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SUMMARY

Identification of driver mutations in human diseases is often limited by cohort size and availability

of appropriate statistical models. We propose a novel framework for the systematic discovery of

genetic alterations that are causal determinants of disease, by prioritizing genes upstream of

functional disease drivers, within regulatory networks inferred de novo from experimental data.

We tested this framework by identifying the genetic determinants of the mesenchymal subtype of

glioblastoma. Our analysis uncovered KLHL9 deletions as upstream activators of two previously

established master regulators of the subtype, C/EBPβ and C/EBPδ. Rescue of KLHL9 expression

induced proteasomal degradation of C/EBP proteins, abrogated the mesenchymal signature, and

reduced tumor viability in vitro and in vivo. Deletions of KLHL9 were confirmed in >50% of

mesenchymal cases in an independent cohort, thus representing the most frequent genetic

determinant of the subtype. The method generalized to study other human diseases, including

breast cancer and Alzheimer’s disease.

INTRODUCTION

Identification of somatic mutations and germline variants that are determinants of cancer

and other complex human diseases/traits (driver mutations) is mostly performed on a

statistical basis, using models of genomic evolution (Frattini et al., 2013) or mutational bias

(Lawrence et al., 2013), etc., to increase the significance of individual events. Achieving

appropriate statistical power, however, requires large effect sizes or large cohorts due to

multiple hypothesis testing correction (Califano et al., 2012). In addition, these approaches

are not designed to provide mechanistic insight. As a result, many disease risk determinants,

such as apolipoprotein E, were discovered long before they were mechanistically elucidated

(Liu et al., 2013).

Network-based analyses have recently emerged as a highly effective framework for the

discovery of Master Regulator (MR) genes that are functional disease drivers (Aytes et al.,

2014a; Carro et al., 2010; Lefebvre et al., 2010; Piovan et al., 2013; Sumazin et al., 2011;

Zhao et al., 2009). Here, we introduce DIGGIT (Driver-gene Inference by Genetical-

Genomic Information Theory), an algorithm to identify genetic determinants of disease by

systematically exploring regulatory/signaling networks upstream of MR genes. This

collapses the number of testable hypotheses and provides regulatory clues to help elucidate

associated mechanisms.

We first apply DIGGIT to identify causal genetic determinants of the MES-GBM subtype,

which remain poorly characterized despite extensive efforts (Brennan et al., 2013; Verhaak

et al., 2010). We then demonstrate its generalizability to other diseases for which matched

expression and mutational data are available.

Astrocytoma grade IV or glioblastoma (GBM) is the most common human brain malignancy

and is virtually incurable, with average survival of 12–18 months post diagnosis (Ohgaki

and Kleihues, 2005). Gene expression profile analysis revealed three subtypes associated

with expression of mesenchymal, proliferative, and pro-neural genes, respectively (Phillips

et al., 2006). Among these, mesenchymal tumors (MES-GBM) present with worst
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prognosis, as confirmed by other studies (Carro et al., 2010; Sun et al., 2006; TCGA-

Consortium, 2008). Integrative analysis of expression and mutational data (TCGA-

Consortium, 2008) produced a more complex stratification into proneural (PN), neural,

classic, and mesenchymal subtypes, as well an epigenetically distinct subtype (G-CIMP)

with best prognosis (Verhaak et al., 2010). While non-G-CIMP PN tumors were associated

with worst prognosis by (Brennan et al., 2013), MES-GBM tumors, based on the original

classification, present virtually indistinguishable prognosis and are ~7-fold more frequent

(Fig. S1). Thus the original MES-GBM and the newer Non-G-CIMP PN signatures are both

objective, equivalent markers of poor prognosis.

Among the genetic alterations reported by the TCGA Consortium (TCGA-Consortium,

2008), only NF1 mutations/deletions were associated with MES-GBM tumors (~25% of

samples) (Verhaak et al., 2010) while additional rare mutations and fusion events were

recently reported (Danussi et al., 2013; Frattini et al., 2013). Thus, despite multiple studies,

the genetic determinants of MES-GBM are still largely elusive and represent an ideal target

for the new algorithm.

In (Carro et al., 2010), we reported that aberrant co-activation of the transcription factors

(TFs) C/EBPβ, C/EBPδ, and STAT3 is necessary and sufficient to induce mesenchymal

reprogramming in GBM, suggesting that this TF-module represents an obligate pathway or

regulatory bottleneck between driver alterations and aberrant mesenchymal program

activity. We thus hypothesize that the genetic drivers of MES-GBM are either among these

genes or in their upstream pathways. Use of DIGGIT to test the hypothesis elucidated two

high-frequency alterations: focal amplification of C/EBPδ and homozygous deletion of

KLHL9, a Cullin E3 ligase adapter (Sumara et al., 2007).

To assess the algorithm’s generalizability to other diseases and germline variants, we also

applied it to breast cancer (BRCA) and Alzheimer’s disease (AD). This identified driver

alterations and variants missed by GWAS studies but validated by independent candidate-

gene studies, as well as high-probability, yet unreported events.

RESULTS

Given a set of functional disease drivers, e.g., inferred by the Master Regulator Inference

algorithm (MARINa) (Aytes et al., 2014a; Carro et al., 2010), DIGGIT evaluates candidate

alterations in these genes and in their upstream regulators (see Fig. 1A for a flowchart). This

is accomplished by a 5-step process (Fig. 1B-1F), requiring a large set (N ≥ 200) of gene

expression profiles (henceforth GEPD) to assemble and analyze regulatory networks and a

large set (N ≥ 100) of sample-matched genetic variant profiles (henceforth GVPD). We first

discuss application of this pipeline to identify copy number variants (CNVs) that are causal

determinants of the MES-GBM subtype. We then perform additional analyses to show that

DIGGIT generalizes to the study of germline variants, as well as of other diseases, including

breast cancer and Alzheimer’s.
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Step 1 (MR Analysis, Fig. 1B)

This step requires a context-specific regulatory network representing TF → target

interactions (henceforth, interactome), and a gene expression signature of interest (i.e., a p-

value ranked list of differentially expressed genes) (input). These are analyzed by MARINa

to produce a p-value ranked list of candidate MRs (output). Given a GEPD dataset, networks

can be inferred using available reverse-engineering algorithms, such as ARACNe (Basso et

al., 2005). Specifically, MARINa analysis of an ARACNe-inferred GBM network, using a

MES-GBM signature identified six MR genes (MES-MRs), including C/EBPβ, C/EBPδ,

STAT3, BHLHB2, RUNX1, and FOSL2, including C/EBPβ/C/EBPδ and STAT3 as

synergistic MRs (Carro et al., 2010).

Step 2 (F-CNVG Analysis, Fig. 1C)

Functional alterations must induce aberrant activity of their gene products. Among copy

number alterations (CNVGs), we thus select those whose ploidy is informative of gene

expression as candidate functional CNVs (F-CNVGs) (Tamborero et al., 2013) (Fig. S1).

This is assessed based on (a) Mutual Information (MI) between copy number and expression

or (b) differential expression in WT vs. amplified/deleted samples (see Experimental

Methods). Analyses are performed on the GEPD and sample-matched GVPD profiles

(input), independent of subtype classification, to produce a p-value ranked list of candidate

F-CNVGs (output).

Analysis of 229 profile-matched GBM samples in TCGA identified 1,486 candidate F-

CNVGs (p ≤ 0.05, Bonferroni corrected). The MI test proved highly sensitive, accounting

for 90% of inferred F-CNVGs (Supplemental Tables) (both KLHL9 and C/EBPδ were

positive by MI analysis), with the T-test accounting for an additional 10% of low-frequency

F-CNVGs, with low MI analysis sensitivity.

Most CNVGs (94%) were discarded as not informative of gene expression (see Fig. S1),

suggesting no functional contribution. Conversely, inferred F-CNVGs included most genes

previously reported as GBM drivers (14/18, >88%) (TCGA-Consortium, 2008), including
EGFR, CDK4, PDGFRA, MDM2, MDM4, MET, AKT3, MYCN, PIK3CA, CDKN2A,

CDKN2C, RB1, PTEN, and NF1 (p = 1.2×10−10) (Supplemental Tables). Analysis of

remaining driver genes (CCND2, CDK6, CDKN2B, PARK2) revealed that they were missed

either due to low event frequency (CDK6<1.3%, CCND2<2.2%, PARK2<5.2%) or below-

detection gene expression levels (CDKN2B).

Among the MES-MRs, only C/EBPδ was inferred as a focally amplified F-CNVG (~22% of

samples), suggesting that aberrant activity of other MES-MRs may be mediated by

alterations in their upstream regulators.

Step 3 (MINDy Analysis, Fig. 1D)

Next, we interrogate pathways upstream of MR genes using the MINDy algorithm (Wang et

al., 2009). MINDy analyzes a large GEPD, the candidate MR list (Step-1), and the F-CNVG

list (Step-2) (input) to identify F-CNVGs that are candidate post-translational modulators of

MR-activity (independent of subtype classification), by Conditional Mutual Information
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analysis (Wang et al., 2009; Zhao et al., 2009), see Supplemental Methods. This generates a

p-value ranked list of candidate F-CNVGs in pathways upstream of MR genes (output). This

step dramatically reduced the 1,486 F-CNVGs from Step-1 to only 92 statistically

significant candidate MES-MR modulators; see Table S3.

Step 4 (aQTL Analysis, Fig. 1E)

F-CNVGs are then analyzed to identify those whose alteration is predictive of MR-activity,

similar to expression quantitative trait loci (eQTL) discovery (Yang et al., 2009). Activity

quantitative trait loci (aQTL) are inferred based on the statistical significance of the Mutual

Information between copy number and MR-activity. For each candidate F-CNVG, this is

computed using the MR-list (Step-1), the F-CNVG list (Step-2), the GEPD dataset, and the

interactome (input) to generate a p-value ranked list of candidate F-CNVG-aQTL (output).

Differential MR-activity is inferred from their differential target expression, using a single-

sample version of MARINa (see Methods). This is critical, as MRs are frequently

differentially active but not differentially expressed (Aytes et al., 2014a; Carro et al., 2010).

Overall, 125 out of 1,486 F-CNVGs from Step-2 were inferred as aQTLs, including both C/

EBPδ and KLHL9 (Fig. 2A, Table S3).

Step 5 (Conditional Association Analysis, Fig. 1F)

MINDy and aQTL analyses are probabilistically integrated, using Fisher’s method, to

prioritize F-CNVGs for the final step. As shown by the 2-fold reduction in candidate F-

CNVGs (Table S3), these analyses provide largely statistically independent evidence.

CNVs can span multiple genes, resulting in statistical dependencies equivalent to linkage

disequilibrium (LD) in classical genetics. Indeed F-CNVG clustering by sample co-

segregation identified 34 clusters (Fig. 2B), largely reflecting chromosomal proximity.

Conditional analysis helps assess whether association of a F-CNVG (fCNVi) with the

phenotype may be an artifact resulting from its physical proximity to a bona fide driver F-

CNVG (fCNVj), in which case conditional association of fCNVi with the phenotype (i.e.,

using only fCNVWT samples) should not be statistically significant, thus removing such

artifacts. This step requires MINDy/aQTL prioritized F-CNVGs (Step-3/4), a phenotypic

classifier, and the GEPD dataset (input) to produce a final p-value ranked list of candidate

driver F-CNVGs (output).

For MES-GBM, the 41 F-CNVGs inferred as significant from integrative MINDy/aQTL

analysis (Table S3) co-segregated into five distinct clusters: a 7-gene cluster (Chr. 5, 7, 8,

and 19) including the C/EBPδ locus; a 15-gene cluster (Chr. 9), including the KLHL9/

CDKN2A locus; a 11-gene cluster (Chr. 7), including the EGFR locus; a 5-gene cluster (Chr.

19); and a 3-gene cluster (Chr. 10) (see Fig. 2C and S3). The first cluster presented with a

highly unlikely co-segregation pattern distributed over four chromosomes (p = 9.5 × 10−12).

In addition, C/EBPS amplifications on chr-8 also co-segregated with NF1 point mutations,

whose association with the MES-GBM subtype was previously reported (Verhaak et al.,

2010). Since MINDy infers NF1 as a STAT3 but not a C/EBPβ/δ modulator and these

proteins cooperate synergistically to induce MES reprogramming, this suggests a possible

cooperative role of C/EBPδ and NF1 mutations. The 41 F-CNVGδ were tested for
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conditional association to the MES subtype (Fig. 2C). Only C/EBPS and KLHL9 abrogated

association of all other F-CNVGδ, while remaining significant when conditioning on other

F-CNVGδ (see Fig. 2C and S3).

Conditional analysis discarded CDKN2A, a well-established tumor suppressor located

proximally to KLHL9, as candidate causal drivers of MES-GBM. Indeed, 85 samples with

homozygous CDKN2A deletions but an intact KLHL9 locus (iCDKN2A−/−-/KLHL9WT) were

not associated with MES-GBM. Conversely, 38 CDKN2A−/−-/KLHL9−/− samples

(excluding C/EBPδ amplifications to avoid confounding factors) were highly associated

with MES-GBM (p = 2.1 × 10−5), when compared to CDKN2A−/−/KLHL9WT samples.

Using a stringent call threshold, C/EBPδAmp and KLHL9−/− events account for 48% of

TCGA MES-GBM samples (Fig. 2D), with independent deletions/mutations of NF1

covering an additional 8%, suggesting that these may constitute the most common subtype

drivers. Table S3 summarizes the reduction in candidate F-CNVGδ resulting from each step

of the analysis.

Association of KLHL9 deletions is confirmed in an independent cohort—Since

C/EBPδ is a validated MES-MR (Carro et al., 2010), we focused on the functional

significance of homozygous KLHL9 deletions. First, we tested whether their association

with poor prognosis could be validated in an independent cohort. We analyzed 63 FFPEs,

representing 40 poor prognosis (survival < 35 weeks) and 23 good prognosis (survival > 130

weeks) GBM samples. Quantitative genomic PCR revealed higher frequency of

homozygous KLHL9 deletions in poor-prognosis (21/40) vs. good prognosis samples (4/23)

(p =0.006, by FET), Fig. 3A, 3B. This suggests an even higher frequency (>50%) than in

TCGA samples (38%). IHC staining of 10 KLHL9−/− and 10 KLHL9WT confirmed

association with aberrant C/EBPβ and C/EBPδ protein expression in vivo (odds ratio 12.25,

p = 0.028) (Fig. 3C). This confirms KLHL9−/− events as poor prognosis biomarkers and

their association with aberrant MES-MR activity in vivo. No KLHL9 missense or nonsense

mutations were detected.

C/EBPδ and KLHL9 alterations are predictive of poor prognosis in multiple
tumors—Mesenchymal reprogramming is generally associated with poor outcome in

cancer (Thiery, 2002). We thus assessed whether C/EBPδAmp and KLHL9−/− events may be

predictive of poor prognosis in GBM and other tumors, independent of potentially

controversial subtype classification.

In GBM, Kaplan-Meier analysis revealed significantly worse prognosis for patients

harboring C/EBPδAmp and KLHL9−/− alterations, compared to either good prognosis (i.e.,

non-mesenchymal patients) (Fig. 3D, p = 3.5 ×10−4), or C/EBPδWT/KLHL9WT patients (Fig.

3D, p =0.03). None of the patients with these alterations survived longer than 36 weeks post

diagnosis (see vertical bars in Fig. 3D) and patients harboring both events had worst overall

prognosis, suggesting a cooperative effect. Thus, C/EBPδAmp and KLHL9−/− represent

genetic biomarkers of poor prognosis, independent of subtype classification.
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Kaplan-Meier analysis of COSMIC (Forbes et al, 2008) and TCGA cohorts revealed that

KLHL9 homozygous deletions and missense/nonsense mutations are associated with worst

prognosis also in lung (LuAd) and ovarian (OvCa) adenocarcinomas (Fig. 3E, 3F), (p =1.8

×10−3) and p =0.04 respectively, independent of CDKN2A status. In OvCa, most KLHL9−/−

samples had no CDKN2A loss. Gene Set Enrichment Analysis (GSEA) (Subramanian et al.,

2005) confirmed aberrant C/EBPβ and/or C/EBPδ activity in KLHL9−/− samples, suggesting

a possible pan-cancer role of KLHL9 deletions via aberrant C/EBP activity (Fig. S4).

Ectopic KLHL9 expression in GBM cells abrogates C/EBPβ and C/EBPδ
abundance—To mechanistically elucidate KLHL9-mediated regulation of established

MES-MRs (C/EBPβ, C/EBPδ, and STAT3), we rescued KLHL9 expression in homozygously

deleted cells. Genomic analysis of a GBM cell line panel identified SF210 and SF763 cells

as KLHL9−/−;CDKN2A−/−;C/EBPWT.

Following inducible lentivirus-mediated rescue of KLHL9 expression in SF210 cells, two

independent clones (KLHL9–4 and KLHL9–7) showed stable KLHL9 levels by Western

blot, up to 96h post-induction (Fig. 4A, 4B). While C/EBPβ and C/EBPδ expression was not

significantly affected (Fig. 4C inset), RNA-Seq profiling revealed significant differential

expression of ARACNe-inferred C/EBPβ and C/EBPδ targets by GSEA (p = 0.004),

compared to controls (Fig. 4A), with significantly downregulation of established MES

markers: CHI3L1/YKL40, LIF, FOSL2, ACTA2, and FN1. Consistently, we observed

significant reduction in C/EBPδ and more modest decrease in C/EBPβ protein levels. Levels

of phospho-STAT3, representing the transcriptionally active isoform, were also reduced

(Fig. S5). These results were recapitulated in SF763 cells, with marked reduction of C/EBPδ

levels and more modest reduction of the C/EBPβ-LIP isoform in cells expressing KLHL9

relative to controls expressing RFP. Conversely, exogenous expression of P16/INK4A

(CDKN2A) in SF210 had no effect on either C/EBPβ or C/EBPδ protein expression or on the

MES signature genes (Fig. S5).

These results show that rescue of KLHL9 expression collapses the MES-GBM signature by

downregulating C/EBPβ and C/EBPδ at the protein level. This effect may be mediated by

ubiquitin-dependent proteasomal degradation, as previously reported for the AuroraB kinase

(Fig. 4B).

Proteasomal degradation of C/EBPβ and C/EBPδ depends on KLHL9-mediated
poly-ubiquitylation—Given KLHL9’s putative function as an adaptor of Cul3-based E3

ubiquitin ligase (Sumara et al., 2007), we tested its role in mediating poly-ubiquitylation-

dependent proteasomal degradation of C/EBPβ and C/EBPδ. Direct physical interaction

between KLHL9 and both C/EBPβ and C/EBPδ proteins was confirmed by co-

immunoprecipitation assays (Fig. 5A). We then measured degradation and relative half-life

of C/EBPβ and C/EBPδ following rescue of KLHL9 expression in SF210 (Fig. 5B). C/EBPβ

and C/EBPδ levels were significantly reduced at 4h following ectopic KLHL9 expression

and cycloheximide-mediated inhibition of protein translation (Fig. 5B). Finally, MG-132-

mediated proteasome inhibition abrogated C/EBPβ and C/EBPδ degradation, confirming that

KLHL9 is required for their proteasomal processing. A more detailed time-course revealed a
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~2h half life for these proteins following KLHL9 rescue (Fig. S6), compared to KLHL9−/−

controls where they were stable beyond 4h.

KLHL9 mediates poly-ubiquitylation of C/EBPβ and C/EBPδ isoforms—To

determine whether proteasomal degradation of C/EBPs depends on KLHL9-mediated

interaction with the CUL3 E3 ligase complex, we collected cell lysates following rescue of

KLHL9 expression and MG-132 treatment to test for ubiquitylated species. Indeed, C/EBPβ

and C/EBPδ poly-ubiquitylated isoforms increased significantly following KLHL9 rescue,

compared to controls (Fig. 5C). Reciprocal assays confirmed this result (Fig. S6).

Finally, to confirm that KLHL9-mediated C/EBP regulation depends on a functional

KLHL9-CUL3 E3 ligase complex, we cloned a mutant KLHL9 isoform with a 70aa deletion

of its N-terminal BTB domain. This domain is required for ligase/target complex

recruitment to the cullin scaffold, which mediates ubiquitin transfer to the target substrate

(Xu et al., 2003). Expression of mutant KLHL9 abrogated poly-ubiquitylation of both C/EBP

proteins in SF210 cells (Fig. 5D), resulting in half-lives comparable to control KLHL9−/−

cells.

KLHL9 expression delays exit from S-phase in glioma cells—To study the

functional consequences of KLHL9 deletion, we performed stable infection with KLHL9 or

control expression constructs in SF210 and SF763 cells, for cell cycle analysis. As

previously reported (Rutka et al., 1987), both cell lines are polyploid and aneuploid, with the

majority of the cells found as tetraploid (Fig. S7). Rescue of KLHL9 expression resulted in

decreased growth rates in both cell lines, with a more pronounced effect in SF210 (Fig. 6A

and S7). C/EBPδ protein levels decreased in both cell lines after KHLH9 infection, and C/

EBPβ isoform levels decreased in the SF210 line (Fig. 6B).

Cells were then synchronized by serum-free starvation for 48h, released in regular media,

and analyzed at selected time points with BrdU. We observed a constant increase in cell

number in S-phase in KHLH9-expressing SF210 cells relative to controls (Fig. 6C). BrdU

labeling revealed active S-phase at both 4h and 8h in KLHL9-expressing SF210 cells,

compared to only 4h in control cells (Fig. 6D). SF763 cells also showed delayed entry into

S-phase (at 4h compared with 2h in the control) and exited from S-phase only by 8h.

However, while control cells re-entered S-phase by 8h, KHLH9-expressing cells did not,

suggesting overall slowing of cell cycle progression, consistent with observed growth curves

(Fig. 6A & S7). Finally, Western blot analysis of synchronized KLHL9-expressing cells also

showed different kinetics for C/EBP isoforms, variable levels of AURKB, and higher levels

of cyclin A and p21 protein expression. Taken together, our data suggest that rescue of

KLHL9 expression delays the cell cycle by imposing a late S/G2 checkpoint.

KLHL9 expression in KLHL9 −/− patient-derived GBM tumors reduces growth
in orthotopic xenografts—To test whether the in vitro effects of KLHL9 rescue were

recapitulated in vivo, we identified a patient derived xenograft (PDX) model of

KLHL9−/−GBM (HF2354), classified as a MES-GBM tumor by RNA-Seq profile analysis.

The overall workflow of this experiment is outlined in Fig. 7A. The PDX model originated

from a primary GBM tumor sample that was serially passaged in mice. We exogenously
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rescued expression of KLHL9 in HF2354 via stable infection with pLOC-KLHL9 or pLOC-

RFP vectors. 96h after lentivirus infection, cells were orthotopically implanted in two 7-

mouse cohorts. All 14 mice were observed daily and euthanized simultaneously at the first

sign of distress (per IACUC protocol). Their brains were formalin fixed, breadloaffed, and

paraffin embedded for histological assessment and IHC.

Face cuts from the blocks were H&E stained for tumor identification and scored by a board-

certified pathologist, from 0 [no tumor cells present in any sections] to 3 [major portion of

hemisphere occupied by tumor]. Rescue of KLHL9 expression in HF2354 cells significantly

impaired tumor growth compared to RFP-expressing controls (Fig. 7B), resulting in

significant reduction in overall tumor mass (p = 0.04). The presence of some tumor cells was

reported even in the absence of an expanding mass. As such, these values and associated p-

value constitute an overly cautious interpretation of the assay.

These experiments show that in vitro cell-cycle dependent reduction in proliferative

potential, induced by ectopic KLHL9 expression in human cell cultures, is recapitulated in

vivo and induces retardation in tumor growth.

Unbiased inference of driver alterations in breast cancer and Alzheimer’s
disease—To test whether DIGGIT could be generalized to study different disease models

and germline variants, we performed full analysis (Steps 1–5) of sample-matched CNV/

expression data from the TCGA breast cancer (BRCA) cohort (TCGA-Consortium, 2012),

and of sample-matched SNP/expression data from a recent integrative study of Alzheimer’s

disease (AD) (Zhang et al., 2013).

BRCA is a well-studied cancer with many established oncogenic drivers that have been

functionally or mechanistically validated. We thus first performed a literature search to

identify a repertoire of validated CNV alterations linked to BRCA tumorigenesis. The

analysis revealed a set of 25 alterations, which are reported in Table S4, together with

appropriate references. We then performed DIGGIT and GWAS analyses using TCGA data,

naïve to these publications.

To identify candidate MR genes for BRCA, we first generated tumorigenic signatures for

each tumor sample by differential expression analysis against the set of TCGA normal breast

tissues. We then analyzed each signature using the single-sample MARINa algorithm,

ssMARINa (see methods and (Aytes et al., 2014b)), to select the 10 most frequently inferred

MRs. This effectively avoids bias from breast cancer subtype stratification, while still

supporting identification of subtype-specific MRs. We chose the top 10 MR, because in

previous studies, 50% to 70% of top MRs were experimentally validated. Using more MRs

would thus decrease the specificity of MINDy and aQTL analyses without improving

sensitivity. The optimal number of MRs for the analysis may need to be selected on a case-

by-case basis.

Following candidate F-CNVGs analysis, integration of MINDy and aQTL results yielded

122 statistically significant F-CNVGs (FDR ≤ 0.05), of which 35 were selected by

conditional association analysis. Of these, 19 (76%) could be matched in the 25-gene
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literature compiled list (Supplemental Table 4); yet only 5 of them were statistically

significant by GWAS, while the remaining 14 were missed (FDR = 1). Finally, 6 literature-

derived events were missed by DIGGIT: two could not be identified as MINDy modulators

of top 10 MARINa-inferred MRs, while four were not statistically significant by aQTL

analysis. A summary of this analysis is provided in Supplemental Table 4.

Analysis of an Alzheimer’s disease cohort, using patient-matched, brain gene expression and

genotypic profiles from affected and non-affected individuals, identified TYROBP as a

candidate germline determinant of the disease (Zhang et al., 2013). We downloaded the

publicly available data used in these analyses and performed unbiased DIGGIT analysis,

naïve to the published results. Since this analysis was based on single nucleotide

polymorphisms (SNP), we modified Step-2 to identify candidate 𝓕-SNPs by selecting those

within 1kb of a corresponding gene’s coding region (see Supplemental Methods). Similar to

BRCA analysis, we used ssMARINa to identify the 10 most frequent MRs (See Methods).

DIGGIT identified 112 𝓕-SNPs, with 63 passing MINDy/aQTL integration and 13 also

significant by conditional association analysis. Among these, TYROBP was ranked 1st (p =

4.2 × 10 −47), achieving higher significance than even APOE, ranked 9th (p = 2.0× 10 −21)

(see Supplemental Tables S5 and S6). An additional candidate SNP identified in the original

publication (FCER1G) was ranked 8th (p = 9.1 × 10 −22) by our analysis.

DISCUSSION

Following ten years of genome-wide association studies (GWAS), elucidating the repertoire

of causal genetic determinants of most complex diseases has proven more challenging than

expected. Due to the large number of candidate loci, it is difficult to achieve the statistical

power to detect all but the most highly penetrant and frequent events. Furthermore, when

relevant genetic determinants emerge from these analyses, their mechanistic validation may

lag by decades. At the other end of the spectrum, candidate-gene based biochemical studies

can provide insight into causal regulatory mechanisms but do not effectively scale up to

genome-wide coverage, due to their time consuming and laborious nature.

To address both challenges we introduced DIGGIT, a novel algorithm for the network-based

elucidation of genetic determinants of human disease, resulting in dramatic reduction of

testable hypotheses and availability of regulatory clues to guide mechanistic validation. The

key algorithm’s requirement is a large repertoire of sample-matched gene expression and

genetic variant profiles. As such, it is directly applicable to many tumor contexts and to an

increasing number of germline diseases and traits.

The specific genetic etiology of most diseases is highly heterogeneous and thus largely

patient-specific. Yet, we hypothesize that diverse alteration patterns induce common

aberrant signals, converging on regulatory modules and associated MR proteins that

represent key regulatory bottlenecks, whose dysregulation is both necessary and sufficient

for disease initiation/progression. The existence and role of MR proteins and modules

representing regulatory bottlenecks has been demonstrated in a variety of tumor contexts

(Aytes et al., 2014a; Carro et al., 2010; Chudnovsky et al., 2014; Compagno et al., 2009; De

Keersmaecker et al., 2010; Della Gatta et al., 2012; Lefebvre et al., 2010; Lim et al., 2009;
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Piovan et al., 2013; Zhao et al., 2009). Once identified, however, it is reasonable to assume

that driver genetic events must be harbored either by these MRs or by their upstream

pathways.

The mesenchymal subtype of GBM, representative of poor prognosis, provides an ideal

context to test this rationale, as its established genetic determinants account for <25% of the

patients. Starting from previously established MES-GBM MRs (Carro et al., 2010), DIGGIT

identified C/EBPδ amplifications and KLHL9 deletions as novel, causal determinants of

aberrant MES-GBM MR activity. We confirmed KLHL9 deletions in an independent cohort

and showed that this protein is necessary for Cul3-ligase mediated ubiquitylation and

proteasomal degradation of established MES-GBM MRs, C/EBPβ and C/EBPδ.

Interestingly, only one MES-MRs (C/EBPδ) harbored driver alterations, suggesting that

typical MARINa-inferred MRs represent non-oncogene dependencies of cancer cells (Luo et

al., 2009; Schreiber et al., 2010), as also confirmed by additional studies (Aytes et al.,

2014a; Carro et al., 2010; Chudnovsky et al., 2014; Compagno et al., 2009; Lim et al., 2009;

Piovan et al., 2013; Zhao et al., 2009).

Initial evidence supporting the existence of regulatory bottlenecks that integrate aberrant

signals from multiple mutations to implement a common disease phenotype, first emerged in

earlier studies of Nf-κB as non-oncogene dependency in diffuse large B cell lymphoma.

Mutations in several BCR pathway genes (e.g., TNFAIP3, CARD11, MYD88, etc.) elicited

dependency on Nf-κB, even though its subunits were not mutated (Compagno et al., 2009;

Davis et al., 2001). More recent examples of MARINa-inferred non-oncogene dependencies

include AKT1 as a MR of glucocorticoid resistance in TALL, downstream of PTEN and

PI3K mutations (Piovan et al., 2013) and FOXM1 and CENPF as synergistic MRs of

aggressive prostate cancer (Aytes et al., 2014a), downstream of several genetic and

epigenetic alterations, currently undergoing experimental validation. Thus, while regulatory

bottlenecks may not represent a universal mechanism in cancer, when present, they can

substantially contribute to identification of driver alterations. Additionally, canalization of

aberrant signals from genetic events in upstream pathways is not necessarily restricted to

cancer. Indeed, we showed that DIGGIT could be successfully applied to elucidating genetic

determinants of Alzheimer’s disease risk. Specifically, to show that the algorithm can be

applied to multiple disease contexts driven by either somatic alterations or germline variants,

we showed that DIGGIT could successfully identify 19 established CNV drivers of breast

ductal adenocarcinoma and 3 established risk alleles for Alzheimer’s disease, as well as

several novel, high-probability alterations and variants that deserve further experimental

testing. Critically, the vast majority of these events could not be identified by GWAS.

The ability to interrogate de novo reverse-engineered networks upstream of established

functional regulators has several implications. First, it forgoes the need to evaluate each

locus in the genome as an equivalent candidate driver, which incurs a statistical cost that

greatly reduces the power of current GWAS methods. This is especially critical when

multiple low-penetrance or low-frequency events converge on the same functional regulator,

or when genetic alterations may have epistatic/synergistic effects. For instance, the dramatic

reduction in candidate driver alterations afforded by DIGGIT allowed efficient use of

conditional association methods to further distinguish driver from passenger alterations and
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to discover candidate co-dependent events, such as independent events in C/EBPδ and NF1.

Second, discovery of genetic drivers upstream of MRs previously established as therapeutic

targets are likely to provide valuable genetic biomarkers for targeted therapeutic

intervention. Finally, MR-based discovery of genetic alterations may help identify

alterations that are either not focal (e.g., in large amplicons) or that are masked by close

proximity to well-established oncogenes and tumor suppressors that would likely prevent

their identification, as was the case for the homozygous KLHL9 deletions.

With respect to the specific finding in GBM, our results implicate KLHL9 deletions as

mechanistic MES-GBM drivers, by abrogating ubiquitin-dependent proteasomal degradation

of two MR proteins, C\EBPβ and C/EBPδ, and by increasing levels of phosphorylated-

STAT3. At least two other genes coding for E3 ubiquitin ligases were reported to undergo

loss-of-function genetic alterations in GBM. The first one codes for FBW7, an F-box protein

of the SCF complex that is mutated in several forms of human cancer including GBM

(Thompson et al., 2007). FBW7 mutations stabilize the oncoprotein substrates CCNE1,

MYC and NOTCH1 (Nakayama and Nakayama, 2006). The second one, encoding an E3

ligase that is deleted in GBM, is HUWE1, a Hect-domain ubiquitin ligase that triggers

initiation of differentiation and loss of self-renewal in the developing brain by targeting the

MYCN oncoprotein for ubiquitin-mediated degradation (Zhao et al., 2009). Our findings

indicate that loss-of-function events targeting E3 ubiquitin ligases such as KLHL9 in human

cancer not only promote aberrant stabilization of classical oncoproteins, but can also trigger

accumulation of key transcription factors responsible for tumor lineage reprogramming.

Finally, the ability to identify both cancer bottlenecks and their candidate upstream

functional regulators depends critically on the availability of sample-matched gene-

expression/genetic-variant profiles and accurate and comprehensive repertoires of cell-

context specific molecular interactions (interactomes). While the assembly of integrated

transcriptional, post-transcriptional, and post-translational interactomes is still in its infancy,

the genome-wide integration of experimental and computational approaches is already

starting to provide biologically relevant models. This further suggests that network-based

methodologies may be increasingly valuable entries in the toolkit for the identification and

mechanistic elucidation of genetic determinants of physiological and disease-related

phenotypes, using ever-increasing volumes of genomic data.

EXPERIMENTAL PROCEDURES

This section includes short summaries of the experimental and computational methods used

in this manuscript. Full method description and utilization details are provided in the

Supplemental Information, including parameters and input/output data for the use of

published algorithms (ARACNe, MINDy, ssMARINA). A software package (DIGGIT), with

all relevant functions discussed in this section, as well as a “sweave” file to reproduce the

results of the analysis are available at the lab-software website (http://

wiki.c2b2.columbia.edu/califanolab/index.php/Software).

Chen et al. Page 12

Cell. Author manuscript; available in PMC 2015 October 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://wiki.c2b2.columbia.edu/califanolab/index.php/Software
http://wiki.c2b2.columbia.edu/califanolab/index.php/Software


Inference of Functional CNV Genes (F-CNVG)

Each F-CNVG (FCi) is assessed based on the statistical significance of the Mutual

Information (MI), IF[CNVi;mRNAi], where mRNAi represents its expression and CNVi its

copy number across a sample-matched cohort. Thresholds for CNV calling are assessed

from the distribution in control samples. The DIGGIT package includes the .fCNV function

to measure MI using a fixed-bandwidth Gaussian Kernel estimator and false discovery rate

(FDR), by gene-shuffling, to assess statistical significance. Low-frequency alterations,

occurring in fewer than 7 samples (thus not appropriate for MI analysis) are tested for

differential expression in altered vs. WT samples via T-test or Z-test.

MINDy and aQTL-analysis

MINDy—Use of the algorithm to generate a list of candidate MR modulators is fully

discussed in the Supplemental Information and in (Wang et al., 2009). aQTL: For each F-

CNVG (FC), the .aQTL function is used to compute MIaQTL[CNVi;MRj], i.e., the MI

between its copy number (CNVi) and the ssMARINa-inferred activity of each MES-MR

protein (MRj) to assess the aQTL p-value. MES-GBM MRs included: C/EBPβ, C/EBPδ,

STAT3, FOSL2, BHLHB2, and RUNX1, see (Carro et al., 2010). The aQTL and MINDy p-

values are integrated by Fisher’s method, implemented in the .integrate function.

F-CNVG Clustering and Conditional Association (CA)

Clustering—The .cluster function is used to tests each 𝓕-CNVG pair for same-sample

co-occurrence by pairwise FET; amplifications and deletions are tested separately. Clusters

include all gene pairs with statistically significant association.

Conditional Association—For each 𝓕-CNVG pair (FCi,FCi) in a cluster, the .ca

function is used to test whether FCi is no longer significantly associated with the target

phenotype (i.e., MES-GBM) when samples with FCj alterations are removed. Each

candidate FCi is given a score, SCA by counting the number of 𝓕-CNVGs in the cluster

whose association with the phenotype is abrogated when conditioning on FCi, minus the

number of 𝓕-CNVGs for which FCi’s association is abrogated. E.g., KLHL9 abrogated

MES-GBM association of 14 out of 14 other 𝓕-CNVGs in cluster 2. Conversely, KLHL9’s

association was never abrogated by these 𝓕-CNVGs (SCA = 14 – 0 = 14)

Classification of TCGA GBM tumors

We classified all TCGA GBM tumor samples into MES, PN, or PRO, per the original

definition (Phillips et al., 2006). The three genes with the highest variance across the cohort

in this work were used for classification including: SERPINE1, CHI3L1, TIMP1 (MES);

BCAN, OLIG2, KLRC3 (PN); and HMMR, TOP2A, PCNA (PRO). TCGA samples were

classified based on these markers, by unsupervised k-means clustering (available in the

Bioconductor R package).

Orthotopic xenograft mouse models

The orthotopic intracranial xenograft model was conducted under a protocol approved by

the Translational Drug Development (TD2) Institutional Animal Care and Use Committee.
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Female nude mice (Age 4–5 week) were randomized into groups of 7 that received either

HF2354 cells transduced with a control vector or a vector expressing KLHL9. At 96h

following lentivirus-mediated transduction, cells were injected into the right basal ganglia

using a small animal stereotaxic frame (TSE Systems). Mice were weighed daily and

observed for the onset of neurologic symptoms or distress. When the first mouse from either

study cohort was euthanized due to neurological symptoms or distress, all other mice in both

cohorts were euthanized and formalin-perfused brains were harvested and embedded in

paraffin. Immunohistochemistry and H&E staining were performed and a board certified

pathologist scored the sections: 0, no tumor; 1, small tumor or presence of dispersed tumor

cells in any tissue section; 2, medium size tumor; 3, large tumor occupying major areas of

the hemisphere.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The general workflow of DIGGIT
(A) Overall flowchart of the DIGGIT pipeline. Green, Red, and Blue arrows indicate use of

MRs, F-CNVGs, and MINDy/aQTL analysis results, respectively. (B) Step 1: Identification

of candidate MRs as TFs that activate and repress over-and under-expressed genes

respectively, as inferred by the MARINa algorithm. To avoid clutter, only one MR (blue

circle) is represented in the panel. Grey circles represent the repertoire of genetic alterations

that may be associated with the phenotype, while those within the two diagonal lines

(funnel) represent alterations in pathways upstream of the MR. The red circle represents a
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bona-fide causal driver alteration. (C) Step 2F-CNVGs are determined by association

analysis of copy number and gene-expression (see methods), thus removing a large number

of genes whose expression is not affected by ploidy. The insert shows two examples: (a) An

example of no dependency between copy number and expression and not selected as a

candidate F-CNVG, and (b) an example with highly significant dependency and thus

selected as a candidate F-CNVG (D) Step 3: MINDy analysis identifies F-CNVGs that are

candidate modulators of MR-activity (shown as yellow circles), by computing the

Conditional Mutual Information I[MR;T|M], where M is a candidate modulator gene and T

is an ARACNe-inferred MR-target gene. Blue arrows represent physical signal transduction

interactions upstream of the MR. Green arrows represent one specific M→MR→T triplet

tested by MINDy, as an illustrative example. Note that MINDy does not infer the blue

arrows but only the fact that a protein is an upstream modulator of MR activity. (E) Step 4:

aQTL analysis identifies F-CNVGs (shown as white circles), whose alterations co-

segregates with aberrant MR-activity, as computed from MR-target expression and shown

by the blue arrows. The insert shows details of this analysis. The vertical gradient rectangle

shows all genes sorted from the most overexpressd (red) to the most underexpressed (blue),

when comparing samples with copy number alterations in a gene (Gene ×) (thick red lines)

to WT samples (thin black lines). If MR-targets significantly co-segregate with the

differential expression signature (i.e., if positively regulated and repressed MR targets,

shown as red and blue bars, are over and under expressed, respectively, as shown), then

Gene × alterations are likely to affect MR-activity. (F) Step 5: Finally, conditional

association analysis identifies F-CNVGs that abrogate all other associations with the

phenotype (e.g., the MES-GBM subtype) when samples harboring their alterations are

removed from the analysis. Each cell shows the statistical significance of the association

between the i-th gene (rows) and the phenotype of interest (as a heatmap), when considering

only samples that have no alterations in the j-th gene (columns). For instance, when

conditioning on G3, no other gene is significantly associated with the subtype, while G3 is

still significantly associated with the subtype when conditioning on G1, G2, or G4. This

suggests that G3 is a bona fide driver gene.
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Figure 2. DIGGIT integrative analysis infers candidate MES-GBM driver mutations
(A) DIGGIT analysis of pathways upstream of MES-GBM MRs identifies CEBPδ

amplification and KLHL9 deletions as candidate genetic determinants of the GBM-MES

subtype. p-values shown represent the integrated p-value of the aQTL and MINDy steps, as

defined in Figure 1. (B) co-mutated F-CNVGs are shown as a network, with distance

between connected nodes inversely proportional to the statistical significance of their co-

segregation, as assessed by Fisher’s Exact Test (FET). Only statistically significant pairs are

shown (p = 0.05, corrected), with amplifications and deletions represented as blue and red
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nodes, respectively. Chromosome location is reported for the larger clusters, and nodes

representing C/EBPδ and KLHL9 are highlighted. (C) Conditional association analysis for

the two main co-segregating mutation clusters identified by DIGGIT. Color scale in the

matrix cell (i,j) represents the strength of association (−log10(p)) between the i-th F-CNVG

(row) and the MES subtype, conditional to removing samples with alterations in the j-th F-

CNVG (column), See Fig. S3. (D) Effect size of DIGGIT-inferred genetic determinants of

the MES-GBM subtype. “Classical” GBM oncogenes are shown only as a reference, for

comparison purpose. Marks indicate amplification (+) deletion (−) and diploid (WT) status

for each gene.
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Figure 3. KLHL9 deletions are associated with aberrant C/EBPβ and C/EBPδ levels and poorest
prognosis in an independent GBM cohort
(A) Genomic q-PCR analysis of primary tumors from an independent 63 GBM patient

cohort, shown as CT values. Values higher than the red horizontal line (max CT threshold)

represent statistically significant homozygous KLHL9 deletions (KLHL9−/−) (p ≤ 0.05).

Values are reported as mean ±SEM. (B) Contingency table generated from qPCR results in

panel A, showing the statistical significance of the association between KLHL9−/−

alterations and poor prognosis, as assessed by FET analysis (C) IHC staining for C/EBPβ

Chen et al. Page 21

Cell. Author manuscript; available in PMC 2015 October 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



and C/EBPδ in primary samples shows stronger immunoreactivity in KHLH9−/− samples

compared to KLHL9WT controls. Association between KLHL9−/− alterations and aberrant

expression of C/EBP proteins is summarized by odds ratio (OR) and p-value (FET);

representative IHC slides are shown. (D) Kaplan-Meier analysis of GBM samples in TCGA.

Patients with KLHL9−/− and C/EBPδAmp events are shown as a red curve; proneural subtype

patients are shown as a black curve; finally, KLHL9WT/CEBPδWT samples are shown as a

blue curve. Kaplan-Meier p-values are shown, including p1 (red vs. blue) and p2 (red vs.

black). Survival for patients with each specific genotype is shown as vertical bars below the

plot. (E,F) Kaplan-Meier analysis of the association between KLHL9−/− alterations and

poor prognosis in lung and serous ovarian adenocarcinoma, respectively. Analysis of

inferred differential activity of C/EBPβ and C/EBPδ in KLHL9−/− samples is shown in Fig.

S4.
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Figure 4. Rescue of KLHL9 expression downregulates C/EBPβ and C/EBPδ protein abundance,
as well as expression of mesenchymal marker genes
(A) KHLH9, C/EBPβ, C/EBPδ, and STAT3 protein levels in two isolated, doxycycline-

inducible clones 48h after KHLH9 rescue. B-actin was used as housekeeping control gene.

See Fig. S5 for additional blots (B) Densitometric quantification of the bands in 4B shows

relative abundance of target proteins, including C/EBPβ/δ, AURKB, and STAT3. For each

protein, values are normalized internally to BACT and then normalized again to the control.

(C) GSEA analysis of ARACNe-inferred targets of C/EBPβ and C/EBPδ in genes

differentially expressed following rescue of KLHL9 expression in SF210. The maximum

value of the enrichment score (ES, y-axis) is used to quantify relative enrichment. A

normalized enrichment score (NES) is then calculated to allow assessing the enrichment p-
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value (Subramanian et al., 2005). The p-value and NES shown by this graph represent the

enrichment of the union of ARACNe-inferred targets of C/EBPβ and C/EBPδ that are also in

the mesenchymal signature gene set (Phillips et al., 2006). Hashes in the three boxes below

the plot indicate the rank of the ARACNe-inferred targets of these MRs and of other

mesenchymal marker genes. Canonical mesenchymal markers are shown for reference. No

significant changes in C/EBPβ and C/EBPδ mRNA levels were observed, inset.
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Figure 5. Rescue of KLHL9 expression induces ubiquitylation and proteasomally-mediated
degradation of C/EBPβ and C/EBPδ

Abbreviations: CH=cycloheximide, MG132=proteasome inhibitor. (A) Co-

immunoprecipitation assays for KLHL9 and C/EBP proteins suggest direct physical

interaction. (B) Treating SF210 cells with cycloheximide inhibits protein translation, thus

allowing assessment of C/EBPβ, C/EBPδ protein-species turnover. The decrease in C/EBP

protein half-life, following ectopic KLHL9 expression, is rescued by treatment with

proteasome inhibitor, MG-132. (C) Immunoprecipitation of C/EBPβ and C/EBPδ proteins in

the presence of MG-132 and subsequent analysis of ubiquitylated species by Western blot.

(D) A mutant KLHL9 protein isoform that cannot interact with the Cullin ligase was

engineered by deleting the KLHL9 BTB domain, as indicated in the schematic. IP assays for
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ubiquitylated C/EBP species were repeated following ectopic expression of mutant KLHL9.

A full time course is available in Fig. S6.
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Figure 6. Ectopic KHLH9 expression decreases cellular proliferation by imposing a late S/G2
checkpoint in human GBM cells
(A) Growth curves of SF210 cells after lentiviral-mediated expression of KLHL9 or RFP as

a control; results are representative of three independent experiments. (B) Western blot

analysis of asynchronous SF210 and SF763 cells after re-introduction of KLHL9, showing

downregulation of C/EBP-δ and to a lesser extent C/EBP-β. Both uninfected cells and RFP

infected cells are shown; β-actin serves as loading control. (C) Cell cycle profiles of KLHL9

and RFP-infected control SF763 cells synchronized by serum-free culture and then released

into normal media for the indicated times. (D) BrdU incorporation by KLHL9 and RFP-

infected control SF763 cells synchronized as in (c). For each time point, BrdU-labeling was

performed as a 1-hour pulse preceding cell harvest. Additional data in Fig. S7.
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Figure 7. Ectopic KLHL9 expression, in patient-derived KLHL9−/−GBM tumors, reduces
growth in orthotopic xenografts
(A) Workflow of the PDX mouse model. Primary tumor samples are retrieved from human

patients and explanted into mice for propagation instead of traditional in vitro cell culture.

(B) Brain sections of mice given orthotopic injections of KLHL9-rescued or RFP control

human-derived GBM cells (HF2354) reveals a significant decrease in tumor number and

size. Clinical scoring of tumor size from a certified pathologist indicates a statistically
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significant difference in tumor growth rates (p = 0.04). H&E staining of face sections

reveals significantly reduced surface area of tumor masses and is also provided.
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