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Summary

Discrimination among pathogenic and beneficial microbes is essential for host organism immunity

and homeostasis. Here, we show that chemosensory detection of two secondary metabolites

produced by Pseudomonas aeruginosa modulates a neuroendocrine signaling pathway that

promotes avoidance behavior in the simple animal host Caenorhabditis elegans. Secondary

metabolites phenazine-1-carboxamide and pyochelin activate a G protein-signaling pathway in the

ASJ chemosensory neuron pair that induces expression of the neuromodulator DAF-7/TGF-β.

DAF-7, in turn, activates a canonical TGF-β signaling pathway in adjacent interneurons to

modulate aerotaxis behavior and promote avoidance of pathogenic P. aeruginosa. Our data

provide a chemical, genetic, and neuronal basis for how the behavior and physiology of a simple

animal host can be modified by the microbial environment, and suggest that secondary metabolites

produced by microbes may provide environmental cues that contribute to pathogen recognition

and host survival.
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Introduction

The recognition of microbial pathogens and the corresponding danger they represent is

essential for the survival of host organisms. Innate immune systems have evolved to respond

© 2014 Elsevier Inc. All rights reserved
*Correspondence to: dhkim@mit.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Author Contributions
J.D.M. performed C. elegans and P. aeruginosa experiments. O.P. and P.M. performed fractionation and NMR analysis. J.D.M., O.P.,
F.C.S., and D.H.K, analyzed the data and interpreted results. J.D.M. and D.H.K. wrote the paper with input from O.P. and F.C.S.

NIH Public Access
Author Manuscript
Cell. Author manuscript; available in PMC 2015 October 09.

Published in final edited form as:
Cell. 2014 October 9; 159(2): 267–280. doi:10.1016/j.cell.2014.09.011.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



to foreign structures derived from microbes, which help the host distinguish microbes from

self. However, such molecular patterns do not necessarily help the host discriminate a

microbe that is pathogenic from one that is commensal. Microbial molecular patterns such

as lipopolysaccharide are found on pathogen and commensal alike. In view of the diversity

of olfactory receptors present even in relatively simple host organisms, chemosensory

responses offer the potential to detect a far greater set of relevant microbial molecules.

Candidate receptors and specific bacterial cues that modulate host physiology and avoidance

behavior have begun to be explored (Pradel et al., 2007; Rivière et al., 2009; Stensmyr et al.,

2012).

The soil dwelling nematode Caenorhabditis elegans is a simple host organism that forages

on decomposing organic matter for bacterial food (Félix and Duveau, 2012). The presence

of bacterial food affects diverse behaviors of C. elegans such as feeding, locomotion,

thermotaxis, and aerotaxis (Avery and Horvitz, 1990; Chang et al., 2006; Hedgecock and

Russell, 1975; Sawin et al., 2000), and differences in the species composition of the food

supply can alter aspects of their physiology and behavior (Gusarov et al., 2013; MacNeil et

al., 2013; Shtonda and Avery, 2006; Watson et al., 2014). Pathogenic bacteria kill C.

elegans and induce an aversive learning response (Zhang et al., 2005) that promotes

protective behavioral avoidance (Chang et al., 2011; Pradel et al., 2007; Pujol et al., 2001;

Reddy et al., 2009). Bacterial molecules including Serratia marcescens serrawettin and

Pseudomonas aeruginosa quorum-sensing regulators have been implicated in the behavioral

avoidance of bacterial lawns (Beale et al., 2006; Pradel et al., 2007). As such, C. elegans is

emerging as a useful model for dissecting the genetic and biochemical mechanisms

underlying microbial discrimination in animal hosts.

In this study we focus on how the DAF-7/TGF-β pathway functions in chemosensory

neurons of C. elegans to regulate behavior in response to changes in the microbial

environment. DAF-7 functions in the neuroendocrine regulation of diverse aspects of

organismal development and physiology, including the dauer developmental decision,

foraging and aggregation behaviors, quiescence, metabolism, and longevity (de Bono et al.,

2002; Gallagher et al., 2013; Greer et al., 2008; Milward et al., 2011; Shaw et al., 2007;

Swanson and Riddle, 1981). In addition, another C. elegans TGF-β-family ligand, DBL-1,

has been shown to regulate olfactory aversive learning and antifungal defenses (Zhang and

Zhang, 2012; Zugasti and Ewbank, 2009). Expression of daf-7 is limited to the ASI pair of

chemosensory neurons and has been shown to respond to the availability of bacterial food

(Ren et al., 1996; Schackwitz et al., 1996). Here, we show that chemosensory recognition of

the pathogenic bacterium P. aeruginosa dramatically alters the neuronal expression pattern

of DAF-7 to promote avoidance behavior. Through a forward genetic screen we identify

conserved components of G protein signaling that act cell-autonomously in the ASJ neurons

to activate transcription of daf-7 in response to P. aeruginosa. Finally, we show that the ASJ

neurons respond to the secondary metabolites phenazine-1-carboxamide and pyochelin

secreted by P. aeruginosa during stationary phase. Our findings demonstrate how specific

bacteria can exert effects on host behavior and physiology, and point to how secondary

metabolites may serve as environmental cues that contribute to pathogen discrimination and

avoidance.

Meisel et al. Page 2

Cell. Author manuscript; available in PMC 2015 October 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Results

DAF-7/TGF-β is required for behavioral avoidance of Pseudomonas aeruginosa

We previously observed that mutants defective in the DAF-7/TGF-β pathway display

enhanced susceptibility to infection by P. aeruginosa (Reddy et al., 2009). In the standard

pathogenesis assay, daf-7 mutants die faster than the wild-type strain N2 and exhibit a

failure to avoid the bacterial lawn (Figures 1A and 1C). Initially, animals begin inside the

lawn, but by 15 h wild-type N2 animals avoid the lawn of pathogenic bacteria, while daf-7

mutants remain inside the lawn of P. aeruginosa (Figures 1C and 1D). In a modified

pathogenesis assay in which C. elegans are unable to avoid the lawn of pathogenic bacteria,

daf-7 mutants display the same susceptibility phenotype as wild-type animals, demonstrating

that the failure to avoid P. aeruginosa is the principal determinant in the susceptibility to

infection of daf-7 animals (Figure 1B). We also confirmed that daf-7 animals were indeed

being exposed to a higher dose of pathogenic bacteria by repeating the experiment with a P.

aeruginosa lawn containing red fluorescent beads that serve as markers of the bacterial load

in the intestine (Figure S1A).

Once secreted, DAF-7 binds to the TGF-β type I receptor DAF-1 and the TGF-β type II

receptor DAF-4, which then act to antagonize the co-SMAD DAF-3 (Figure 1E) (Estevez et

al., 1993; Georgi et al., 1990; Patterson et al., 1997). Other mutants in the DAF-7/TGF-β-

signaling pathway such as daf-1 and the R-SMAD daf-8 also display P. aeruginosa

avoidance defects (Figure S1B), and we observed complete suppression of the

daf-7(ok3125) avoidance defect by a mutation in daf-3 (Figure 1D). These results indicate

that the DAF-7 pathway is specifically required for avoidance of P. aeruginosa, functioning

through the canonical DAF-3 signaling pathway to promote survival by limiting host

exposure to pathogenic bacteria.

P. aeruginosa induces daf- 7 expression in the ASJ neuron pair and promotes avoidance
behavior

The TGF-β ligand daf-7 was previously shown to be expressed exclusively in the ASI pair

of ciliated chemosensory neurons, with expression levels responsive to changes in the

availability of standard E. coli food and C. elegans pheromones (Ren et al., 1996;

Schackwitz et al., 1996). To monitor daf-7 expression in the presence of P. aeruginosa we

used a transgenic strain carrying a daf-7p∷gfp transcriptional reporter. Unexpectedly, we

observed that exposure to P. aeruginosa induced fluorescence in four cells—the ASI neuron

pair as well as a second bilaterally symmetric pair of ciliated chemosensory neurons

(Figures 2A–2B). Through co-localization experiments with the lipophilic dye DiI, we

identified the additional cells as the ASJ chemosensory neurons (Figures 2C–2F). We

quantified the daf-7p∷gfp fluorescence increase in the ASJ neurons and found that the

reporter was induced at least 1000-fold on P. aeruginosa relative to E. coli (Figure 2G). We

also observed that the daf-7p∷gfp fluorescence in the ASI neurons increased 2-fold on P.

aeruginosa (Figure 2G).

We used fluorescent in situ hybridization of mRNA molecules to corroborate our

observations made with the daf-7p∷gfp transcriptional reporter. We did not detect
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fluorescence in the ASJ neuron pair when the laboratory wild-type strain N2 was propagated

on E. coli OP50 (Figures 2H and 2J). In contrast, upon exposure of C. elegans to P.

aeruginosa, we observed daf-7 mRNA expression in two additional cells corresponding to

the ASJ neuron pair (Figures 2I and 2J). Confirming the specificity of the fluorescence for

daf-7 mRNA, we did not detect daf-7 mRNA in a daf-7(ok3125) mutant strain carrying a

664 bp deletion, using probes designed to hybridize exclusively to the sequence within the

deletion (Figure S2A). Of note, we observed that when the wild-type strain was propagated

on E. coli, in addition to previously described expression in the ASI neuron pair, daf-7

mRNA was also present in six other sensory neurons, which we identified using reporter co-

localization experiments as the ADE neuron pair and the OLQ neurons (Figures 2H–2I and

S2B–S2G). ADE and OLQ are mechanosensory neurons that have been implicated in

bacterial food sensing (Hart et al., 1995; Sawin et al., 2000), and likely represent additional

previously unknown sites of DAF-7/TGF- β expression.

To follow the kinetics of the endogenous daf-7 transcriptional response to P. aeruginosa in

the ASJ neurons, we fixed animals following exposures to P. aeruginosa ranging in duration

from 3 min to 24 h and probed for daf-7 mRNA. On E. coli or following a 3 min exposure to

P. aeruginosa we did not detect daf-7 mRNA in the ASJ neurons (Figure 2J). However after

a 6 min exposure to P. aeruginosa daf-7 mRNA was present in the ASJ neurons and did not

appear to increase further over time (Figure 2J). The rapid kinetics of this transcriptional

response, far faster than the kinetics of intestinal infection or aversive learning behavior

(Tan et al., 1999; Zhang et al., 2005), led us to hypothesize that the ASJ chemosensory

neurons may be responding directly to specific P. aeruginosa cues.

We determined that transgenic overexpression of daf-7 under the native daf-7 promoter or

the ASJ-specific trx-1 promoter, as well as under the ASI-specific str-3 promoter, were each

sufficient to restore wild-type pathogen avoidance and susceptibility in the daf-7(ok3125)

mutant background (Figures 3A and 3C), consistent with the activity of DAF-7 as a secreted

ligand. We also observed that the genetic ablation of the ASJ neuron pair conferred a partial

deficit in P. aeruginosa avoidance and susceptibility (Figures 3B and 3D), demonstrating

that the ASJ neurons are necessary for the complete protective response to P. aeruginosa.

To determine if the ASJ-ablation avoidance phenotype was due to a loss of DAF-7 secretion

from those neurons, we introduced mutations in the downstream co-SMAD daf-3 that is

epistatic to daf-7 (Figure 1E). Mutant daf-3 alleles were able to partially suppress the

avoidance defect of both ASJ-ablation lines, consistent with the ASJ-ablation phenotype

being due in part to a loss of P. aeruginosa-induced DAF-7 secretion (Figure 3D). These

data establish a functional role for the induction of daf-7 in the ASJ neuron pair upon

exposure to P. aeruginosa.

DAF-7 signals to the RIM/RIC interneurons adjacent to the ASJ neurons to promote
pathogen avoidance

To understand how expression of daf-7 from the ASJ neurons promotes pathogen avoidance,

we proceeded to examine the involvement of downstream signaling components of the

canonical DAF-7/TGF-β pathway in the behavioral avoidance of P. aeruginosa. The daf-1

gene encodes the TGF-β Type I receptor that binds DAF-7 and is expressed in over 80
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neurons including ciliated sensory neurons, pharyngeal neurons, and interneurons (Gunther

et al., 2000). We found that daf-1 mutants, like daf-7 mutants, are deficient in avoidance of

P. aeruginosa (Figure 3E). Using daf-1 mutant strains in which transgenic expression of

daf-1 is directed in subsets of neurons, we observed that daf-1 expression under its native

promoter or the panneuronal egl-3 promoter rescued P. aeruginosa avoidance to wild-type

levels, but no rescue was observed when daf-1 was expressed in ~60 ciliated sensory

neurons (including ASI and ASJ) using either the osm-6 or bbs-1 promoters (Figure 3E).

Expression of daf-1 in only the RIM/RIC interneurons under the tdc-1 promoter was

sufficient to restore pathogen avoidance behavior in the daf-1 mutant to wild-type levels

(Figure 3E). Previous work showed that DAF-1 also acts in the RIM/RIC interneurons to

mediate wild-type development, feeding rate, and quiescence (Gallagher et al., 2013; Greer

et al., 2008), suggesting that despite the broad expression of daf-1 the RIM/RIC neurons

may be the primary site of DAF-1 activity with regard to regulation of C. elegans behavior

and physiology. The close proximity of the left and right ASJ neurons to the corresponding

RIM/RIC interneurons on the ventral side of the amphid are in striking contrast to the

location of the ASI neuron pair on the far dorsal side (White et al., 1986), and suggest an

anatomical basis for how P. aeruginosa promotes enhanced DAF-7/TGF-β-dependent

signaling (Figure 7D).

DAF-7 promotes pathogen avoidance through the modulation of aerotaxis behavior

DAF-7-dependent regulation of dauer entry, feeding rate, and fat storage similarly rely on

repression of the co-SMAD DAF-3 in the RIM/RIC interneurons, but downstream

regulation of each of these physiological processes diverges genetically and utilizes distinct

sets of neurons (Greer et al., 2008). Mutations in the steroid hormone receptor daf-12, for

example, are able to suppress the constitutive dauer entry phenotype of daf-7 but not the

increased fat storage or decreased feeding rate phenotypes. Similarly, mutations in the

tyramine and octopamine synthesizing enzymes tdc-1 and tbh-1 suppress only the feeding

rate phenotype of daf-7, while mutations in the Goα signaling molecules goa-1 and dgk-1

suppress only the fat storage phenotype of daf-7 (Greer et al., 2008). We determined that

mutations in daf-12, tdc-1, tbh-1, goa-1, and dgk-1 were all unable to suppress the avoidance

phenotypes of daf-7 mutants, indicating the existence of an additional signaling output by

the RIM/RIC interneurons (Figure 3F).

In the presence of bacterial food, the laboratory wild-type strain of C. elegans N2 does not

exhibit a distinct oxygen preference, and in particular does not avoid high atmospheric

oxygen concentrations (i.e. 20% O2). In contrast, daf-7 mutants have altered aerotaxis

behavior preferring oxygen concentrations near 8% and avoiding higher atmospheric oxygen

levels (Chang et al., 2006). We have previously shown that the P. aeruginosa lawn is

hypoxic, and that altered oxygen preference can affect bacterial lawn avoidance (Reddy et

al., 2009; 2011). To determine whether a similar mechanism underlies the pathogen

avoidance behavior promoted by daf-7, we introduced a mutation in the soluble guanylate

cyclase gcy-35, which is responsible for responding to increases in oxygen concentration

(Zimmer et al., 2009), and observed full suppression of the daf-7 avoidance defect on P.

aeruginosa (Figure 3F). In addition, we performed the pathogen avoidance assay in an

oxygen chamber at low oxygen concentrations, such that the surrounding environment
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would fall within the preferred oxygen concentration range of the animals. In this context

daf-7 mutants show no avoidance defect relative to wild-type animals, supporting our

conclusion that daf-7 mutants fail to avoid P. aeruginosa due to aberrant aerotaxis behavior

(Figure S3A). We also conducted further experiments to demonstrate that the observed

effects of DAF-7 on aerotaxis behavior and pathogen avoidance are not limited to the

laboratory-adapted N2 strain (Figure S3B). Our model suggests that by activating daf-7

expression in the ASJ neurons in response to P. aeruginosa, inhibition of DAF-3 activity in

the adjacent RIM/RIC interneurons is increased, modifying the response of C. elegans to

oxygen levels and promoting exit from the lawn of P. aeruginosa.

G protein-dependent signaling activates daf-7 expression in the ASJ neuron pair in
response to P. aeruginosa

The rapid kinetics and functional consequence of P. aeruginosa-induced daf-7 expression in

the ASJ neuron pair motivated use of the daf-7p∷gfp reporter to identify signaling

mechanisms coupling P. aeruginosa exposure to this robust transcriptional response. We

began by analyzing mutants known to have reduced daf-7 expression levels in the ASI

neuron pair, such as the guanylate cyclase DAF-11 and the cyclic nucleotide-gated channel

encoded by tax-2/tax-4 (Chang et al., 2006; Murakami et al., 2001), which are downstream

of G protein signaling in C. elegans chemosensory neurons (Bargmann, 2006). No daf-7

expression was observed in either the ASI or ASJ neurons on P. aeruginosa in these mutant

backgrounds, consistent with daf-11, tax-2, and tax-4 acting upstream of daf-7 expression in

all tissues (Figures 4A–4D and S4A–S4C). These results suggest that the ASJ response to P.

aeruginosa is downstream of G protein signaling and further motivate the identification of

genes that specifically regulate daf-7 expression in the ASJ neurons.

We performed a forward genetic screen to identify mutants in which the daf-7p∷gfp reporter

failed to be expressed in the ASJ neurons on P. aeruginosa but GFP fluorescence remained

unchanged in the ASI neurons. One such mutant, qd262 (Figures S4D–S4E), mapped to a

region of chromosome V containing the G protein alpha subunit gpa-3. Sequencing revealed

that the qd262 mutant carries a missense mutation in gpa-3 that converts a glycine residue

(conserved from yeast to humans) into aspartic acid. Confirming the identity of the qd262

mutant as an allele of gpa-3, we crossed the gpa-3 deletion allele pk35 into the daf-7p∷gfp

reporter and observed reduced fluorescence in the ASJ neurons on P. aeruginosa (Figures

4E and 4M). Mutants carrying a deletion in a second highly homologous G protein alpha

subunit, gpa-2, also displayed reduced daf-7p∷gfp fluorescence in ASJ (Figures 4F and

4M), and the gpa-2 gpa-3 double mutant was completely deficient in the ASJ-response to P.

aeruginosa (Figures 4G and 4M). Interestingly, the gpa-2(pk16) gpa-3(pk35) double mutant

was still able to upregulate expression of daf-7p∷gfp in the ASI neuron on P. aeruginosa,

indicating that the ASJ and ASI responses to P. aeruginosa are genetically distinct (Figure

4N). The C. elegans nervous system is equipped with approximately 1,300 G protein-

coupled receptors that act as chemoreceptors (Thomas and Robertson, 2008), and we

hypothesize that GPA-3 and GPA-2 may be acting downstream of one or more GPCRs

responsible for sensing P. aeruginosa.
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gpa-3 is expressed in at least ten pairs of amphid sensory neurons (including ASJ), and its

known functions include mediating responses to C. elegans pheromone in ASK, odorant

attraction in AWA and AWC, and odorant avoidance in ASH (Hilliard et al., 2004; Jansen et

al., 1999; Kim et al., 2009; Lans et al., 2004; Zwaal et al., 1997). To determine if GPA-3

acts cell-autonomously in the ASJ neurons to mediate the response to P. aeruginosa, we

expressed wild-type copies of gpa-3 cDNA under heterologous promoters in the

gpa-2(pk16) gpa-3(pk35) background. Under control of either the pan-ciliated neuronal

promoter bbs-1, or the ASJ-specific promoter trx-1, gpa-3 cDNA was able to rescue the

daf-7 ASJ expression defect, indicating that GPA-3 acts cell-autonomously in ASJ to

mediate the response to P. aeruginosa (Figures 4H–4I and S4F–S4I).

gpa-2 is reported to be expressed in only one pair of chemosensory neurons (AWC) and

functions in the processes of olfaction and dauer induction (Lans et al., 2004; Zwaal et al.,

1997). To determine the site of action for gpa-2 in the response to P. aeruginosa, we

expressed wild-type copies of gpa-2 cDNA under heterologous promoters in the

gpa-2(pk16) gpa-3(pk35) background. To our surprise, expression of gpa-2 driven by either

the pan-ciliated neuronal promoter bbs-1 or the ASJ-specific promoter trx-1 was able to

rescue the daf-7p∷gfp phenotype, but expression of gpa-2 in the AWC neurons under the

ceh-36 promoter was not able to rescue the gpa-2 gpa-3 mutant phenotype (Figures 4J–4L

and S4J–S4K). This indicates that GPA-2, like GPA-3, also acts cell-autonomously in ASJ

to induce daf-7 expression in response to P. aeruginosa. To confirm that gpa-2 was indeed

expressed in the ASJ neurons we used single molecule FISH to probe for gpa-2 mRNA.

Using probes specific for gpa-2, we observed 5–10 mRNA molecules in each ASJ neuron

(data not shown). This novel expression supports our neuron-specific rescue data and

indicates that GPA-2 and GPA-3 act together in the ASJ neurons to activate daf-7

expression in response to P. aeruginosa. Finally, we tested the gpa-2 gpa-3 double mutant

for a P. aeruginosa avoidance defect, and observed a partial deficit in lawn avoidance that

we hypothesize is due to a loss of DAF-7 secretion from the ASJ neurons (Figure 4O).

These experiments identify a conserved G protein signaling pathway that acts cell-

autonomously in the ASJ neurons to induce daf-7 expression in response to P. aeruginosa.

Chemosensory recognition of the P. aeruginosa secondary metabolites phenazine-1-
carboxamide and pyochelin by the ASJ neuron pair of C. elegans

We next sought to identify the specific bacterial cues inducing expression of daf-7 in the

ASJ neuron pair of C. elegans. We observed that exposure of C. elegans to filtered P.

aeruginosa supernatant was sufficient to induce daf-7 expression (Figures 5A and 6A–6B).

Furthermore, by testing supernatants from liquid cultures at various growth stages we

determined that P. aeruginosa in stationary phase induced daf-7 expression in ASJ neurons

most dramatically (Figure 5A), leading us to hypothesize that specific secondary metabolites

produced under high cell density were being sensed by C. elegans. Metabolite identification

was accomplished via activity-guided fractionation followed by 2D NMR spectroscopic

profiling. Supernatant from large volumes of stationary phase P. aeruginosa was

fractionated using an automated chromatography system, and individual fractions were

tested for activity in the daf-7p∷gfp assay. 1D and 2D NMR (dqfCOSY, HSQC, HMBC)

spectroscopic data of the active fractions were then analyzed. Such NMR spectroscopic
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analysis of metabolome fractions of lowered complexity shifts focus onto testing individual

identified components in bioassays, thereby reducing the need for further time-intensive

purification (Taggi et al., 2004).

2D NMR spectra of the active fractions revealed the presence of pantolactone (Nakata et al.,

2013), isovaleric acid (Niu et al., 2008), phenazine-1-carboxylic acid (Mehnaz et al., 2013),

phenazine-1-carboxamide (PCN, see Table S1), the siderophore pyochelin (see Table S2)

and phenyl acetic acid (Korsager et al., 2013) as major components (Figures 5B, S5A, and

S5B), in addition to small quantities of monoacyl glycerides and β-hydroxy fatty acids.

When synthetic and HPLC-purified samples of these compounds were tested, PCN and

pyochelin displayed concentration-dependent activity in the daf-7p∷gfp assay, regardless of

solvent (Figures 6A and S6), whereas the other identified metabolites were not active in this

assay. Furthermore, we found that other P. aeruginosa-produced phenazines (e.g. pyocyanin

and phenazine-1-carboxylic acid) and pyoverdine, another unrelated P. aeruginosa

siderophore, do not induce daf-7 expression in the ASJ neurons (Figure 6A), indicating that

general properties of these compounds are likely not the cause of their activity. We

quantified the daf-7p∷gfp fluorescence increase in the ASJ neurons following addition of

pyochelin and PCN and found the response was similar to that induced by P. aeruginosa

supernatant (Figure 6B). Interestingly we found that these compounds had no effect on

daf-7p∷gfp fluorescence in the ASI neurons, further decoupling the responses of the ASJ

and ASI neurons to P. aeruginosa (Figure 6B).

Given the rapid transcriptional response of the ASJ neurons to the presence of P. aeruginosa

secondary metabolites, we tested the ability of phenazine-1-carboxamide (PCN) to activate

the ASJ neurons. We constructed a transgenic strain in which the genetically encoded

calcium indicator GCaMP5 (Akerboom et al., 2012) is expressed exclusively in the ASJ

neuron pair. Upon administration of PCN, but not the carrier control DMSO, we observed

increased GCaMP5 fluorescence in both the ASJ cell body and ASJ ciliated projection that

is exposed to the environment (Figures 6C–6D). We quantified the change in fluorescence in

the ASJ cell body and observed a significant difference between PCN and the carrier control

(Figures 6E–6F). These data suggest that ASJ may be sensing the P. aeruginosa metabolite

PCN directly and, in turn, activating daf-7 transcription.

Microbial discrimination and specificity in the chemosensory response to P. aeruginosa

In the natural environment C. elegans are unlikely to be presented with homogeneous

bacterial lawns consisting of a single bacterial species, and so we wondered how sensitive

the daf-7p∷gfp response is to the concentration of P. aeruginosa. We created heterogeneous

bacterial lawns consisting of E. coli and P. aeruginosa and assayed daf-7p∷gfp

fluorescence. We observed that the induction of daf-7 expression does not function as a

binary switch but rather can respond in a more subtle manner that is proportional to the

fraction of P. aeruginosa present in the mixed E. coli/P. aeruginosa lawn (Figures 7A–7B).

Interestingly, the P. aeruginosa concentration range over which daf-7 is activated

corresponds to the range sufficient to induce the C. elegans behavioral avoidance response

(Figures 7A–7B).
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Finally, we investigated how specific the induction of daf-7 transcription in the ASJ neuron

pair was to P. aeruginosa as compared to other environmental microbes. We exposed

daf-7p∷gfp animals to a wide array of bacterial species and strains, covering pathogenic and

non-pathogenic alpha-, beta-, and gammaproteobacteria as well as gram-positive bacterial

species. We observed that a number of non-E. coli species can induce daf-7 expression in

the ASJ neuron pair on the order of 10-fold, but that the response is 1–2 orders of magnitude

greater upon exposure to P. aeruginosa PA14 (Figure 7C). This result indicates that the

identity of the microbial species is the principal determinant in inducing daf-7 expression in

the ASJ neuron pair, likely due to the relatively species-specific production of P. aeruginosa

metabolites PCN and pyochelin (see Discussion). The presence of low-level activity in

bacterial strains other than P. aeruginosa is consistent with the existence of additional,

unidentified bacterial determinants that also contribute to the induction of daf-7 in the ASJ

neuron pair.

PCN and pyochelin are secondary metabolites produced by P. aeruginosa at high cell

density that promote biofilm formation in soil as well as chronic infections in human lungs

(Cornelis and Dingemans, 2013; Price-Whelan et al., 2006). In P. aeruginosa production of

phenazines and pyochelin are both positively regulated by GacA, a global activator of cell-

density-dependent gene expression and virulence (Reimmann et al., 1997; Wei et al., 2013).

We observed that the P. aeruginosa gacA mutant was deficient in inducing daf-7p∷gfp

expression in the ASJ neurons relative to wild-type bacteria (Figure 7C). As such, these

molecules may serve as bacterial growth-stage-specific cues for C. elegans, alerting the host

to the presence of bacteria in a “pathogenic state,” and inducing a correspondingly beneficial

behavioral avoidance response.

Discussion

Our data suggest that C. elegans responds to secondary metabolites produced by bacterial

pathogens using G protein signaling pathways in their chemosensory neurons. C. elegans

lack the antigen-specific responses of vertebrate immunity, but the utilization of

chemosensory neurons and the repertoire of an estimated 1,300 GPCRs may provide a

means by which a simple host organism can detect microbial pathogens. Bacterial secondary

metabolism can generate a wide range of molecules that are often largely specific with

regard to producer organism and regulated by environmental and growth conditions. Redox-

active phenazine-1-carboxamide and the siderophore pyochelin are two such secondary

metabolites of P. aeruginosa, produced under conditions of high cell density and low

oxygen. Interestingly, while a number of other bacterial species produce phenazines, such as

Burkholderia, Brevibacterium, and Streptomyces, the modifying enzyme responsible for

producing phenazine-1-carboxamide, phzH, is not part of the canonical phenazine operon,

but rather found elsewhere in the genome and limited to P. aeruginosa and P. chlororaphis

(Chin-A-Woeng et al., 2001; Mavrodi et al., 2001). Similarly, pyochelin production is

restricted to Pseudomonas and Burkholderia species (Gross and Loper, 2009). As such,

these two metabolites may act as pathogen-specific cues for C. elegans navigation,

providing a molecular readout not only of the presence of P. aeruginosa itself, but the

presence of P. aeruginosa in a “pathogenic state” that is more strongly associated with

virulence.
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Our data demonstrate that DAF-7 neuroendocrine signaling is necessary for the behavioral

avoidance response to P. aeruginosa. The decision to occupy or avoid a lawn of P.

aeruginosa integrates multiple sensory inputs including chemosensation of bacterial

compounds, chemosensation of oxygen, and mechanosensation (Chang et al., 2011; Ha et

al., 2010; Pradel et al., 2007; Reddy et al., 2009). Once C. elegans have learned to avoid a

particular food source, a process that requires the association of bacterial infection with

specific odors and occurs many hours after exposure to pathogenic bacteria (Zhang et al.,

2005), they are confronted with conflicting environmental stimuli: the odor of pathogenic

bacteria drives animals out of the lawn, while the relatively low oxygen concentration of the

bacterial environment keeps animals inside the lawn. The DAF-7 pathway suppresses this

latter tendency, and thus increasing the activity of DAF-7 in response to pathogenic bacteria

promotes subsequent avoidance behavior. For C. elegans, which must balance attraction to

bacterial food with avoidance of microbial pathogens, suppressing behaviors such as

aerotaxis that keep the animal inside the bacterial lawn may be just as essential as activating

behaviors that drive it away.

Whereas defining the connectivity of the C. elegans nervous system has provided the

anatomical foundation for functional studies of neuronal circuitry (White et al., 1986),

genetic studies of behavior have revealed pivotal roles for neuromodulators, such as

neurotransmitters and neuropeptides, which modify the activity of synaptic circuits in

response to environmental cues (Bargmann, 2012). Prior studies have illustrated how a

change in the neuronal expression pattern of a single component of neuromodulator

signaling can have dramatic effects on complex behavior (Lim et al., 2004; Pocock and

Hobert, 2010). Our study establishes that patterns of neuromodulator expression and activity

may be subject to dramatic modification by the microbial environment. There has been an

emerging appreciation of the profound influence that the animal microbiota can have on host

organisms (Clemente et al., 2012; Lyte, 2013), and our study provides a genetic, neuronal,

chemical basis for how microbes may influence host neuroendocrine physiology and

behavior.

Experimental Procedures

C. elegans Strains

C. elegans was maintained on E. coli OP50 as previously described (Brenner, 1974).

Constitutive dauer strains were grown at the permissive temperature of 16°C until they had

passed the dauer developmental decision. For assays in which a synchronized population of

animals was required, strains were egg-prepped in bleach and arrested overnight in M9

buffer at the L1 larval stage. For a complete list of strains used in this study see Table S3.

daf-7p∷gfp Induction Assays and Bacterial Strains

For testing the dynamics of daf-7 expression on P. aeruginosa PA14, an overnight culture of

PA14 was grown in 2–3 mL LB at 37°C, and the following morning 7 µL of culture was

seeded onto 3.5 cm SKA plates as previously described (Tan et al., 1999). PA14 plates were

grown overnight at 37°C and then grown for an additional day at room temperature. Animals

at the L4 larval stage were then picked onto the center of the bacterial lawn, incubated at
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25°C, and scored for changes in GFP expression 15–20 h later. Cell identification was

performed using the lipophilic dye DiI from Molecular Probes. Images were acquired with

an Axioimager Z1 microscope using animals anaesthetized in 50 mM sodium azide. To

quantify GFP fluorescence animals were imaged at 40× magnification and the maximum

intensity value within the ASJ neuron was determined using FIJI software. The same

procedure (with the indicated modifications) was followed for: Escherichia coli OP50,

Serratia marcescens DB10, Bacillus subtilis PY79, Comamonas sp. DA1877, Enterococcus

faecalis OG1RF (grown overnight in Brain Heart Infusion Broth), and Staphylococcus

aureus NCTC8325 (grown overnight in Tryptic Soy Broth). To test the activity of bacterial

supernatant, fractionated supernatant, and purified compounds, 3.5 cm SKA plates were

seeded with 5 µL E. coli OP50. Prior to adding C. elegans, 25 µL of test material was added

to the bacterial lawn and allowed to dry. All compounds were dissolved in DMSO. To

generate bacterial lawns that contained mixtures of E. coli and P. aeruginosa, plates were

seeded with E. coli and allowed to grow for two days as above, at which time 7 µL of liquid

P. aeruginosa culture (diluted to varying degrees) was added to the E. coli lawn and allowed

to dry. After the experiment had concluded the fraction of the lawn corresponding to each

bacterial species was measured by counting CFUs of E. coli and P. aeruginosa

(distinguished by colony morphology).

P. aeruginosa Avoidance and Killing Assays

Plates for P. aeruginosa avoidance assays were prepared as above. 30 animals at the L4

larval stage were transferred to the center of PA14 lawns, incubated at 25°C, and scored for

avoidance 15 h later. For avoidance experiments in hypoxia, plates were placed in a Coy

Laboratory Products Inc. Hypoxic In Vitro Cabinet and incubated at 1%–4% O2 at room

temperature. Plates for measuring accumulation of red fluorescent beads were prepared as

above with addition of Fluoresbrites 0.2 µm microspheres (Polyscience, Inc.) to the PA14

culture prior to seeding at a ratio of 50:1 (bacteria:beads). Plates for P. aeruginosa slow

killing assays were prepared as above with the addition of 50 µg/mL 5-fluorodeoxyuridine

(FUdR). 30 animals at the L4 larval stage were transferred to the center of PA14 lawns,

incubated at 25°C, and scored for killing over the course of 5 days. For “Big Lawn” slow

killing assays the following modifications were made: 15 µL of PA14 culture was spread to

the edges of the SKA plate and 75 animals were added to each plate. Statistical analysis was

performed using GraphPad Prism Software.

Single Molecule Fluorescent In Situ Hybridization

smFISH was performed as previously described (Raj et al., 2008). Briefly, C. elegans were

fixed in 4% formaldehyde for 45 min at room temperature. After washing with PBS, larvae

were resuspended in 70% EtOH and incubated overnight at 4°C. The following day fixed

larvae were transferred into hybridization solution with the smFISH probe and incubated

overnight at 30°C. The daf-7 and gpa-2 probes were constructed by pooling 25 unique DNA

oligos that tile the coding regions deleted in the daf-7(ok3125) and gpa-2(pk16) mutants and

coupling them to Cy5 dye. For a complete list of oligos see Table S4. Images were acquired

with a Nikon Eclipse Ti Inverted Microscope outfitted with a Princeton Instruments PIXIS

1024 camera. Data were analyzed using FIJI software; images presented in Figures 2H, 2I,

and S2A are maximum intensity z-projections of 30 stacked exposures.
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Generation of Transgenic Animals

The daf-7 promoter (3.1 kb), trx-1 promoter (1.1 kb) (Fierro González et al., 2011), str-3

promoter (2.8 kb), and ceh-36 promoter (<1 kb) (Kim et al., 2010) were amplified by PCR

from genomic DNA. The bbs-1 promoter (1.9 kb) was amplified by PCR from plasmid

pKA40 (laboratory of K. Ashrafi). daf-7 cDNA was amplified by PCR from an ORFeome

RNAi clone. gpa-3 and gpa-2 cDNAs were amplified by PCR from cDNA generated with

an Ambion RETROscript Kit. The GCaMP5G gene was amplified from Plasmid 31788:

pCMV-GCaMP5G (Addgene). The unc-54 3-prime UTR was amplified by PCR from Fire

Vector pPD95.75. DNA constructs (promoter∷cDNA∷unc-54 3’UTR) were synthesized

using PCR fusion as previously described (Hobert, 2002). PCR fusion products were cloned

into pGEM-T Easy plasmids, sequenced to confirm identity, and injected into animals at a

concentration of 50 ng/µL along with a plasmid carrying either ges-1p∷gfp or ofm-1p∷gfp

(50 ng/µL). At least three independent transgenic lines were analyzed for each rescue

construct. For a complete list of primers used in this study see Table S4.

Biochemical Identification of P. aeruginosa Metabolites

To generate P. aeruginosa supernatant, overnight bacterial cultures were grown in 500 mL

LB at 37°C shaking at 200 rpm. Once the cultures had reached OD600 = 3.0 they were

passed through a 0.22 µm PES filter system. The filtrate was lyophilized and the residue was

extracted twice with 50 mL of 4:1 dichloromethane:methanol mixture over 12 h. The

resulting suspension was centrifuged at 4,750 rpm at 4°C for 15 min and the supernatant

liquid was collected. The solvent was evaporated in vacuo at room temperature to produce

the P. aeruginosa supernatant extract used for chromatographic separations and analysis.

For details, see Supplemental Experimental Procedures. NMR spectra were recorded on a

Varian Inova 600 MHz NMR spectrometer equipped with an HCN indirect detection probe.

Spectra were baseline corrected, phased and calibrated to the solvent peak (CHCl3 singlet at

7.26 ppm) using Varian VNMR and MestreLab’s Mnova software packages. Non-gradient

phase-cycled double-quantum filtered correlation spectroscopy (DQF-COSY) spectra were

acquired using the following parameters: 0.6 s acquisition time, 512 complex increments, 16

scans per increment. DQF-COSY spectra were zero filled to 8,192 × 4,096, and 90°-shifted

sine bell window functions were applied in both dimensions before Fourier transformation.

Heteronuclear single quantum coherence spectroscopy (HSQC) and heteronuclear multiple

bond correlation spectroscopy (HMBC) spectra were acquired using the following

parameters: 0.25 s acquisition time, 400–600 complex increments, 16 scans per increment.

HSQC and HMBC spectra were zero filled to 2,048 × 2,048, and 90°-shifted sine bell

window functions were applied in both dimensions. Unit mass-resolution HPLC-MS was

performed using an Agilent 1100 Series HPLC system equipped with a diode array detector

and connected to a Quattro II mass spectrometer (Micromass/Waters). MassLynx software

was used for MS data acquisition and processing. UV-Vis spectra were recorded on Agilent

Technologies 8453 UV-Vis spectrophotometer. For testing the activity of candidate

compounds, phenazine-1-carboxamide was purchased from Princeton Biomolecular

Research (PBMR030086), phenazine-1-carboxylic acid was purchased from Apollo

Scientific (OR01490), pyochelin was purchased from Cfm Oskar Tropitzsch
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(164104-31-8/164104-32-9), and pyocyanin (P0046) and pyoverdine (P8374) were

purchased from Sigma-Aldrich.

Calcium Imaging

To measure the activity of the ASJ neurons GCaMP5G was expressed exclusively in the

ASJ neurons under the trx-1 promoter. Animals were immobilized on NGM agar pads using

Surgi-lock 2oc instant tissue adhesive (Meridian) and imaged at 40X using a Zeiss AxioVert

S100 inverted microscope outfitted with an Andor iXon EMCCD camera. Ten seconds after

imaging had begun approximately 3 µL of stimulant (either PCN 10 mg/mL or DMSO) was

added to the agar pad. In Figures 6C–6F time = 0 refers to the addition of stimulant. Data

were analyzed using custom MATLAB software written by Nikhil Bhatla.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• C. elegans chemosensory neurons respond to specific bacterial secondary

metabolites

• Host neuromodulator gene expression pattern is altered by the microbial

environment

• Detection of P. aeruginosa metabolites promotes protective behavioral

avoidance
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Figure 1. DAF-7/TGF-β is required for the protective behavioral avoidance response to P.
aeruginosa
(A) Fraction animals alive after being transferred to plates seeded with P. aeruginosa strain

PA14. (B) Fraction animals alive after being transferred to a “Big Lawn” of P. aeruginosa in

which the bacteria has been spread to the edges of the plate. All data points represent the

average of at least three independent replicates. (C) Photographs of wild-type and daf-7

animals after 15 h exposure to P. aeruginosa. (D) Lawn occupancy of animals on P.

aeruginosa after 15 h. (E) The canonical DAF-7/TGF-β signaling pathway in C. elegans.

*** P < 0.001 as determined by one-way ANOVA followed by Dunnett’s Multiple

Comparison Test. n.s. = not significant. Values represent means of at least three independent

experiments. Error bars indicate standard error. See also Figure S1.
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Figure 2. daf-7 expression is induced in the ASJ neurons upon exposure to P. aeruginosa
(A–B) daf-7p∷gfp expression pattern in C. elegans on E. coli (A) and P. aeruginosa (B).

(C–F) Co-localization of daf-7p∷gfp expression and DiI staining (red) in animals on E. coli,

dorsal view (C) and ventral view (D), and in animals on P. aeruginosa, dorsal view (E) and

ventral view (F). Filled triangles indicate ASI neurons; empty triangles indicate ASJ

neurons. (G) Maximum fluorescence values of daf-7p∷gfp in the ASJ or ASI neurons after

16 h exposure to indicated bacteria. *** P < 0.001 as determined by one-way ANOVA

followed by Tukey’s Multiple Comparison Test. Error bars indicate standard deviation. (H–

I) daf-7 FISH in wild-type N2 animals on E. coli (H) and P. aeruginosa (I). Filled triangles

indicate ASI neurons; empty triangles indicate ASJ neurons. Additional cells expressing

daf-7 mRNA are the OLQ neurons (top) and the ADE neurons (bottom). (J) daf-7 FISH in

the ASJ neurons (co-localized with trx-1p∷gfp) on E. coli and P. aeruginosa after various

exposure times. Dashed lines indicate cell boundaries. Each image represents an individual

animal. See also Figure S2.
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Figure 3. DAF-7 from the ASJ neuron pair signals to the RIM/RIC interneurons to alter
aerotaxis behavior and promote avoidance of P. aeruginosa
(A–B) Fraction animals alive after being transferred to plates seeded with P. aeruginosa. All

data points represent the average of at least three independent replicates. (C–F) Lawn

occupancy of animals on P. aeruginosa after 15 h. *** P < 0.001, ** P < 0.01, * P < 0.05 as

determined by one-way ANOVA followed by Dunnett’s Multiple Comparison Test. n.s. =

not significant. Error bars indicate standard deviation. See also Figure S3.
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Figure 4. GPA-3 and GPA-2 function cell-autonomously in the ASJ neurons to activate daf-7
expression in response to P. aeruginosa
(A–L) daf-7p∷gfp expression on P. aeruginosa in various genetic backgrounds. Empty

triangles indicate ASJ neurons. (M–N) Maximum fluorescence values of daf-7p∷gfp in the

ASJ (M) or ASI (N) neurons after 16 h exposure to indicated bacteria. (O) Lawn occupancy

of animals on P. aeruginosa after 15 h. *** P < 0.001, ** P < 0.01, * P < 0.05 as determined

by one-way ANOVA followed by Dunnett’s Multiple Comparison Test. Error bars indicate

standard deviation. See also Figure S4.
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Figure 5. Supernatant from P. aeruginosa in stationary phase activates daf-7 expression and
contains secondary metabolites
(A) Growth curve of P. aeruginosa as measured by OD600nm (blue circles) and activity of

bacterial supernatant in inducing daf-7p∷gfp expression in the ASJ neurons (magenta

squares). (B) DQF-COSY spectrum of active metabolome fraction of P. aeruginosa media

extract. Enlarged sections show cross-peaks of the most abundant metabolites present in this

fraction. See also Figure S5.

Meisel et al. Page 22

Cell. Author manuscript; available in PMC 2015 October 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6. The ASJ neurons respond to P. aeruginosa secondary metabolites phenazine-1-
carboxamide and pyochelin
(A–B) daf-7p∷gfp expression in the ASJ or ASI neurons after 16 h exposure to E. coli, P.

aeruginosa, or E. coli supplemented with indicated material. Data represent (A) the fraction

of animals expressing daf-7p∷gfp in ASJ above background or (B) the maximum

fluorescence values of daf-7p∷gfp in ASJ and ASI. All compounds were dissolved in

DMSO. *** P < 0.001, ** P < 0.01, * P < 0.05 as determined by one-way ANOVA followed

by Dunnett’s Multiple Comparison Test. n.s. = not significant. Error bars indicate standard

deviation. (C–D) GCaMP5 expression in the ASJ neurons immediately prior to (C) or

following (D) addition of PCN. Filled triangle indicates the ASJ cell body and open triangle

indicates the ASJ sensory projection. (E) GCaMP5 fluorescence changes in individual

animals following the addition of PCN or DMSO at t = 0 seconds. (F) Average changes in

GCaMP fluorescence in the 2–6 s following addition of either PCN or DMSO. *** P <
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0.001 as determined by unpaired t-Test. Error bars indicate standard deviation. See also

Figure S6.
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Figure 7. Microbial discrimination of P. aeruginosa activates daf-7 transcription in the ASJ
neurons and promotes avoidance behavior
(A) C. elegans after 16 h exposure to bacterial lawns consisting of E. coli OP50 and P.

aeruginosa PA14. Fraction of bacteria that were P. aeruginosa when daf-7p∷gfp was

assayed is indicated. (B) Fraction of animals expressing daf-7p∷gfp in the ASJ neurons after

16 h exposure to E. coli, P. aeruginosa, or mixtures of E. coli and P. aeruginosa. Error bars

indicate standard deviation. (C) Maximum fluorescence values of daf-7p∷gfp in ASJ

neurons after 16 h exposure to indicated bacteria. *** P < 0.001 as determined by one-way

ANOVA followed by Tukey’s Multiple Comparison Test. Error bars indicate standard

deviation. (D) In response to P. aeruginosa exposure, or P. aeruginosa metabolites

phenazine-1-carboxamide (PCN) and pyochelin, daf-7 expression is activated via G-protein

alpha subunits GPA-3 and GPA-2 in the ASJ neurons. Secreted DAF-7 signals to the TGF-β

receptor DAF-1 the adjacent RIM/RIC interneurons. DAF-7/TGF-β signaling acts to alter

aerotaxis behavior and promote avoidance of pathogenic bacteria.
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