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Abstract

It has been shown that TLR7 and TLR9 signaling play a role in SLE pathogenesis. Our recent

study revealed that estrogen receptor α knockout mice have impaired inflammatory responses to

TLR3, TLR4, TLR7 and TLR9 ligand stimulation in DCs, B cells and whole spleen cells. These

findings indicate that estrogen receptor mediated signaling may impact universal TLR

responsiveness. Whether estrogen has a direct or indirect effect on TLR responsiveness by

immune cells is not clear. There is evidence of a role of TLR4 in SLE disease pathogenesis, such

as the kidney damage, the induction of CD40 and autoantibodies, the suppression of regulatory T

cells, and the role of pro-inflammatory cytokines (e.g., IL-6, IL-1β, TNF-α) in SLE pathogenesis

that can be induced by TLR4-mediated monocyte activation, suggesting that TLR4 and TLR4

responsiveness are also important for SLE disease. This review will focus on TLR4 responses and

monocytes, which are understudied in systemic autoimmune diseases such as SLE.
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Women exhibit stronger cellular-mediated and humoral-mediated immune responses

compared to men, and a higher risk of autoimmune disease [1]. The ratio of female to male

disease prevalence of systemic lupus erythematosus (SLE), for example, is 9:1 [2]. Although

several mechanisms, such as Toll-like receptor (TLR) 7 expression, activity of T regulatory

cells, or genetic and environmental factors [1–10], could account for heightened immune

responses and increased incidences of autoimmune disease in women, the exact mechanisms

are not fully understood. Though sex chromosomes partially account for the sex differences

in autoimmune diseases; sex hormones and their receptors are also a likely major

determinant as the onset of SLE most often occurs in women at the age of child-bearing

potential [11].

In the periphery, human B cells express estrogen receptor β, while plasmacytoid dendritic

cells (pDCs) and CD4 T cells express estrogen receptor α. CD8 T cells and monocytes
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express low to undetectable levels of estrogen receptors [12]. Studies from Guery’s group

[13] showed that pDCs from premenopausal women have heightened responses to TLRs

compared to men, while pDCs from postmenopausal women do not. Adding estrogen in

vitro to pDC cultures had no effect on TLR7 responses. When postmenopausal women were

given estrogen replacement, their pDCs had responses similar to premenopausal women.

Again, in vitro addition of estrogen had no effect. These effects were mediated via ERα and

were pDC centric, and indicate that the effect of estrogen on TLR responses of pDCs from

women is via an indirect mechanism [13]. Our previous study showed that TLR3, TLR4,

TLR7 and TLR9 responsiveness was decreased in immune cells from estrogen receptor α

knockout mice [14], suggesting that not only TLR7 responsiveness, but other TLR

responsiveness is modified by estrogen receptor signaling. But whether estrogen has a direct

effect on TLR responsiveness in peripheral lymphocytes is not clear. Dendritic cells (DCs),

especially pDCs produce a large amount of IFN-α in response to TLR7 and TLR9 ligands,

which play an important role in the pathogenesis of SLE disease [15,16]. pDCs produce

more IFN-α in women than men in response to TLR7 ligands, perhaps due to TLR7 being

located on the X chromosome with variable expression of TLR7 between men and women

leading to variable responsiveness [8,17]. The universal heightened TLR7 responsiveness in

women versus men would argue against variable TLR7 expression in individual women

being the proximate mechanism. To expand the scope of sex differences in TLR

responsiveness beyond TLR7 and dendritic cells, this review will focus on sex differences in

TLR4 responsiveness and monocyte populations in healthy individuals and patients with

SLE.

Monocytes

Human monocytes represent 5–10% of peripheral blood mononuclear cells (PBMCs) and

are progenitors of macrophages and DCs [18–20]. They express high levels of TLR1, TLR2

and TLR4 compared to lymphocytes [21], and produce pro-inflammatory cytokines (e.g.,

IL-6, TNF-α, IL-1β) triggered through TLR activation [16]. Little is known about the effect

of sex hormones on the modulation of monocyte activation, maturation, subset

differentiation, and antigen-presentation function. Previous studies showed increased total

monocyte numbers in the periphery in the luteal phase compared to the follicular phase in

women [22]. The data on estrogen receptor expression on monocytes is controversial

[12,23–26]. Progesterone and testosterone receptors are not expressed in monocytes.

Monocyte subsets

Monocytes can be defined into two subsets (CD14+CD16+, CD14+CD16−) or three subsets

(CD14++CD16−, CD14++CD16+, CD14+CD16++) as identified recently [27–31]. CD14+

+CD16− classic monocytes produce IL-10; and CD16-expressing non-classic monocytes

(either intermediate or non-classical subset) produce TNF-α, IL-6 and IL-1β in response to a

variety of TLR ligands [32,33]. The non-classic monocyte subset (CD14+CD16++)

expresses a unique pattern of chemokine receptors and produces pro-inflammatory

cytokines, and plays a role in cardiovascular risk in chronic kidney disease [31]. Moreover,

these cells have distinct effector responses to virus and immune complexes containing

nucleic acids, via a TLR7 or TLR8 pathway [29]. Virus and certain pro-inflammatory
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cytokines (e.g., type I IFN) have the function of regulating the expression of CD16 on

monocytes [29,34,35]. Elevated levels of CD16-expressing monocytes are seen in blood

during inflammatory conditions, such as HIV disease, atherosclerosis [27,30,36], sepsis

[37], rheumatoid arthritis, SLE [38–40], and cancer [41], suggesting that inflammation

(including microbial TLR ligands) promotes monocyte differentiation into a CD16-

expressing subset in vivo. CD16 expression on monocytes can be regulated by estradiol in

vitro, but the results are controversial [42,43].

Monocyte activation and maturation

LPS activates and promotes maturation of monocytes [44,45]. After activation and

maturation, monocytes increase expression of CD80, CD40, CD86 and HLA-DR, secrete

pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-1β and sCD14), and change their ability

for phagocytosis and antigen presenting and processing function [44,45]. These cells can

differentiate to macrophages and DCs under certain conditions [46–48]. DCs are

professional antigen presenting cells due to their ability to prime naïve T cells and cross

present to CD8 T cells [49,50]. On the other hand, monocytes, as another type of antigen-

presenting cells, account for 5–10% of cells in the peripheral blood, compared to 1% of

DCs. Although less ability to present antigens to T cells compared to DCs, monocytes are

important in antigen presentation overall due to their large number in the periphery and their

roles as DC progenitors.

Monocytes in SLE

An increased number of monocytes and increased activation of monocytes are present in the

periphery in SLE patients compared to controls [51]. Monocytes spontaneously release pro-

inflammatory cytokines such as IL-6 and are a predominant source of IL-6 in SLE [52].

CD16+DR++ monocytes are also the major source of TNFα in response to TLR stimulation

[33]. Treatments targeting such pro-inflammatory cytokines (e.g., TNFα, IL-6 and IL-1β)

are effective in animal models of SLE and patients with SLE [53–56]. These results suggest

that monocytes are activated in vivo, produce pro-inflammatory cytokines (e.g., IL-6), and

play a key role in chronic inflammation and disease pathogenesis in SLE [57]. Moreover,

LPS also may account for kidney damage in SLE disease [58,59]. Therefore, there may be a

link between TLR4 signaling, LPS-mediated monocyte activation, subset differentiation,

and SLE pathogenesis. An elevated plasma level of soluble CD14, which is released by

monocytes in response to LPS, is present in SLE patients [60]. Our previous work indicated

that TLR9 ligands, bacterial CpG ODNs, induce monocytes to express CD80, CD86, CD40

and HLA-DR, and drive monocytes to be better antigen-presenting cells; this effect is

through type I IFN [61]. Moreover, in vitro IFN-α induces monocyte activation as measured

by expression of CD80, CD86, CD40 and HLA-DR [61]. Levels of IFN-α are elevated and

involved in the pathogenesis of SLE [62]. In vitro, these monocytes have impaired ability to

up-regulate CD80 and CD86 expression following stimuli such as IFN-γ, [51,63],

suggesting that in vivo monocytes in SLE are pre-activated. Therefore they may be

desensitized to be activated again in vitro. Moreover, Fc gamma receptor genes, associated

with monocyte activation, partially account for the underlying immune mechanisms

resulting in SLE [64–69]. Patients with SLE have increased levels of pro-inflammatory
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cytokines in plasma, implying that heightened levels of innate immune responses, including

TLR signaling, may contribute to the etiology and pathogenesis in SLE.

TLRs

TLRs play an important role in innate immunity and recognize pathogens through pathogen

associated molecular patterns (PAMPs). In the periphery, antigen-presenting cells

(monocytes/macrophages, DCs and B cells) are the predominant cell populations to express

TLRs, and directly respond to TLR ligands [16,70]. TLR signals are essensal for

maintaining normal immunity, and certain TLR ligands such as CpG ODNs and imiqimod

are used as vaccine adjuvants to increase vaccine-specific responses [71,72]. Cytoplasmic

Toll-IL-1 receptor (TIR) domains are activated by TLR signaling pathways initially. The

TLR-activated TIR domain is associated with MyD88, which recruits IL-1 receptor

associated kinase (IRAK) to TLRs upon activation. MyD88 knockout mice have no response

to stimulation by TLR5, TLR7 and TLR9 ligands [73–76]. These evidences indicate that the

TIR domain-associated adaptor MyD88 is nessessary for these TLR mediated responses

[77]. Consistently, responses to TLR2, TLR3, TLR4, and TLR9 agonists are almost

abolished in IRAK-4 knockout mice [78]. There are, however, also MyD88-independent

TLR signaling pathways [79]. These findings in animal models suggest that TLR signaling

knockout results in immune-deficiencies, while, robust TLR-mediated hyperactivity could

drive autoimmune diseases.

It is well recognized that females have heightened responses to TLR7 ligands [8,17]. Human

B cells, pDCs and myeloid dendritic cells (mDCs) express TLR7, and respond to its ligands,

imiquimod, HIV viral sequences, gardiquimod or loxoribine et al [21]. TLR7 signaling is

involved in SLE disease largely due to its downstream cytokine IFN-α production by pDCs,

resulting in higher levels of IFN-α in cells from females compared to males, and in SLE

patients compared to controls [17,80–82]. TLR7, TLR8 and TLR9 signaling pathways in

pDCs in SLE are extensively studied, and treatment with inhibitors against TLR7/8 and

TLR9 are in Phase I trials in patients with SLE [83–86].

TLR4 expression and responsiveness

In the periphery, human monocytes express the highest TLR4 levels of PBMCs. MDCs are

the other cell type to express TLR4; both cells produce pro-inflammatory cytokines such as

IL-1β, TNF-α or IL-6 in response to the TLR4 ligand LPS [21,87,88]. Human pDCs, B cells,

T cells, and NK cells do not express TLR4, and do not directly respond to its ligand LPS

[21]. TLR4 knockout or mutations in mice exhibit defects in responses to LPS, including

pro-inflammatory cytokine production, susceptibility to bacterial infections, tissue injury

induced ischemia, myocardial infarction, neuro-degeneration, and cancer related immunities

[77,89–95].
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Sex differences in TLR4 responsiveness in monocytes are listed as

follows: TNF-α

Monocytes from males produce higher levels of TNF-α in response to LPS compared to

females [96–99]. However, the results from in vitro experiments are conflicting [96,97,99–

102]. IL-1β. There are increased plasma levels of IL-1β and LPS-induced IL-1β-producing

monocytes in the luteal phase compared to the follicular phase [25,103,104]. IL-12. LPS

induced IL-12 production by monocytes was higher in men compared to women, but similar

in women in luteal phase versus follicular phase [25,96], suggesting that androgens may

affect IL-12 production by monocytes through TLR4. IL-6. Results related to sex

differences in IL-6 production in response to LPS in controls and patients with SLE are

conflicting [102,105–109]. Aulock’s group reported that TNFα, IL-1β, IL-6 and IL-8

production by monocytes in response to LPS was similar or less in women compared to men

[99]. Conflicting data were also reported whether estrogen/progesterone affect cytokine

production by LPS-stimulated monocytes in humans [96]. The sex differences in monocyte

activation and maturation may include both differences in quantity and quality (e.g., genetic

factors). It is difficult to draw a conclusion on sex differences in TLR4 responsiveness in

monocytes; nevertheless, women seemingly have a reduced TLR4 responsiveness to LPS in

monocytes in vitro. This could be due to pre-activation and desensitization in monocytes in

women, or due to sex differences in TLR expression and signaling responses in monocytes.

The responses to the TLR4 ligand LPS involve the LPS binding protein (LBP), HDL

particles, MD2, TLR4 and soluble CD14 [110–113]. Peripheral LPS is mainly cleared in the

liver [114]; LBP transfers LPS to HDL particles, which leads to sequestration of LPS-

induced responses [112,115]. A previous study showed that plasma sCD14 also plays a role

in the inactivation of LPS-induced host responses [110]. There is no clear evidence of a sex

difference in TLR4 expression on monocytes. Although these results were not always

consistent, as we stated in the last paragraph, in vivo the levels of several cytokines and in

vitro monocyte responses to LPS are different based on female menstrual cycles, suggesting

that there is an effect of sex hormones on TLR4 responses and monocytes in vivo. However,

it is not clear in vitro whether monocytes have a direct response to estrogen.

Several mechanisms could be accounting for the effect of estrogen on TLR4 effects,

including direct effects through levels of estrogen and estrogen receptors, and indirect

effects through sex mediated differences in cytokine patterns. TLR4-responding cells may

express estrogen receptors and directly respond to estrogen. As a result, estrogen activation

may change TLR expression or signaling transduction at the single cell level. In contrast,

TLR-responding cells may not express estrogen receptors. Their response to estrogen is

through indirect activation by estrogen-responsive cells. For example, pDCs express ERα

and TLR7/TLR9. Estrogen increased TLR7 or TLR9-mediated IFNα production in pDCs,

but there is no evidence that this is a direct response of pDCs to estrogen [116].

TLR4 responsiveness in SLE

TLR4 responses play a role in SLE pathogenesis in murine models [117–120]; the potential

mechanisms include TLR4-mediated suppression of regulatory T cells [121], induction of
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CD40 expression on antigen-presenting cells [122], and induction of autoantibodies [123].

There is no reported difference in the TLR4 expression in PBMCs from controls and SLE

patients [124]. Monocytes spontaneously secrete TNF-α or IL-6 in SLE disease [57]. In

vivo, plasma levels of IL-6, IL-10 and TNF-α are elevated in SLE patients compared to

controls. Moreover, SLE is associated with increased numbers of monocytes in the

periphery, increased expression of Fc receptors, increased levels of IgG production,

decreased function of phagocytes in response to LPS, and increased levels of soluble CD14

and LBP [60,125–128]. LPS has a reported pathogenic role in SLE pathogenesis

[58,117,129]. In vitro, IL-1β and IL-6 production by monocytes from SLE patients in

response to LPS is reduced regardless of disease activity, but TNF-α production remains the

same in monocytes compared to controls [57,130]. In murine macrophages, TLR4

expression and pro-inflammatory cytokine production are decreased after removal of

endogenous estrogens, and exogenous replacement of 17β-estradiol reverses this effect

[131]. Moreover, treatment with low dose steroids or chloroquine did not have a significant

effect on TLR4 expression and signaling activation. High dose corticosteroids decrease

cytokine production (TNF-α and IL-6) in response to LPS [57,124]. These results suggest

that monocytes from SLE are activated, release pro-inflammatory cytokines, and contribute

to disease pathogenesis, especially at target tissue sites (e.g., kidney) [58,117,129].

TLR4 responsiveness and monocyte activation in other autoimmune

diseases

TLR4 responsiveness is reported to play a role in the pathogenesis of other autoimmune

diseases besides SLE including coxsackievirus-induced autoimmune myocarditis [132]

collagen-induced arthritis [133], primary biliary cirrhosis [134], experimental autoimmune

uveitis (EAU) [135], antibody-mediated glomerulonephritis [136] and autoimmune

destructive arthritis [137]. However, most data were in mice; data in humans are largely

lacking. Furthermore, the subset of CD14+/CD16+ blood monocytes is expanded in

autoimmune diseases such as rheumatoid arthritis, [38], and plays a role in the pathogenesis

of experimental autoimmune encephalomyelitis (EAE) [138]. Importantly, TLR4

downstream pro-inflammatory cytokines such as IL-1β, TNF-α and IL-6 are key mediators

in several autoimmune diseases [139–142] besides SLE. Therefore, TLR4 signaling is

involved in the pathogenesis of several autoimmune diseases, and needs to be studied

further.

Genetic predisposition in SLE

There are variant genes associated with the etiology and pathogenesis of SLE, including

antigen presentation molecules (HLA-DQ, HLA-DR alleles) [143,144], complement related

genes (C1q, C2 and C4) [145–148], Fc gamma receptors (CD64, CD32 and CD16), [64–69],

the programmed cell death 1 gene (PDD1) [149–151], IFN and TNF related genes [152–

154], and the C-reactive protein (CRP) gene [155,156].

Female cells carry both maternal and paternal X chromosomes, whereas male cells carry

only the maternal X chromosome. The inactivation of X chromosomes is not random.

However, roughly 16% of healthy females aged 50 or older are shown to have a skewed X-
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chromosome inactivation [157,158]. Furthermore, certain frequencies of X-linked genes are

known to escape inactivation, and express both alleles on the X chromosomes [159–161]. It

is possible that perturbation in X-chromosome inactivation results in the breakdown of

tolerance and the induction of autoimmunity.

Anti-estrogen treatment in SLE

In female (NZB × NZW) F1 and MRLlpr/lpr mice, anti-estrogen had beneficial effects on

experimental SLE, including reduction of anti-DNA production and immune complex–

mediated glomerulonephritis, and prolonged survival [162–164]. Clearly, estrogen treatment

in mice not only enhances disease progression but also drives increased serum anti-dsDNA

antibody titers [162,163,165]. However, in SLE patients, treatment with anti-estrogens, has

led to mixed responses [165–168]. Treatment of female lupus patients with estrogen

containing birth control pills premenopausal or use of hormone replacement therapy post

menopausal had minimal to no effect on disease. There is no evidence that use of estrogens

increases the risk for developing lupus.

Summary

The subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients, and also

elevated in SLE. This subset of monocytes is a major source of pro-inflammatory cytokines

such as TNF-α. Data in mice indicate that LPS and TLR4 play a role in mediating

autoimmunity, pro-inflammatory cytokine production, and other immune activation. Sex

hormones impact TLR4-associated innate immune responses in monocytes in healthy

individuals and in patients with SLE (Figure 1). In our model, sex hormones (e.g., estrogen)

could directly activate or indirectly activate monocytes, and change TLR4 responsiveness in

monocytes through several mechanisms, such as sex hormone associated changes in the

levels of TLR4 ligands, TLR4 expression, TLR4 signaling pathway, and LPS-TLR4

interaction cofactors (Figure 1). Monocytes in SLE patients are activated and produce pro-

inflammatory cytokines. Importantly, TLR4-mediated pro-inflammatory cytokines (e.g.,

IL-6, IL-1β and TNF-α) are increased and play an important role in the etiology and

pathogenesis of SLE [169]. Treatments targeting these cytokines or specific TLRs are at

least partially effective in animal models of SLE and are in clinical trials in patients with

SLE [15,170]. Therefore, further therapeutic strategies should not only focus on TLR7/8 and

TLR9 signaling, but also should investigate the contribution of TLR4 signaling in lupus

pathogenesis and sex differences in the prevalence of autoimmune diseases.
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ERα Estrogen receptor alpha

SLE systemic lupus erythematosis

pDCs plasmacytoid dendritic cells

IFN-α Interferon alpha

PAMPs pathogen associated molecular patterns

PBMCs peripheral blood mononuclear cells
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Figure 1. A model of sex differences in monocytes and TLR4 responsiveness
The effect of sex hormones (e.g., estrogen) on TLR4 responsiveness and monocyte

activation could be through direct activation of monocytes, or through indirect activation of

monocytes. These actions include estrogen effects on TLR4 expression, TLR4 signaling

pathways, LPS interaction cofactors (e.g., TLR4, CD14, MD2 and LBP), and levels of

TLR4 ligands. As a consequence of monocyte activation and altered TLR4 responsiveness,

there are increased levels of downstream pro-inflammatory cytokines (e.g, TNFα, IL-1β and

IL-6), which play a role in autoimmune diseases such as SLE.
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