupted across conditions.

3. Node-Based Joint Graphical Lasso

In this section, we first discuss the failure of a naive approach for node-based learning of

multiple GGMs. We then present a norm that will play a critical role in our formulations for

this task. Finally, we discuss two approaches for node-based learning of multiple GGMs.

3.1 Why is Node-Based Learning Challenging?

At first glance, node-based learning of multiple GGMs seems straightforward. For instance,

consider the task of estimating K = 2 networks under the assumption that the connectivity

patterns of individual nodes differ across the networks. It seems that we could simply

modify (2) combined with (3) as follows,

(5)

where  is the jth column of the matrix Θk. This amounts to applying a group asso (Yuan

and Lin, 2007b) penalty to the columns of Θ1 − Θ2. Equation (5) seems to accomplish our

goal of encouraging . We will refer to this as the naive group lasso approach.

In (5), we have applied the group lasso using p groups; the jth group is the jth column of Θ1

− Θ2. Due to the symmetry of Θ1 and Θ2, there is substantial overlap among the p groups:

the (i, j)th element of Θ1 − Θ2 is contained in both the ith and jth groups. In the presence of

overlapping groups, the group lasso penalty yields estimates whose support is the

complement of the union of groups (Jacob et al., 2009; Obozinski et al., 2011). Figure 3(a)

displays a simple example of the results obtained if we attempt to estimate (Σ1)−1 − (Σ2)−1

using (5). The figure reveals that (5) cannot be used to detect node perturbation.

A naive approach to co-hub detection is challenging for a similar reason. Recall that the jth

node is a co-hub if the jth columns of both Θ1 and Θ2 contain predominantly non-zero

elements, and let diag(Θ) denote a matrix consisting of the diagonal elements of Θ. It is

tempting to formulate the optimization problem

where the group lasso penalty encourages the off-diagonal elements of many of the columns

to be simultaneously zero in Θ1 and Θ2. Unfortunately, once again, the presence of

overlapping groups encourages the support of the matrices Θ1 and Θ2 to be the intersection

of a set of rows and columns, as in Figure 3(a), rather than the union of a set of rows and

columns.
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3.2 Row-Column Overlap Norm

Detection of perturbed nodes or co-hub nodes requires a penalty function that, when applied

to a matrix, yields a support given by the union of a set of rows and columns. We now

propose the row-column overlap norm (RCON) for this task.

Definition 1: The row-column overlap norm (RCON) induced by a matrix norm ||.|| is

defined as

It is easy to check that Ω is indeed a norm for all matrix norms ||.||. Also, when ||.|| is

symmetric in its argument, that is, ||V || = ||VT||, then

Thus if || · || is an ℓ1/ℓ1 norm, then .

We now discuss the motivation behind Definition 1. Any symmetric matrix Θk can be (non-

uniquely) decomposed as Vk + (Vk)T; note that Vk need not be symmetric. This amounts to

interpreting Θk as a set of columns (the columns of Vk) plus a set of rows (the columns of Vk,

transposed). In this paper, we are interested in the particular case of RCON penalties where

||.|| is an ℓ1/ℓq norm, given by , where 1 ≤ q ≤ ∞. With a little abuse of

notation, we will let Ωq denote Ω when ||.|| is given by the ℓ1/ℓq norm. Then Ωq encourages

Θ1, Θ2, …, ΘK to decompose into Vk and (Vk)T such that the summed ℓq norms of all of the

columns (concatenated over V1, …, VK) is small. This encourages structures of interest on

the columns and rows of Θ1, Θ2, …, ΘK.

To illustrate this point, in Figure 3 we display schematic results obtained from estimating a 5

× 5 matrix subject to the RCON penalty Ωq, for q = 1, 2, and ∞. We see from Figure 3(b)

that when q = 1, the RCON penalty yields a matrix estimate with unstructured sparsity;

recall that Ω1 amounts to an ℓ1 penalty applied to the matrix entries. When q = 2 or q = ∞,

we see from Figures 3(c)–(d) that the RCON penalty yields a sparse matrix estimate for

which the non-zero elements are a set of rows plus a set of columns|that is, the union of a set

of rows and columns.
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We note that Ω2 can be derived from the overlap norm (Obozinski et al., 2011; Jacob et al.,

2009) applied to groups given by rows and columns of Θ1, …, ΘK. Details are described in

Appendix E. Additional properties of RCON are discussed in Appendix A.

3.3 Node-Based Approaches for Learning GGMs

We discuss two approaches for node-based learning of GGMs. The first promotes networks

whose differences are attributable to perturbed nodes. The second encourages the networks

to share co-hub nodes.

3.3.1 Perturbed-node Joint Graphical Lasso—Consider the task of jointly estimating

K precision matrices by solving

(6)

We refer to the convex optimization problem (6) as the perturbed-node joint graphical lasso

(PNJGL). Let Θ̂1, Θ̂2, …, Θ̂K denote the solution to (6); these serve as estimates for (Σ1)−1,

…, (ΣK)−1. In (6), λ1 and λ2 are nonnegative tuning parameters, and q ≥ 1. When λ2 = 0, (6)

amounts simply to applying the graphical lasso optimization problem (1) to each condition

separately in order to separately estimate K networks. When λ2 > 0, we are encouraging

similarity among the K network estimates. When q = 1, we have the following observation.

Remark 2: The FGL formulation (Equations 2 and 3) is a special case of PNJGL (6) with q

= 1.

In other words, when q = 1, (6) amounts to the edge-based approach of Danaher et al. (2013)

that encourages many entries of Θ̂k × Θ̂k′ to equal zero.

However, when q = 2 or q = ∞, then (6) amounts to a node-based approach: the support of

Θ̂k − Θ̂k′ is encouraged to be a union of a few rows and the corresponding columns. These

can be interpreted as a set of nodes that are perturbed across the conditions. An example of

the sparsity structure detected by PNJGL with q = 2 or q = ∞ is shown in Figure 2.

3.3.2 Co-hub Node Joint Graphical Lasso—We now consider jointly estimating K

precision matrices by solving the convex optimization problem

(7)

We refer to (7) as the co-hub node joint graphical lasso (CNJGL) formulation. In (7), λ1 and

λ2 are nonnegative tuning parameters, and q ≥ 1. When λ2 = 0 then this amounts to a

graphical lasso optimization problem applied to each network separately; however, when λ2

> 0, a shared structure is encouraged among the K networks. In particular, (7) encourages
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network estimates that have a common set of hub nodes—that is, it encourages the supports

of Θ1, Θ2, …, ΘK to be the same, and the union of a set of rows and columns.

CNJGL can be interpreted as a node-based extension of the GGL proposal (given in

Equations 2 and 4, and originally proposed by Danaher et al., 2013). While GGL encourages

the K networks to share a common edge support, CNJGL instead encourages the networks to

share a common node support.

We now remark on an additional connection between CNJGL and the graphical lasso.

Remark 3: If q = 1, then CNJGL amounts to a modified graphical lasso on each network

separately, with a penalty of λ1 applied to the diagonal elements, and a penalty of λ1 + λ2/2

applied to the off-diagonal elements.

4. Algorithms

The PNJGL and CNJGL optimization problems (6, 7) are convex, and so can be directly

solved in the modeling environment cvx (Grant and Boyd, 2010), which calls conic interior-

point solvers such as SeDuMi or SDPT3. However, when applied to solve semi-definite

programs, second-order methods such as the interior-point algorithm do not scale well with

the problem size.

We next examine the use of existing first-order methods to solve (6) and (7). Several first-

order algorithms have been proposed for minimizing a least squares objective with a group

lasso penalty (as in Yuan and Lin, 2007b) in the presence of overlapping groups (Argyriou

et al., 2011; Chen et al., 2011; Mosci et al., 2010). Unfortunately, those algorithms cannot be

applied to the PNJGL and CNJGL formulations, which involve the RCON penalty rather

than simply a standard group lasso with overlapping groups. The RCON penalty is a variant

of the overlap norm proposed in Obozinski et al. (2011), and indeed those authors propose

an algorithm for minimizing a least squares objective subject to the overlap norm. However,

in the context of CNJGL and PNJGL, the objective of interest is a Gaussian log likelihood,

and the algorithm of Obozinski et al. (2011) cannot be easily applied.

Another possible approach for solving (6) and (7) involves the use of a standard first-order

method, such as a projected subgradient approach. Unfortunately, such an approach is not

straightforward, since computing the subgradients of the RCON penalty involves solving a

non-trivial optimization problem (to be discussed in detail in Appendix A). Similarly, a

proximal gradient approach for solving (6) and (7) is challenging because the proximal

operator of the combination of the overlap norm and the ℓ1 norm has no closed form.

To overcome the challenges outlined above, we propose to solve the PNJGL and CNJGL

problems using an alternating direction method of multipliers algorithm (ADMM; see, e.g.,

Boyd et al., 2010).

4.1 The ADMM Approach

Here we briefly outline the standard ADMM approach for a general optimization problem,
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(8)

ADMM is attractive in cases where the proximal operator of g(X) + h(X) cannot be easily

computed, but where the proximal operator of g(X) and the proximal operator of h(X) are

easily obtained. The approach is as follows (Boyd et al., 2010; Eckstein and Bertsekas,

1992; Gabay and Mercier, 1976):

1. Rewrite the optimization problem (8) as

(9)

where here we have decoupled g and h by introducing a new optimization variable,

Y.

2. Form the augmented Lagrangian to (9) by first forming the Lagrangian,

and then augmenting it by a quadratic function of X − Y,

where ρ is a positive constant.

3. Iterate until convergence:

a. Update each primal variable in turn by minimizing the augmented

Lagrangian with respect to that variable, while keeping all other variables

fixed. The updates in the kth iteration are as follows:

b. Update the dual variable using a dual-ascent update,

The standard ADMM presented here involves minimization over two primal variables, X

and Y. For our problems, we will use a similar algorithm but with more than two primal

variables. More details about the algorithm and its convergence are discussed in Section

4.2.4.
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4.2 ADMM Algorithms for PNJGL and CNJGL

Here we outline the ADMM algorithms for the PNJGL and CNJGL optimization problems;

we refer the reader to Appendix F for detailed derivations of the update rules.

4.2.1 ADMM Algorithm for PNJGL—Here we consider solving PNJGL with K = 2; the

extension for K > 2 is slightly more complicated. To begin, we note that (6) can be rewritten

as

(10)

We now reformulate (10) by introducing new variables, so as to decouple some of the terms

in the objective function that are difficult to optimize jointly:

(11)

The augmented Lagrangian to (11) is given by

(12)

In (12) there are six primal variables and four dual variables. Based on this augmented

Lagrangian, the complete ADMM algorithm for (6) is given in Algorithm 1, in which the

operator Expand is given by

where UDUT is the eigenvalue decomposition of a symmetric matrix A, and as mentioned

earlier, nk is the number of observations in the kth class. The operator  is given by

and is also known as the proximal operator corresponding to the ℓ1/ℓq norm. For q = 1, 2, ∞,

 takes a simple form (see, e.g., Section 5 of Duchi and Singer, 2009).
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Algorithm 1

ADMM algorithm for the PNJGL optimization problem (6)

4.2.2 ADMM Algorithm for CNJGL—The CNJGL formulation in (7) is equivalent to

(13)

One can easily see that the problem (13) is equivalent to the problem

(14)

in the sense that the optimal solution {Vi} to (13) and the optimal solution {Ṽi} to (14) have

the following relationship: Vi = Ṽi − diag(Ṽi) for i = 1, 2, …, K. We now present an ADMM

algorithm for solving (14). We reformulate (14) by introducing additional variables in order

to decouple some terms of the objective that are difficult to optimize jointly:
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(15)

The augmented Lagrangian to (15) is given by

(16)

The corresponding ADMM algorithm is given in Algorithm 2.

Algorithm 2

ADMM algorithm for the CNJGL optimization problem (7)
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4.2.3 Numerical Issues and Run-Time of the ADMM Algorithms—We set μ = 5, ρ

= 0.5 and tmax = 1000 in the PNJGL and CNJGL algorithms. In our implementation of these

algorithms, the stopping criterion for the inner loop (corresponding to a fixed ρ) is

where (Θi)(k) denotes the estimate of Θi in the kth iteration of the ADMM algorithm, and ε is

a tolerance that is chosen in our experiments to equal 10−4.

The periteration complexity of the ADMM algorithms for CNJGL and PNJGL (with K = 2)

is O(p3); this is the complexity of computing the SVD. On the other hand, the complexity of

a general interior point method is O(p6). In a small example with p = 30, run on an Intel

Xeon X3430 2.4Ghz CPU, the interior point method (using cvx, which calls Sedumi) takes 7

minutes to run, while the ADMM algorithm for PNJGL, coded in Matlab, takes only 0.58

seconds. When p = 50, the times are 3.5 hours and 2.1 seconds, respectively. Let Θ̂1, Θ̂2 and

Θ̄1, Θ̄2 denote the solutions obtained by ADMM and cvx, respectively. We observe that on

average, the error  is on the order of 10−4. Thus, the algorithm

has good empirical accuracy in recovering the optimal solution.

We now present a more extensive runtime study for the ADMM algorithms for PNJGL and

CNJGL. We ran experiments with p = 100, 200, 500 and with n1 = n2 = p/2. We generated

synthetic data as described in Section 6. Results are displayed in Figures 4(a)–(d), where the

panels depict the run-time and number of iterations required for the algorithm to terminate,

as a function of λ1, and with λ2 fixed. The number of iterations required for the algorithm to

terminate is computed as the total number of inner loop iterations performed in Algorithms 1

and 2. From Figures 4(b) and (d), we observe that as p increases from 100 to 500, the run-

times increase substantially, but never exceed several minutes.

Figure 4(a) indicates that for CNJGL, the total number of iterations required for algorithm

termination is small when λ1 is small. In contrast, for PNJGL, Figure 4(c) indicates that the

total number of iterations is large when λ1 is small. This phenomenon results from the use of

the identity matrix to initialize the network estimates in the ADMM algorithms: when λ1 is

small, the identity is a poor initialization for PNJGL, but a good initialization for CNJGL

(since for CNJGL, λ2 induces sparsity even when λ1 = 0).

4.2.4 Convergence of the ADMM Algorithm—Problem (9) involves two (groups of)

primal variables, X and Y; in this setting, convergence of ADMM has been established (see,

e.g., Boyd et al., 2010; Mota et al., 2011). However, the PNJGL and CNJGL optimization

problems involve more than two groups of primal variables, and convergence of ADMM in

this setting is an ongoing area of research. Indeed, as mentioned in Eckstein (2012), the

standard analysis for ADMM with two groups does not extend in a straightforward way to

ADMM with more than two groups of variables. Han and Yuan (2012) and Hong and Luo
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(2012) show convergence of ADMM with more than two groups of variables under

assumptions that do not hold for CNJGL and PNJGL. Under very minimal assumptions, He

et al. (2012) proved that a modified ADMM algorithm (with Gauss-Seidel updates)

converges to the optimal solution for problems with any number of groups. More general

conditions for convergence of the ADMM algorithm with more than two groups is left as a

topic for future work. We also leave for future work a reformulation of the CNJGL and

PNJGL problems as consensus problems, for which an ADMM algorithm involving two

groups of primal variables can be obtained, and for which convergence would be

guaranteed. Finally, note that despite the lack of convergence theory, ADMM with more

than two groups has been used in practice and often observed to converge faster than other

variants. As an example see Tao and Yuan (2011), where their ASALM algorithm (which is

the same as ADMM with more than two groups) is reported to be significantly faster than a

variant with theoretical convergence.

5. Algorithm-Independent Computational Speed-Ups

The ADMM algorithms presented in the previous section work well on problems of

moderate size. In order to solve the PNJGL or CNJGL optimization problems when the

number of variables is large, a faster approach is needed. We now describe conditions under

which any algorithm for solving the PNJGL or CNJGL problems can be sped up

substantially, for an appropriate range of tuning parameter values. Our approach mirrors

previous results for the graphical lasso (Witten et al., 2011; Mazumder and Hastie, 2012),

and FGL and GGL (Danaher et al., 2013). The idea is simple: if the solutions to the PNJGL

or CNJGL optimization problem are block-diagonal (up to some permutation of the

variables) with shared support, then we can obtain the global solution to the PNJGL or

CNJGL optimization problem by solving the PNJGL or CNJGL problem separately on the

variables within each block. This can lead to massive speed-ups. For instance, if the

solutions are block-diagonal with L blocks of equal size, then the complexity of our ADMM

algorithm reduces from O(p3) per iteration, to O((p/L)3) per iteration in each of L

independent subproblems. Of course, this hinges upon knowing that the PNJGL or CNJGL

solutions are block-diagonal, and knowing the partition of the variables into blocks.

In Sections 5.1–5.3 we derive necessary and sufficient conditions for the solutions to the

PNJGL and CNJGL problems to be block-diagonal. Our conditions depend only on the

sample covariance matrices S1, …, Sk and regularization parameters λ1, λ2. These conditions

can be applied in at most O(p2) operations. In Section 5.4, we demonstrate the speed-ups

that can result from applying these sufficient conditions.

Related results for the graphical lasso (Witten et al., 2011; Mazumder and Hastie, 2012) and

FGL and GGL (Danaher et al., 2013) involve a single condition that is both necessary and

sufficient for the solution to be block diagonal. In contrast, in the results derived below,

there is a gap between the necessary and sufficient conditions. Though only the sufficient

conditions are required in order to obtain the computational speed-ups discussed in Section

5.4, knowing the necessary conditions allows us to get a handle on the tightness (and,

consequently, the practical utility) of the sufficient conditions, for a particular value of the

tuning parameters.
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We now introduce some notation that will be used throughout this section. Let (I1, I2, …, IL)

be a partition of the index set {1, 2, …, p}, and let . Define the support of a

matrix Θ, denoted by supp(Θ), as the set of indices of the non-zero entries in Θ. We say Θ is

supported on T if supp(Θ) ⊆ T. Note that any matrix supported on T is block-diagonal

subject to some permutation of its rows and columns. Let |T| denote the cardinality of the set

T, and let Tc denote the complement of T. The scheme is displayed in Figure 5. In what

follows we use an ℓ1/ℓq norm in the RCON penalty, with q ≥ 1, and let .

5.1 Conditions for PNJGL Formulation to Have Block-Diagonal Solutions

In this section, we give necessary conditions and sufficient conditions on the regularization

parameters λ1, λ2 in the PNJGL problem (6) so that the resulting precision matrix estimates

Θ̂1, …, Θ̂K have a shared block-diagonal structure (up to a permutation of the variables).

We first present a necessary condition for Θ̂1 and Θ̂2 that minimize (6) with K = 2 to be

block-diagonal.

Theorem 4—Suppose that the matrices Θ̂1 and Θ̂2 that minimize (6) with K = 2 have

support T. Then, if q ≥ 1, it must hold that

(17)

(18)

Furthermore, if q > 1, then it must additionally hold that

(19)

Remark 5—If |Tc| = O(pr) with r > 1, then as p → ∞, (19) simplifies to

.

We now present a sufficient condition for Θ1̂, …, Θ̂K that minimize (6) to be block-diagonal.

Theorem 6—For q ≥ 1, a sufficient condition for the matrices Θ̂1, …, Θ̂K that minimize (6)

to each have support T is that

Furthermore, if q = 1 and K = 2, then the necessary conditions (17) and (18) are also

sufficient.
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When q = 1 and K = 2, then the necessary and sufficient conditions in Theorems 4 and 6 are

identical, as was previously reported in Danaher et al. (2013). In contrast, there is a gap

between the necessary and sufficient conditions in Theorems 4 and 6 when q > 1 and λ2 > 0.

When λ2 = 0, the necessary and sufficient conditions in Theorems 4 and 6 reduce to the

results laid out in Witten et al. (2011) for the graphical lasso.

5.2 Conditions for CNJGL Formulation to Have Block-Diagonal Solutions

In this section, we give necessary and sufficient conditions on the regularization parameters

λ1, λ2 in the CNJGL optimization problem (7) so that the resulting precision matrix

estimates Θ̂1, …, Θ̂K have a shared block-diagonal structure (up to a permutation of the

variables).

Theorem 7—Suppose that the matrices Θ̂1, Θ̂2, …, Θ̂K that minimize (7) have support T.

Then, if q ≥ 1, it must hold that

Furthermore, if q > 1, then it must additionally hold that

(20)

Remark 8—If |Tc| = O(pr) with r > 1, then as p → ∞, (20) simplifies to

.

We now present a sufficient condition for Θ1̂, Θ̂2, …, Θ̂K that minimize (7) to be block-

diagonal.

Theorem 9—A sufficient condition for Θ̂1, Θ2̂, …, Θ̂K that minimize (7) to have support T

is that

As was the case for the PNJGL formulation, there is a gap between the necessary and

sufficient conditions for the estimated precision matrices from the CNJGL formulation to

have a common block-diagonal support.

5.3 General Sufficient Conditions

In this section, we give sufficient conditions for the solution to a general class of

optimization problems that include FGL, PNJGL, and CNJGL as special cases to be block-

diagonal. Consider the optimization problem
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(21)

Once again, let T be the support of a p × p block-diagonal matrix. Let ΘT denote the

restriction of any p × p matrix Θ to T; that is, . Assume that the

function h satisfies

for any matrices Θ1, …, ΘK whose support strictly contains U.

Theorem 10—A sufficient condition for the matrices Θ̂1, …, Θ̂K that solve (21) to have

support T is that

Note that this sufficient condition applies to a broad class of regularizers h; indeed, the

sufficient conditions for PNJGL and CNJGL given in Theorems 6 and 9 are special cases of

Theorem 10. In contrast, the necessary conditions for PNJGL and CNJGL in Theorems 4

and 7 exploit the specific structure of the RCON penalty.

5.4 Evaluation of Speed-Ups on Synthetic Data

Theorems 6 and 9 provide sufficient conditions for the precision matrix estimates from

PNJGL or CNJGL to be block-diagonal with a given support. How can these be used in

order to obtain computational speed-ups? We construct a p × p matrix A with elements

We can then check, in O(p2) operations, whether A is (subject to some permutation of the

rows and columns) block-diagonal, and can also determine the partition of the rows and

columns corresponding to the blocks (see, e.g., Tarjan, 1972). Then, by Theorems 6 and 9,

we can conclude that the PNJGL or CNJGL estimates are block-diagonal, with the same

partition of the variables into blocks. Inspection of the PNJGL and CNJGL optimization

problems reveals that we can then solve the problems on the variables within each block

separately, in order to obtain the global solution to the original PNJGL or CNJGL

optimization problems.
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We now investigate the speed-ups that result from applying this approach. We consider the

problem of estimating two networks of size p = 500. We create two inverse covariance

matrices that are block diagonal with two equally-sized blocks, and sparse within each

block. We then generate n1 = 250 observations from a multivariate normal distribution with

the first covariance matrix, and n2 = 250 observations from a multivariate normal

distribution with the second covariance matrix. These observations are used to generate

sample covariance matrices S1 and S2. We then performed CNJGL and PNJGL with λ2 = 1

and a range of λ1 values, with and without the computational speed-ups just described.

Figure 6 displays the performance of the CNJGL and PNJGL formulations, averaged over

20 data sets generated in this way. In each panel, the x-axis shows the number of blocks into

which the optimization problems were decomposed using the sufficient conditions; note that

this is a surrogate for the value of λ1 in the CNJGL or PNJGL optimization problems. Figure

6(a) displays the ratio of the run-time taken by the ADMM algorithm when exploiting the

sufficient conditions to the run-time when not using the sufficient conditions. Figure 6(b)

displays the true-positive ratio|that is, the ratio of the number of true positive edges in the

precision matrix estimates to the total number of edges in the precision matrix estimates.

Figure 6(c) displays the total number of true positives for the CNJGL and PNJGL estimates.

Figure 6 indicates that the sufficient conditions detailed in this section lead to substantial

computational improvements.

6. Simulation Study

In this section, we present the results of a simulation study demonstrating the empirical

performance of PNJGL and CNJGL.

6.1 Data Generation

In the simulation study, we generated two synthetic networks (either Erdos-Renyi, scale-

free, or community), each of which contains a common set of p nodes. Four of the p nodes

were then modified in order to create two perturbed nodes and two co-hub nodes. Details are

provided in Sections 6.1.1–6.1.3.

6.1.1 Data Generation for Erdos-Renyi Network—We generated the data as follows,

for p = 100, and n ∈ {25, 50, 100, 200}:

Step 1: To generate an Erdos-Renyi network, we created a p × p symmetric matrix A

with elements

Step 2: We duplicated A into two matrices, A1 and A2. We selected two nodes at

random, and for each node, we set the elements of the corresponding row and column of

either A1 or A2 (chosen at random) to be i.i.d. draws from a Unif([−0.6, −0.3] ∪ [0.3,

0.6]) distribution. This results in two perturbed nodes.
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Step 3: We randomly selected two nodes to serve as co-hub nodes, and set each element

of the corresponding rows and columns in each network to be i.i.d. draws from a

Unif([−0.6, −0.3] ∪ [0.3, 0.6]) distribution. In other words, these co-hub nodes are

identical across the two networks.

Step 4: In order to make the matrices positive definite, we let c = min(λmin(A1),

λmin(A2)), where λmin(·) indicates the smallest eigenvalue of the matrix. We then set

(Σ1)−1 equal to A1 +(0.1+|c|)I and set (Σ2)−1 equal to A2 +(0.1+|c|)I, where I is the p × p

identity matrix.

Step 5: We generated n independent observations each from a N(0, Σ1) and a N(0, Σ2)

distribution, and used them to compute the sample covariance matrices S1 and S2.

6.1.2 Data Generation for Scale-free Network—The data generation proceeded as in

Section 6.1.1, except that Step 1 was modified:

Step 1: We used the SFNG functions in Matlab (George, 2007) with parameters

mlinks=2 and seed=1 to generate a scale-free network with p nodes. We then created a

p×p symmetric matrix A that has non-zero elements only for the edges in the scale-free

network. These non-zero elements were generated i.i.d. from a Unif([−0.6, −0.3]∪ [0.3,

0.6]) distribution.

Steps 2–5 proceeded as in Section 6.1.1.

6.1.3 Data Generation for Community Network—We generated data as in Section

6.1.1, except for one modification: at the end of Step 3, we set the [1:40, 61:100] and

[61:100, 1:40] submatrices of A1 and A2 equal to zero.

Then A1 and A2 have non-zero entries concentrated in the top and bottom 60 × 60 principal

submatrices. These two submatrices correspond to two communities. Twenty nodes overlap

between the two communities.

6.2 Results

We now define several metrics used to measure algorithm performance. We wish to quantify

each algorithm’s (1) recovery of the support of the true inverse covariance matrices, (2)

successful detection of co-hub and perturbed nodes, and (3) error in estimation of Θ1 =

(Σ1)−1 and Θ2 = (Σ2)−1. Details are given in Table 1. These metrics are discussed further in

Appendix G.

We compared the performance of PNJGL to its edge-based counterpart FGL, as well as to

graphical lasso (GL). We compared the performance of CNJGL to GGL and GL. We expect

CNJGL to be able to detect co-hub nodes (and, to a lesser extent, perturbed nodes), and we

expect PNJGL to be able to detect perturbed nodes. (The co-hub nodes will not be detected

by PNJGL, since they are identical across the networks.)

The simulation results for the set-up of Section 6.1.1 are displayed in Figures 7 and 8. Each

row corresponds to a sample size while each column corresponds to a performance metric.

In Figure 7, PNJGL, FGL, and GL are compared, and in Figure 8, CNJGL, GGL, and GL
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are compared. Within each plot, each colored line corresponds to the results obtained using a

fixed value of λ2 (for either PNJGL, FGL, CNJGL, or GGL), as λ1 is varied. Recall that GL

corresponds to any of these four approaches with λ2 = 0. Note that the number of positive

edges (defined in Table 1) decreases approximately monotonically with the regularization

parameter λ1, and so on the x-axis we plot the number of positive edges, rather than λ1, for

ease of interpretation.

In Figure 7, we observe that PNJGL outperforms FGL and GL for a suitable range of the

regularization parameter λ2, in the sense that for a fixed number of edges estimated, PNJGL

identifies more true positives, correctly identifies a greater ratio of perturbed nodes, and

yields a lower Frobenius error in the estimates of Θ1 and Θ2. In particular, PNJGL performs

best relative to FGL and GL when the number of samples is the smallest, that is, in the high-

dimensional data setting. Unlike FGL, PNJGL fully exploits the fact that differences

between Θ1 and Θ2 are due to node perturbation. Not surprisingly, GL performs worst

among the three algorithms, since it does not borrow strength across the conditions in

estimating Θ1 and Θ2.

In Figure 8, we note that CNJGL outperforms GGL and GL for a suitable range of the

regularization parameter λ2. In particular, CNJGL outperforms GGL and GL by a larger

margin when the number of samples is the smallest. Once again, GL performs the worst

since it does not borrow strength across the two networks; CNJGL performs the best since it

fully exploits the presence of hub nodes in the data.

We note one interesting feature of Figure 8: the colored lines corresponding to CNJGL with

very large values of λ2 do not extend beyond around 400 positive edges. This is because for

CNJGL, a large value of λ2 induces sparsity in the network estimates, even if λ1 is small or

zero. Consequently, it is not possible to obtain a dense estimate of Θ1 and Θ2 if CNJGL is

performed with a large value of λ2. In contrast, in the case of PNJGL, sparsity is induced

only by λ1, and not at all by λ2. We note that a similar situation occurs for the edge-based

counterparts of CNJGL and PNJGL: when GGL is performed with a large value of λ2 then

the network estimates are necessarily sparse, regardless of the value of λ1. But the same is

not true for FGL.

The simulation results for the set-ups of Sections 6.1.2 and 6.1.3 are displayed in Figures 9

and 10, respectively, for the case n = 50. The results show that once again, PNJGL and

CNJGL substantially outperform the edge-based approaches on the three metrics defined

earlier.

7. Real Data Analysis

In this section, we present the results of PNJGL and CNJGL applied to two real data sets:

gene expression data set and university webpage data set.

7.1 Gene Expression Data

In this experiment, we aim to reconstruct the gene regulatory networks of two subtypes of

glioblastoma multiforme (GBM), as well as to identify genes that can improve our
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understanding of the disease. Cancer is caused by somatic (cancer-specific) mutations in the

genes involved in various cellular processes including cell cycle, cell growth, and DNA

repair; such mutations can lead to uncontrolled cell growth. We will show that PNJGL and

CNJGL can be used to identify genes that play central roles in the development and

progression of cancer. PNJGL tries to identify genes whose interactions with other genes

vary significantly between the subtypes. Such genes are likely to have deleterious somatic

mutations. CNJGL tries to identify genes that have interactions with many other genes in all

subtypes. Such genes are likely to play an important role in controlling other genes’

expression, and are typically called regulators.

We applied the proposed methods to a publicly available gene expression data set that

measures mRNA expression levels of 11,861 genes in 220 tissue samples from patients with

GBM (Verhaak et al., 2010). The raw gene expression data were generated using the

Affymetrix GeneChips technology. We downloaded the raw data in .CEL format from the

The Caner Genome Atlas (TCGA) website. The raw data were normalized by using the

Affymetrix MAS5 algorithm, which has been shown to perform well in many studies (Lim

et al., 2007). The data were then log2 transformed and batch-effected corrected using the

software ComBat (Johnson and Li, 2006). Each patient has one of four subtypes of GBM|

Proneural, Neural, Classical, or Mesenchymal. We selected two subtypes, Proneural (53

tissue samples) and Mesenchymal (56 tissue samples), that have the largest sample sizes. All

analyses were restricted to the corresponding set of 109 tissue samples.

To evaluate PNJGL’s ability to identify genes with somatic mutations, we focused on the

following 10 genes that have been suggested to be frequently mutated across the four GBM

subtypes (Verhaak et al., 2010): TP53, PTEN, NF1, EGFR, IDH1, PIK3R1, RB1, ERBB2,

PIK3CA, PDGFRA. We then considered inferring the regulatory network of a set of genes

that is known to be involved in a single biological process, based on the Reactome database

(Matthews et al., 2008). In particular, we focused our analysis on the “TCR signaling” gene

set, which contains the largest number of mutated genes. This gene set contains 34 genes, of

which three (PTEN, PIK3R1, and PIK3CA) are in the list of 10 genes suggested to be

mutated in GBM. We applied PNJGL with q = 2 to the resulting 53 × 34 and 56 × 34 gene

expression data sets, after standardizing each gene to have variance one. As can be seen in

Figure 11, the pattern of network differences indicates that one of the three highly-mutated

genes is in fact perturbed across the two GBM subtypes. The perturbed gene is PTEN, a

tumor suppressor gene, and it is known that mutations in this gene are associated with the

development and progression of many cancers (see, e.g., Chalhoub and Baker, 2009).

To evaluate the performance of CNJGL in identifying genes known to be regulators, we

used a manually curated list of genes that have been identified as regulators in a previous

study (Gentles et al., 2009); this list includes genes annotated as transcription factors,

chromatin modifiers, or translation initiation genes. We then selected a gene set from

Reactome, called “G2/M checkpoints,” which is relevant to cancer and contains a large

number of regulators. This gene set contains 38 genes of which 15 are regulators. We

applied CNJGL to the resulting 53 × 38 and 56 × 38 gene expression data sets, to see if the

15 regulators tend to be identified as co-hub genes. Figure 12 indicates that all four co-hub
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genes (CDC6, MCM6, CCNB1 and CCNB2) detected by CNJGL are known to be

regulators.

7.2 University Webpage Data

We applied PNJGL and CNJGL to the university webpages data set from the “World Wide

Knowledge Base” project at Carnegie Mellon University. This data set was pre-processed by

Cardoso-Cachopo (2009). The data set describes the number of appearances of various

terms, or words, on webpages from the computer science departments of Cornell, Texas,

Washington and Wisconsin. We consider the 544 student webpages, and the 374 faculty

webpages. We standardize the student webpage data so that each term has mean zero and

standard deviation one, and we also standardize the faculty webpage data so that each term

has mean zero and standard deviation one. Our goal is to identify terms that are perturbed or

co-hub between the student and faculty webpage networks. We restrict our analysis to the

100 terms with the largest entropy.

We performed 5-fold cross-validation of the log-likelihood, computed as

for PNJGL, FGL, CNJGL, GGL, and GL, using a range of tuning parameters. The results for

PNJGL, FGL and GL are found in Figure 13(a). PNJGL and FGL achieve comparable log-

likelihood values. However, for a fixed number of non-zero edges, PNJGL outperforms

FGL, suggesting that PNJGL can achieve a comparable model fit for a more interpretable

model. Figure 13(b) displays the results for CNJGL, GGL and GL. It appears that PNJGL

and FGL provide the best fit to the data.

Given that PNJGL fits the data well, we highlight a particular solution, found in Figure 14.

PNJGL is performed with λ1 = 27, λ2 = 381; these values were chosen because they result in

a high log-likelihood in Figure 13(a), and yield an interpretable pair of network estimates.

Several perturbed nodes are identified: advisor, high, construct, email, applic, fax, and

receiv. The student and faculty webpage precision matrices, Θ̂S and Θ̂F, are overlaid in

Figure 14.

For example, the perturbed node receiv is connected to the terms advis, inform, and student

among the student webpages. In contrast, among faculty webpages, the phrase receiv is

connected to associate and faculty.

8. Discussion

We have proposed node-based learning of multiple Gaussian graphical models through the

use of two convex formulations, perturbed-node joint graphical lasso and cohub node joint

graphical lasso. These techniques are well-motivated by many real-world applications, such

as learning transcriptional regulatory networks in multiple contexts from gene expression

data. Both of these formulations rely on the use of the row-column overlap norm penalty,

which when applied to a matrix encourages a support that can be expressed as the union of a
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few rows and columns. We solve the convex optimization problems that correspond to

PNJGL and CNJGL using the ADMM algorithm, which is more efficient and scalable than

standard interior point methods and also first-order methods such as projected subgradient.

We also provide necessary and sufficient conditions on the regularization parameters in

CNJGL and PNJGL so that the optimal solutions to these formulations are block diagonal,

up to a permutation of the rows and columns. When the sufficient conditions are met, any

algorithm that is applicable to these two formulations can be sped up by breaking down the

optimization problem into smaller subproblems. Our proposed approaches lead to better

performance than two alternative approaches: learning Gaussian graphical models under the

assumption of edge perturbation or shared edges, or simply learning each model separately.

We next discuss possible directions for future work.

• We have focused on promoting a row-column structure in either the difference of

the networks or in the networks themselves. However, the RCON penalty can be

generalized to other forms of structured sparsity. For instance, we might believe

that particular sets of genes in the same pathway tend to be simultaneously

activated or perturbed across multiple distinct conditions; a modification of the

RCON penalty can be used in this setting.

• Convergence of the ADMM algorithm in the presence of more than two sets of

variable updates has only been addressed partially in the literature. However, the

PNJGL and CNJGL formulations can be rewritten along the lines of an approach

given in Ma et al. (2013), so that only two sets of primal variables are involved, so

that convergence is guaranteed. We leave for future study an investigation of

whether this alternative approach leads to better performance in practice.

• Transcriptional regulatory networks involve tens of thousands of genes. Hence it is

imperative that our algorithms scale up to large problem sizes. In future work,

speedups of our ADMM algorithm as well as adaptations of other fast algorithms

such as the accelerated proximal gradient method or second-order methods can be

considered.

• In Section 5, we presented a set of conditions that allow us to break up the CNJGL

and PNJGL optimization problems into many independent subproblems. However,

there is a gap between the necessary and sufficient conditions that we presented.

Making this gap tighter could potentially lead to greater computational

improvements.

• Tuning parameter selection in high-dimensional unsupervised settings remains an

open problem. An existing approach such as stability selection (Meinshausen and

Buhlmann, 2010) could be applied in order to select the tuning parameters λ1 and

λ2 for CNJGL and PNJGL.

• The CNJGL and PNJGL formulations are aimed at jointly learning several high-

dimensional Gaussian graphical models. These approaches could be modified in

order to learn other types of probabilistic graphical models (see, e.g., Ravikumar et

al., 2010; Yang et al., 2012).
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• It is well-known that adaptive weights can improve the performance of penalized

estimation approaches in other contexts (e.g., the adaptive lasso of Zou, 2006

improves over the lasso of Tibshirani, 1996). In a similar manner, the use of

adaptive weights may provide improvement over the PNJGL and CNJGL proposals

in this paper. Other options include reweighted ℓ1 norm approaches that adjust the

weights iteratively: one example is the algorithm proposed in Lobo et al. (2007)

and further studied in Candes et al. (2007). This algorithm uses a weight for each

variable that is proportional to the inverse of its value in the previous iteration,

yielding improvements over the use of an ℓ1 norm. This method can be seen as

locally minimizing the sum of the logarithms of the entries, solved by iterative

linearization. In general, any of these approaches can be explored for the problems

in this paper.

Matlab code implementing CNJGL and PNJGL is available at http://faculty.washington.edu/

mfazel/, http://www.biostat.washington.edu/~dwitten/software.html, and http://

suinlee.cs.washington.edu/software.
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Appendix A. Dual Characterization of RCON

Lemma 11

The dual representation of Ω is given by

(22)

where ||·|| denotes any norm, and ||·||* its corresponding dual norm.

Proof

Recall that Ω is given by
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(23)

Let  where Zk ∈ ℝp×p. Then (23) is equivalent to

(24)

where ||.||* is the dual norm to ||.||. Since in (24) the cost function is bilinear in the two sets of

variables and the constraints are compact convex sets, by the minimax theorem, we can

swap max and min to get

(25)

Now, note that the dual to the inner minimization problem with respect to V1, …, VK in (25)

is given by

(26)

Plugging (26) into (25), the lemma follows.

By definition, the subdifferential of Ω is given by the set of all K-tuples (Λ1, …, ΛK) that are

optimal solutions to problem (22). Note that if (Λ1, …, ΛK) is an optimal solution to (22),

then any (Λ1 + Y1, …, ΛK + YK) with skew-symmetric matrices Y1, …, YK is also an optimal

solution.

Appendix B. Proof of Theorem 4

The optimality conditions for the PNJGL optimization problem (6) with K = 2 are given by

(27)

(28)
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where Γ1 and Γ2 are subgradients of ||Θ1||1 and ||Θ2||1, and (Λ, −Λ) is a subgradient of Ωq(Θ1

− Θ2). (Note that Ωq(Θ1 − Θ2) is a composition of Ωq with the linear function Θ1 − Θ2, and

apply the chain rule.) Also note that the right-hand side of the above equations is a zero

matrix of size p × p.

Now suppose that Θ1 and Θ2 that solve (6) are supported on T. Then since (Θ1)−1, (Θ2)−1 are

supported on T, we have that

(29)

Summing the two equations in (29) yields

(30)

It thus follows from (30) that

(31)

where here ||·||∞ indicates the maximal absolute element of a matrix, and where the second

inequality in (31) follows from the fact that the subgradient of the ℓ1 norm is bounded in

absolute value by one.

We now assume, without loss of generality, that the Λ that solves (27) and (28) is

symmetric. (In fact, one can easily show that there exist symmetric subgradients Γ1, Γ2, and

Λ that satisfy (27) and (28).) Moreover, recall from Lemma 11 that ||(Λ + ΛT)j||s ≤ 1.

Therefore, . Using Holder’s inequality and noting that ||y||1 = 〈y, sgn(y)〉 for a

vector y, we obtain

(32)

where the last inequality follows from the fact that , and where

in (32), ||A||q and ||A||s indicate the ℓq and ℓs norms of vec(A) respectively.

From (29), we have for each k ∈ {1, 2} that

Mohan et al. Page 29

J Mach Learn Res. Author manuscript; available in PMC 2014 October 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



where the last inequality follows from the fact that the elements of Γk are bounded in

absolute value by one, and (32). The theorem now follows by noting from (29) that for each

k ∈ {1, 2},

Appendix C. Proof of Theorem 7

Proof

The optimality conditions for the CNJGL problem (7) are given by

(33)

where Γk is a subgradient of ||Θk||1. Also, the K-tuple (Λ1, …, ΛK) is a subgradient of Ωq(Θ1

− diag(Θ1), …, ΘK − diag(ΘK)), and the right-hand side is a p × p matrix of zeros. We can

assume, without loss of generality, that the subgradients Γk and Λk that satisfy (33) are

symmetric, since Lemma 11 indicates that if (Λ1, …, ΛK) is a subgradient of Ωq(Θ1 −

diag(Θ1), …, Θk − diag(Θk)), then ((Λ1 + (Λ1)T)/2, …, (ΛK + (ΛK)T)/2) is a subgradient as

well.

Now suppose that Θ1, …, ΘK that solve (7) are supported on T. Since (…k)−1 is supported

on T for all k, we have

(34)

We use the triangle inequality for the ℓ1 norm (applied elementwise to the matrix) to get

(35)

We have ||Γk||∞ ≤ 1 since Γk is a subgradient of the ℓ1 norm, which gives .

Also Γk is a part of a subgradient to Ωq, so by Lemma 11, ||(Λk + (Λk)T)j||s ≤ 1 for j ∈ {1, 2,

…, p}. Since Λk is symmetric, we have that . Using the same reasoning as in (32)

of Appendix B, we obtain
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(36)

Combining (35) and (36) yields

The theorem follows by noting from (34) that

Appendix D. Proof of Theorem 10

Assume that the sufficient condition holds. In order to prove the theorem, we must show that

By assumption,

(37)

We will now show that

(38)

or equivalently, that

(39)

Note that . By the sufficient condition, . So

So (39) holds, and hence (38) holds.
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Finally, we apply Fischer’s inequality, which states that , and so

(40)

Combining (37), (38), and (40), the theorem holds.

Appendix E. Connection Between RCON and Obozinski et al. (2011)

We now show that the RCON penalty with q = 2 can be derived from the overlap norm of

Obozinski et al. (2011). For simplicity, here we restrict ourselves to the RCON with K = 1.

The general case of K ≥ 1 can be shown via a simple extension of this argument.

Given any symmetric p × p matrix Θ, let ΘΔ be the p × p upper-triangular matrix such that

. That is,

(41)

Now define p groups, g1, …, gp, each of which contains p variables, as displayed in Figure

15. Note that these groups overlap: if k ≤ l, then the (k, l) element of a matrix is contained in

both the kth and lth groups.

The overlap norm corresponding to these groups is given by

where the relation between Θ and ΘΔ is as in Equation (41). We can rewrite this as

(42)

Now, define a p × p matrix A such that
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Note that . Furthermore, ||Vj||F = ||Aj||2, where Aj denotes the jth

column of A. So we can rewrite (42) as

This is exactly the RCON penalty with K = 1 and q = 2. Thus, with a bit of work, we have

derived the RCON from the overlap norm (Obozinski et al., 2011). Our penalty is useful

because it accommodates groups given by the rows and columns of a symmetric matrix in an

elegant and convenient way.

Appendix F. Derivation of Updates for ADMM Algorithms

We derive the updates for ADMM algorithm when applied to PNJGL and CNJGL

formulations respectively. We first begin with the PNJGL formulation.

F.1 Updates for ADMM Algorithm for PNJGL

Let  (Θ1, Θ2, Z1, Z2, V, W, F, G, Q1, Q2) denote the augmented Lagrangian (12). In each

iteration of the ADMM algorithm, each primal variable is updated while holding the other

variables fixed. The dual variables are updated using a simple dual-ascent update rule.

Below, we derive the update rules for the primal variables.

F.1.1 Θ1 Update

Note that

Now it follows from the definition of the Expand operator that

The update for Θ2 can be derived in a similar fashion.
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F.1.2 Z1 Update

By the definition of the soft-thresholding operator , it follows that

The update for Z2 is similarly derived.

F.1.3 V Update

By the definition of the soft-scaling operator , it follows that

The update for W is easy to derive and we therefore skip it.

F.2 Updates for ADMM Algorithm for CNJGL

Let ({Θi}, {Zi}, {Ṽi}, {Wi}, {Fi}, {Gi}, {Qi}) denote the augmented Lagrangian (16).

Below, we derive the update rules for the primal variables {Ṽi}. The update rules for the

other primal variables are similar to the derivations discussed for PNJGL, and hence we

omit their derivations.

The update rules for Ṽ1, Ṽ2, …, ṼK are coupled, so we derive them simultaneously. Note

that
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Let . Then the update

follows by inspection.

Appendix G. Additional Simulation Results

Here we present more detailed results for an instance of the simulation study described in

Section 6, for the case n = 25. Figure 16 illustrates how the PPC, TPPC, PCC and TPCC

metrics are computed. As described in Table 1, for PNJGL, PPC is given by the number of

columns of V̂ whose ℓ2 norms exceed the threshold ts. Figure 16(a) indicates that the two

perturbed nodes in the data are identified as perturbed by PNJGL. Furthermore, given the

large gap between the perturbed and non-perturbed columns, PPC is relatively insensitive to

the choice of ts. Similar results apply to the TPPC, PCC and TPCC metrics.

In order to generate Figure 16, PNJGL, FGL, CNJGL, GGL, and GL were performed using

tuning parameter values that led to the best identification of perturbed and cohub nodes.

However, the results displayed in Figure 16 were quite robust to the choice of tuning

parameter.
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Figure 1.
Two networks share a common hub (co-hub) node. X2 serves as a hub node in both

networks. (a): Network 1 and its adjacency matrix. (b): Network 2 and its adjacency matrix.

Mohan et al. Page 36

J Mach Learn Res. Author manuscript; available in PMC 2014 October 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Two networks that differ due tonode perturbation of X2. (a): Network 1 and its adjacency

matrix. (b): Network 2 and its adjacency matrix. (c): Left: Edges that differ between the two

networks. Right: Shaded cells indicate edges that differ between Networks 1 and 2.

Mohan et al. Page 37

J Mach Learn Res. Author manuscript; available in PMC 2014 October 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Toy example of the results from applying various penalties in order to estimate a 5×5

matrix, under a symmetry constraint. Zero elements are shown in white; nonzero elements

are shown in shades of red (positive elements) and blue (negative elements). (a): The naive

group lasso applied to the columns of the matrix yields non-zero elements that are the

intersection, rather than the union, of a set of rows and columns. (b): The RCON penalty

using an ℓ1/ℓ1 norm results in unstructured sparsity in the estimated matrix. (c): The RCON

penalty using an ℓ1 / ℓ2 norm results in entire rows and columns of non-zero elements. (d):

The RCON penalty using an ℓ1/ℓ∞ norm results in entire rows and columns of non-zero

elements; many take on a single maximal (absolute) value.
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Figure 4.
(a): The total number of iterations for the CNJGL algorithm, as a function of λ1. (b): Run-

time (in seconds) of the CNJGL algorithm, as a function of λ1. (c)–(d): As in (a)–(b), but for

the PNJGL algorithm. All results are averaged over 20 random generations of synthetic data.
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Figure 5.
A p × p matrix is displayed, for which I1, I2, I3 denote a partition of the index set {1, 2, …,

p}.  is shown in red, and Tc is shown in gray.
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Figure 6.
Speed-ups for CNJGL and PNJGL on a simulation set-up with p = 500 and n1 = n2 = 250.

The true inverse covariance matrices are block-diagonal with two equally-sized sparse

blocks. The x-axis in each panel displays the number of blocks into which the CNJGL or

PNJGL problems are decomposed using the sufficient conditions; this is a surrogate for λ1.

The y-axes display (a): the ratio of run-times with and without the sufficient conditions; (b):

the true positive ratio of the edges estimated; and (c): the total number of true positive edges

estimated.
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Figure 7.
Simulation results on Erdos-Renyi network (Section 6.1.1) for PNJGL with q = 2, FGL, and

GL, for (a): n = 25, (b): n = 50, (c): n = 100, (d): n = 200, when p = 100. Each colored line

corresponds to a fixed value of λ2, as λ1 is varied. Axes are described in detail in Table 1.

Results are averaged over 100 random generations of the data.
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Figure 8.
Simulation results on Erdos-Renyi network (Section 6.1.1) for CNJGL with q = 2, GGL, and

GL, for (a): n = 25, (b): n = 50, (c): n = 100, (d): n = 200, when p = 100. Each colored line

corresponds to a fixed value of λ2, as λ1 is varied. Axes are described in detail in Table 1.

Results are averaged over 100 random generations of the data.
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Figure 9.
Simulation results on scale-free network (Section 6.1.2) for(a): PNJGL with q = 2, FGL, and

GL, and (b): CNJGL with q = 2, GGL, and GL, with p = 100 and n = 50. Each colored line

corresponds to a fixed value of λ2, as λ1 is varied. Axes are described in detail in Table 1.

Results are averaged over 50 random generations of the data.
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Figure 10.
Simulation results on community network (Section 6.1.3) for(a): PNJGL with q = 2, FGL,

and GL, and (b): CNJGL with q = 2, GGL, and GL, with p = 100 and n = 50. Each colored

line corresponds to a fixed value of λ2, as λ1 is varied. Axes are described in detail in Table

1. Results are averaged over 50 random generations of the data.
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Figure 11.
GBM data analysis for PNJGL with q = 2. The sample covariance matrices S1 and S2 were

generated from samples with two cancer subtypes, with sizes n1 = 53 and n2 = 56. Only the

34 genes contained in the Reactome “TCR Signaling” pathway were included in this

analysis. Of these genes, three are frequently mutated in GBM: PTEN, PIK3R1, and

PIK3CA. These three genes correspond to the last three columns in the matrices displayed

(columns 32 through 34). PNJGL was performed with λ1 = 0 and λ2 = 2. We display (a): the

estimated matrix Θ̂1; (b): the estimated matrix Θ̂2; and (c): the difference matrix Θ̂1 − Θ̂2.

The gene PTEN is identified as perturbed.
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Figure 12.
GBM data analysis for CNJGL with q = 2. The sample covariance matrices S1 and S2 were

generated from samples with two cancer subtypes, with sizes n1 = 53 and n2 = 56. Only the

38 genes contained in the Reactome “G2/M checkpoints” pathway were included in this

analysis. Of these genes, 15 have been previously identified as regulators. These 15 genes

correspond to the last 15 columns in the matrices (columns 24 through 38). CNJGL was

performed with λ1 = 13 and λ2 = 410. We display (a): the estimated matrix Θ̂1; (b): the

estimated matrix Θ̂2. Four of the regulator genes are identified by CNJGL. These genes are

CDC6, MCM6, CCNB1, and CCNB2.
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Figure 13.
On the webpage data, five-fold cross-validation was performed for (a): PNJGL, FGL, and

GL; and (b): CNJGL, GGL, and GL. Each colored line corresponds to a fixed value of λ2, as

λ1 is varied. Positive edges are defined in Table 1. The cross-validated log likelihood is

displayed.
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Figure 14.
Student and faculty webpage precision matrices, ΘŜ and Θ̂F, for PNJGL performed with λ1

= 27, λ2 = 381. Eight perturbed nodes are labeled. The color of each square in the figure

indicates whether the corresponding edge is present in both networks, absent in both

networks, or present in only the student or only the faculty network.
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Figure 15.
Depiction of groupsg1, …, g5 for a 5 × 5 matrix. Each group’s elements are shown in blue.
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Figure 16.
In all plots, the x-axis indexes the columns of the indicated matrix, and the y-axis displays

the ℓ2 norms of the columns of the indicated matrix, with diagonal elements removed. The

sample size is n = 25. Perturbed nodes are indicated in red (with square markers), and cohub

nodes are indicated in blue (with circle markers). (a)–(c): Detection of perturbed nodes by

PNJGL with q = 2, FGL, and GL. (d)–(i): Detection of cohub nodes by CNJGL with q = 2,

GGL, and GL. (a): PNJGL with q = 2 was performed with λ1 = 2.5 and λ2 = 12.5. (b): FGL

was performed with λ1 = 2.5 and λ2 = 0.75. (c): GL was performed with λ = 1.5. (d), (g):
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CNJGL was performed with q = 2 and λ1 = 0.5, λ2 = 37.5. (e), (h): GGL was performed

with λ1 = 0.5 and λ2 = 2.5. (f), (i): GL was performed with λ = 0.75.

Mohan et al. Page 52

J Mach Learn Res. Author manuscript; available in PMC 2014 October 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Mohan et al. Page 53

Table 1

Metrics used to quantify algorithm performance. Here Θ1 and Θ2 denote the true inverse covariance matrices,

and Θ̂1 and Θ̂2 denote the two estimated inverse covariance matrices. Here 1{A} is an indicator variable that

equals one if the event A holds, and equals zero otherwise. (1) Metrics based on recovery of the support of Θ1

and Θ2. Here t0 = 10−6. (2) Metrics based on identification of perturbed nodes and co-hub nodes. The metrics

PPC and TPPC quantify node perturbation, and are applied to PNJGL, FGL, and GL. The metrics PCC and

TPCC relate to co-hub detection, and are applied to CNJGL, GGL, and GL. We let ts = μ + 5.5σ, where μ is

the mean and σ is the standard deviation of  (PPC or TPPC for PNJGL), 

(PPC or TPPC for FGL/GL),  and  (PPC or TPPC for CNJGL), or 

and  (PPC or TPPC for GGL/GL). However, results are very insensitive to the value of ts, as is

shown in Appendix G. (3) Frobenius error of estimation of Θ1 and Θ2.

(1)
Positive edges:

True positive edges:

(2)
Positive perturbed columns (PPC):

True positive perturbed columns (TPPC):
PNJGL: Σi∈Ip 1{||V̂−i,i||2 > ts};

FGL/GL: Σi∈Ip 1{||(Θ̂1 − Θ̂2)−i,i||2 > ts},
where IP is the set of perturbed column indices.
Positive co-hub columns (PCC):

True positive co-hub columns (TPCC):

where IC is the set of co-hub column indices.

(3)

Error: 
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