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Abstract

Reducing the amount of information stored in diffusion MRI (dMRI) data to a set of meaningful

and representative scalar values is a goal of much interest in medical imaging. Such features can

have far reaching applications in segmentation, registration, and statistical characterization of

regions of interest in the brain, as in comparing features between control and diseased patients.

Currently, however, the number of biologically relevant features in dMRI is very limited.

Moreover, existing features discard much of the information inherent in dMRI and embody

several theoretical shortcomings. This paper proposes a new family of rotation invariant scalar

features for dMRI based on the spherical harmonic (SH) representation of high angular resolution

diffusion images (HARDI). These features describe the shape of the orientation distribution

function extracted from HARDI data and are applicable to any reconstruction method that

represents HARDI signals in terms of an SH basis. We further illustrate their significance in white

matter characterization of synthetic, phantom and real HARDI brain datasets.
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1 Introduction

Diffusion magnetic resonance imaging (dMRI) is a non-invasive imaging technique that can

be used to characterize the white matter (WM) architecture of the brain in normal and

diseased patients [1]. In particular, extracting scalar features (or biomarkers) from dMRI

data has become an integral part of group/ longitudinal studies of WM changes in brain

connectivity related to development, neurodegeneration, or disease [2]. Since diffusion

tensor imaging (DTI) is currently the de facto standard in clinical neuroimaging, the vast

majority of the studies assessing WM connectivity and its impairment employ features

derived from DTI, e.g., mean diffusivity (MD), fractional anisotropy (FA), relative

anisotropy (RA), linear/planar/spherical anisotropies (LA/PA/SA) [3, 4]. However, DTI is

limited by its inability to resolve intra-voxel complexities like fiber crossings. This causes

DTI-based features to severely lack specificity [5]. Hence, there is a strong need for deriving

© Springer-Verlag Berlin Heidelberg 2013

NIH Public Access
Author Manuscript
Inf Process Med Imaging. Author manuscript; available in PMC 2014 October 11.

Published in final edited form as:
Inf Process Med Imaging. 2013 ; 23: 705–717.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



new scalar measures for characterizing the WM integrity, especially from more generic and

versatile diffusion representations such as higher-order tensors [6, 7] and orientation

distribution functions (ODFs) [8–10], which describe the tissue microstructure with greater

accuracy and detail.

Few scalar features have been derived from the aforementioned representations [11], with

the most popular ones being the fractional multifiber index (FMI) [12], generalized

anisotropy (GA) [13] and generalized fractional anisotropy (GFA) [8]. Recently, [14] used a

polynomial approach to extract geometric characteristics from spherical functions (e.g.,

ODFs) and proposed new scalar measures such as peak fractional anisotropy (PFA) and

Total-PFA. Furthermore, [5] presented the concept of the integrity basis for 2nd and 4th

order tensors, as well as two standard bases called the basic and principal invariants,

expanding the works of [15] and [16] on the principal invariants of the 4th order tensor.

In this paper we propose a new framework for extracting a large set of rotation invariant

features from the spherical harmonic (SH) representation of HARDI signals and ODFs. The

advantage of this framework is its generality. In fact, we derive a family of rotation invariant

features that can be extracted from any spherical function written in an SH basis. Numerous

HARDI reconstruction methods [11] such as Spherical Deconvolution (SD), Diffusion

Orientation Transform (DOT), Spherical Polar Fourier Imaging (SPFI), Bessel Fourier

Orientation Reconstruction (BFOR) model spherical functions like the Ensemble Average

Propagator (EAP), Fiber Orientation Distribution (FOD), and Apparent Diffusion

Coefficient (ADC) using an SH basis. Our framework can be applied to any of these

spherical functions to extract a new set of scalar values. In addition, any continuous function

of these scalar values can be used to generate additional features that can be significant for a

specific experiment or application.

The remainder of the paper is organized as follows. Section 2 lays the theoretical

groundwork for spherical functions and provides the derivation of a new set of rotation

invariant features. Section 3 applies our theory to HARDI signals and ODFs and Section 4

evaluates our features on synthetic, phantom and real data.

2 Rotation Invariant Features for Spherical Functions

2.1 Spherical Harmonic Representation of Spherical Functions

Our framework for extracting features from HARDI signals is based on a theorem first

proved for functions represented by a Fourier basis [17]. This theorem was recently

extended to continuous spherical functions represented in an SH basis [18, 19]. The

(standard) SH basis are complex-valued functions defined as

(1)
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where  is the associated Legendre polynomial of degree l and order m, θ ∈ [0, π], and ϕ

∈ [0, 2π). For a real continuous spherical function f :  → ℝ, we can write

, where f̂l,m are the SH coefficients that parametrize f.

We can approximate f using a finite SH basis representation of degree up to L, giving us (L +

1)2 basis elements. Given the vector of SH coefficients f̂ = [f̂l,m], [19] constructed an (L +

1)2 × (L + 1)2 matrix TL, which is an analogue to the Toeplitz matrix of the Fourier

representation. The matrix TL is constructed as follows. Let 

be a spherical function and let ĝ be its vector of SH coefficients of length (L + 1)2. Then

[19] shows that the coefficients  of the product of two spherical functions, f(u)g(u), can

be obtained as

(2)

Here, TL(f) is a matrix whose rows and columns are indexed by the pair (l1m1, l2m2) = (l1(l1
+ 1) + m1, l2(l2 + 1) + m2), where li = 0, 1, 2, …, L and −li ≤ mi ≤ li, for i = 1, 2. The entry of

TL(f) at index (l1m1, l2m2) is defined as

(3)

where G(l1, l2, l3; m1, m2, m3) is a real constant Gaunt Coefficient (See [19] Appendix A).

As an important note, TL(f) is not Toeplitz. However its structure embodies many of the

same properties of the Toeplitz form for the Fourier case.

We can rewrite TL as a linear combination of matrices of Gaunt Coefficients

(4)

where Glm(l1(l1 + 1) + m1, l2(l2 + 1) + m2) = G(ll2l1; mm2m1). Note that the Gaunt

coefficient matrices Glm are sparse since G(ll2l1;mm2m1) is zero unless m = m1− m2, so this

formulation is more computationally efficient and intuitive.

With the above notation, we have the following extension of the Eigenvalue Distribution

Theorem to continuous spherical functions [17, 18], which asserts that the eigenvalues of

TL(f) are distributed as the function f itself.

Theorem 1 (Eigenvalue Distribution Theorem on )—Let f(u) be a continuous

spherical function and let TL(f) be the Toeplitz-like matrix defined in (4). Furthermore let F

be any continuous function defined on the range of f. Then
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(5)

where  are the real eigen values of TL with  and

dσ(u) is the area element in .

2.2 Spherical Harmonic Coefficients of Rotated Spherical Functions

Let R = R(α, β, γ) = Rz(γ)Ry(β)Rz(α) be an element of the rotation group SO(3),

parameterized by the Euler angles α, γ ∈ [0, 2π), β ∈ [0, π], where Rz and Ry represent

rotations about the z and y axes respectively. To understand the effect of R on the SH

coefficients f̂lk of a spherical function f, let us define

(6)

where  are the generalizations of the associated Legrendre polynomials, computed by a

recurrence relation of Jacobi polynomials. As shown in [20], the SH coefficient  of the

rotated function fR (u) = f(Ru) is a linear combination of the SH coefficients f̂lk, for k = −l,

…, l, of the function f, which is given by

(7)

We can see that the rotation of f̂ is localized to each set of coefficients of degree l. Therefore

we can write the (L + 1)2 × (L + 1)2 matrix A(R) as a block diagonal matrix where each

block is of the form  with w(k, l) = k+l+1, l = 0, 2, … L and |k| ≤ l.

Furthermore, it is shown in [21] that each block Al is unitary, i.e., (Al)⊤Al = I(2l+1)×(2l+1),

hence the entire block matrix A(R) is also unitary. Rewriting equation (7) in matrix form

leads to

(8)

In other words, a 3D rotation of the domain of the spherical function f by R induces an (L +

1)2-dimensional rotation of its SH coefficients by A⊤(R).

2.3 Invariance of the Eigenvalues of TL under a Rotation on 

Let  and  be two continuous

spherical functions with vectors of SH coefficients f̂ = [f̂lm] and ĝ = [ĝlm], respectively.

Using the definition of TL in (2), [19] shows that
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(9)

Let ĝR> = A⊤(R⊤)ĝ be the SH coefficient vector of gR> (u) = g(R⊤u) and let 

be the SH coefficient vector of gR (u) = g(Ru). We have that

(10)

where u′ ≐ = R⊤u ⇒ dσ(u′) = |R⊤|dσ(u) and |R⊤| = 1. Since in addition

, we have proved the following important relation:

(11)

This implies that the eigenvalues of TL(f) are equal to the eigenvalues of TL(fR).

Furthermore, using the spectral decomposition of TL(f) = UΛU* = A⊤VΛV*A we have U* =

V*A, hence A = VU*, where U and V are the sorted matrices of eigenvectors for TL(f) and

TL(fR), respectively, and Λ is the diagonal matrix of sorted eigenvalues. This result is

equivalent to the following statement:

For a continuous spherical function f of degree L, the eigenvalues of TL(f) are invariant

under rotation of the domain of f on .

Notice that this result holds only for spherical functions of degree L. In the case HARDI

reconstruction, where the signals are approximated by a spherical function of degree L, the

eigenvalues of TL will be approximately equal to the eigenvalues of TL after rotation. We

will discuss this in more detail in Section 3.2.

3 Invariant Features for HARDI Signals and ODFs

In Section 2 we developed a framework for extracting a large set of rotation invariant scalar

features from any continuous spherical function. In this section, we apply this framework to

the case of HARDI signals and ODFs.

3.1 Spherical Harmonic Representation of HARDI Signals and ODFs

Let S0 be the baseline MRI signal and let S(θ, ϕ) be the continuous HARDI signal along (θ,

ϕ). Following [10], we define the continuous ODF, p, as:

(12)

where FRT is the Funk-Radon transform,  is the Laplace-Beltrami operator on , ϑ ∈ [0,

π] and φ ∈ [0, 2π). Since the HARDI signals are real and symmetric, we will use the

modified SH basis to represent ODFs. This basis is defined as:
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(13)

where Re(·) and Im(·) are the real and imaginary parts, respectively, and

 for l = 0, 2, 4, … and − l ≤ m ≤ l. For degree up to L, there are

 basis elements. It is important to note that when constructing our TL matrices

we must first convert to the equivalent complex standard basis. To express p in terms of the

modified SH basis, let

(14)

Since , and FRT (Yj(θ, ϕ)) = 2πPlj(0)Yj(ϑ, φ), where Plj (0)

is the Legendre polynomial of degree lj at 0, we have

(15)

where  and  for j > 1.

We can see that HARDI data gives us two particular spherical functions that encode

biological information of dMRI: the HARDI signal, s, and the ODF, p. In the above

formulation, both of these functions are continuous. In practice, the HARDI signals are

measured at a finite number, G, of fixed gradient directions , usually in the range

of 30 to 200 points, and p is estimated from s using another set of M discrete points on the

sphere, . Using discrete approximations of s and p, with an R-dimensional SH

basis of degree L, we have

(16)

where , B ∈ ℝG×R is a matrix whose i-

th row is Bi = [Y1(θi, ϕi), …, YR(θi, ϕi)], and c = [c1, c2, …, cR]⊤ ∈ ℝR. Then

(17)

where 1 is the M × 1 vector of ones, C is the M × R SH basis matrix whose i-th row is Ci =

[Y1(ϑi, φi), …, YR(ϑi, φi)], L is the R × R diagonal matrix of Laplace-Beltrami eigenvalues

with Ljj = − lj(lj + 1), P is the R × R diagonal Funk-Radon transform matrix with Pjj =

2πPl<sub>j</sub>(0) and c̃ is defined as in (15).

Schwab et al. Page 6

Inf Process Med Imaging. Author manuscript; available in PMC 2014 October 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3.2 Approximate Rotation Invariance Using a Finite SH Basis

In Section 2.3 we showed that, for a continuous spherical function f of degree L, the

eigenvalues of the matrix TL(f) are invariant with respect to a rotation of the domain of f. In

Section 3.1 we showed how to approximate HARDI signals and their ODFs, s and p,

respectively, by continuous spherical functions of degree L. Notice, however, that the

eigenvalues of TL(s) and TL(p) need not be invariant with respect to rotations of the raw

HARDI signals. This is because the raw HARDI signals may not admit an expansion of

degree L in terms of the SH basis.

In practice, however, we expect the HARDI signals to be well approximated by low-degree

models, hence the eigenvalues of TL(s) and TL(p) should be approximately invariant with

respect to rotations for large enough L. To verify this, we used the multi-tensor model in

[22] to generate three noiseless HARDI signals of 1-, 2-, and 3-fiber ODFs. We applied two

different rotations to each one of these HARDI signals and approximated the resulting nine

HARDI signals by an SH expansion of degree L = 4. The two plots in column 1 of Fig. 1

show the 25 eigenvalues of TL(s) and TL(p), respectively, in increasing order. Notice that the

three curves of eigenvalues corresponding to 1-, 2-, or 3-fibers align almost perfectly,

showing that the eigenvalues of TL are approximately invariant to rotations in spite of the

finite approximation by an SH basis of degree L = 4.

Now, since the eigenvalues of TL give only approximately invariant features due to the use

of a finite degree L, we might wonder why not using other approximately invariant features

instead. For example, the maximum and minimum values of s are invariant to rotations.

More generally, if we look at the entries of s, which correspond to samples of s at different

directions on a fixed grid on , then the sorted entries of s should be approximately

invariant to rotations. To verify this, we plot in column 2 of Fig. 1 the sorted entries of s and

p (in increasing order) for the same nine HARDI signals described before. Notice that the

three curves of 1-, 2-, or 3-fibers do not align as well as the corresponding curves in column

1. This shows that the sorted discrete values of s and p are not as invariant to rotations as are

the eigenvalues of TL(s) and TL(p), respectively.

Given the (approximate) invariance of the eigenvalues of TL(s) and TL(p), we can use

Theorem 1 to generate a large number of rotation invariant features for describing HARDI

signals. For example, we can use the minimum and maximum eigenvalues, λmin and λmax,

respectively, which approximate the minimum and maximum of the spherical function. We

can also use the range of the eigenvalues, λmax –λmin, as another feature. In addition, the

variance of the eigenvalues will be closely related to the variance of the spherical function

values and can be used as another feature. We also considered features such as the mean,

median and mode of the eigenvalues as well as the determinant, trace, 2-norm and Frobenius

norm of TL. But the beauty of this framework is that one can use any continuous function of

the eigenvalues, which provides a very rich set of features for a particular application.

Furthermore, the choice of which spherical function to use (s, p or another) is also up to the

user and can be determined based on the application or experiment. For different

experiments (Section 4) we use the eigenvalues associated to both the HARDI signal, s and

the ODF p. Furthermore, we can even extend L by zeropadding the coefficient vector of our
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spherical function using the method in [23] to extract a larger number of features, of which

the values such as minimum, maximum, range and variance of eigenvalues will better

approximate the distribution of the function values.

4 Validation

Synthetic Data

We first test the proposed HARDI features on synthetic data of isotropic, 1-, 2-, and 3-fiber

ODFs generated using the multi-tensor model in [22]. For the synthetic ODF field in Fig.

2(a) we plot the variance and range of the eigenvalues of TL(s) in Fig. 2(b). Observe from

the constant height of the bars in each color of the bar graph that these values are rotation

invariant, as predicted. Observe also from the distribution of the bar graphs in Fig. 2(b) that

these features give information about the shape of each ODF. In particular, notice that the

maximum eigenvalue of the 1-fiber ODFs is greater than that for the 2- and 3-fiber ODFs.

This is also apparent from Fig. 1. We can also see that the minimum eigenvalue of the 3-

fiber ODFs is greater than that of the 2-fiber and 1-fiber ODFs, also as seen in Fig. 1. When

interpreting the results for ODFs, we can additionally use the fact that p is a probability

distribution. Thus, if the variances of each peak in our ODF are the same, as was the case in

our synthetic experiments, we know that the maximum of a 1-fiber ODF will be greater than

that for the 2- and 3-fiber ODFs since the area under the curve must sum to 1. This

information is also encoded in the range of the eigenvalues. Furthermore, the variance of the

eigenvalues indicate how the values are spread out, revealing information about the relative

roundedness of the ODF, where a lower variance indicates a rounder shape and a higher

variance indicates a thinner shape.

Phantom Data

We also evaluate our method on two different phantom datasets. The first one is taken from

the ISBI 2013 HARDI Reconstruction Challenge, which consists of 20 fiber bundles

crossing at various angles within a 50 × 50 × 50 spherical volume.1 We used a subset of the

dataset imaged at 64 gradient directions with b = 3000s/mm2 and SNR of 30. We selected z

slice 38 to demonstrate our method on the intricate crossing region shown in Fig. 3. In the

top left we present an approximate ground truth segmentation of the fibers by using the

given center and radius information for each fiber in the dataset. The image in the top right

is a count of the number of fibers that cross in a single voxel based on the ground truth

segmentation. The two figures in the second row compare the GFA to the variance of the

eigenvalues of TL(p). Notice that the GFA mostly distinguishes isotropic regions from

anisotropic ones, while the variance is able to discern regions with 0, 1, 2, or 3 crossing

fibers, approximately matching the ground truth. The remaining two rows show a more

detailed view of the central region, with the ODF estimates at each voxel.

Secondly, in Fig. 4, we experimented on the Neurospin MR phantom dataset provided for

the MICCAI 2009 Fiber Cup [24, 25]. Analyzing our new scalar maps of eigenvalue range

and variance of the Fiber Cup dataset we notice a higher degree of detail. We see more

1http://hardi.epfl.ch/static/events/2013ISBI/download.html
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variety of values along the fiber travelling from top right to bottom left. Also very

importantly, each new map reveals more details about the shape of the topmost U-shaped

kissing fiber, over and above the GFA maps. Furthermore we show each individual

eigenvalue and display a progression of values. In particular, the minimum and maximum

eigenvalues, Eval 1 and Eval 25, respectively, reveal more detail in the crossing fiber

regions. In Eval 1 the crossing regions show up greenish-blue, on the lower end of the

spectrum. The same regions in Eval 25 also show lower values with color yellow. As

noticed in the synthetic experiments, crossing fibers exhibit a lower range of eigenvalues

when compared to single fiber ODFs.

Real HARDI Data

The optic chiasm is the location where two fibers leading from the right and left

hemispheres intersect as they travel from the optic tract to the optic nerve. It has been

identified as a unique region of two fiber crossing as well as kissing on either side using DTI

tractography [26]. In Fig. 5 we analyze the fiber crossing of the optic chiasm and calculate

the GFA and minimum eigenvalue feature for this ROI in a 112×112×64 real human brain

HARDI dataset acquired with 127 gradient directions and b = 1000s/mm2. The minimum

eigenvalue map is able to more concretely distinguish the crossing center red region from

the yellow region of the optic tract extending from left and right.

5 Conclusion

We have developed a general framework for extracting rotation invariant features from any

spherical function using an SH basis. In particular, we extracted features from ODFs of

HARDI signals, but any other spherical function used in the numerous methods of HARDI

reconstruction and fiber orientation estimation can be substituted here to obtain features

valuable for a particular application. These features reduce the complexity of dMRI data to

measurable and comparable scalar values that could be used as biomarkers in the detection

of neurological diseases.
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Fig. 1.
Comparing the rotational invariance of the eigenvalues (first column) to that of the spherical

function values (second column) using a discretization of the continuous function. The first

row is the HARDI signal and the second row is the ODF. The plots show the sorted

eigenvalues and sorted function values for nine different signals and ODFs, obtained by

rotating three different signals with 1, 2, and 3 fibers, respectively. Observe the almost

perfect overlap of the curves corresponding to 1-, 2-, or 3-fiber ODFs in the first column and

the misalignment of the curves in the second column.
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Fig. 2.
Synthetic ODF field of 0-, 1-, 2-, and 3-fiber ODFs with various rotations and no noise. The

graphs in 2(b) are colorcoded by the color bar in 2(a) to indicate each column of the ODF

field while each row is a different rotation of each ODF. The constant height of each color in

the bar graphs indicate the invariance of the eigenvalues under rotation and the relative

differences in values for ODFs with varying number of crossing fibers.
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Fig. 3.
ISBI 2013 HARDI Phantom. First Row: The left image is the ground truth fiber

segmentation of a slice of the phantom dataset, where we’ve identified an intricate region of

crossing fibers. The right image is a count of the number of fibers that cross in a given

voxel, ranging from 0 to 3. Second Row: GFA and eigenvalue variance of the phantom slice.

We notice here the stricking similarity between the plot of crossing fibers and the eigenvalue

variance whereas the GFA is unable to reveal this information. Third/Fourth Row: Close up

of the ROI with ODFs.
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Fig. 4.
Fiber Cup Phantom. We show the ground truth and GFA compared to the eigenvalue

variance and range scalar maps and several eigenvalues of T4(s) where Eval 1 is the smallest

eigenvalue and Eval 25 is the largest (Red: high, greenish blue: low).
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Fig. 5.
Real HARDI scalar maps of the optic chiasm fiber crossing. The bottom arrows identify the

location of the optic chiasm. We can distinguish the chiasm in the Eval 1 map while the

GFA is noiser. The top arrow in the whole brain Eval 1 map indicates a region where there

is more detail to highly anisotropic fiber tracts than the GFA.
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