Skip to main content
. Author manuscript; available in PMC: 2014 Oct 10.
Published in final edited form as: J Mach Learn Res. 2014 Jan 1;15(1):445–488.

Table 1.

Metrics used to quantify algorithm performance. Here Θ1 and Θ2 denote the true inverse covariance matrices, and Θ̂1 and Θ̂2 denote the two estimated inverse covariance matrices. Here 1{A} is an indicator variable that equals one if the event A holds, and equals zero otherwise. (1) Metrics based on recovery of the support of Θ1 and Θ2. Here t0 = 10−6. (2) Metrics based on identification of perturbed nodes and co-hub nodes. The metrics PPC and TPPC quantify node perturbation, and are applied to PNJGL, FGL, and GL. The metrics PCC and TPCC relate to co-hub detection, and are applied to CNJGL, GGL, and GL. We let ts = μ + 5.5σ, where μ is the mean and σ is the standard deviation of {V^-i,i2}i=1p (PPC or TPPC for PNJGL), {(Θ^1-Θ^2)-i,i2}i=1p (PPC or TPPC for FGL/GL), {V^-i,i12}i=1p and {V^-i,i22}i=1p (PPC or TPPC for CNJGL), or {Θ^-i,i12}i=1p and {Θ^-i,i22}i=1p (PPC or TPPC for GGL/GL). However, results are very insensitive to the value of ts, as is shown in Appendix G. (3) Frobenius error of estimation of Θ1 and Θ2.

(1) Positive edges:
i<j(1{Θ^ij1>t0}+1{Θ^ij2>t0})

True positive edges:
i<j(1{Θij1>t0andΘ^ij1>t0}+1{Θij2>t0andΘ^ij2>t0})
(2) Positive perturbed columns (PPC):
PNJGL:i=1p1{V^-i,i2>ts};FGL/GL:i=1p1{(Θ^1-Θ^2)-i,i2>ts}
True positive perturbed columns (TPPC):
PNJGL: ΣiIp 1{||i,i||2 > ts};
FGL/GL: ΣiIp 1{||(Θ̂1 − Θ̂2)i,i||2 > ts},
where IP is the set of perturbed column indices.
Positive co-hub columns (PCC):
CNJGL:i=1p1{V^-i,i12>tsandV^-i,i22>ts};GGL/GL:i=1p1{Θ^-i,i12>tsandΘ^-i,i22>ts}
True positive co-hub columns (TPCC):
CNJGL:iIc1{V^-i,i12>tsandV^-i,i22>ts};CGL/GL:iIc1{Θ^-i,i12>tsandΘ^-i,i22>ts}
where IC is the set of co-hub column indices.
(3) Error:
i<j(Θij1-Θ^ij1)2+i<j(Θij2-Θ^ij2)2