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Abstract

It has been recently asserted that the nested case-control study design, in which case-control sets

are sampled from cohort risk sets, can introduce bias (“study design bias”) when there are lagged

exposures. The bases for this claim include a theoretic and an “empirical evaluation” argument.

Both of these arguments are examined and found to be incorrect. Appropriate methods to explore

the performance of nested case-control study designs, analysis methods, and compute power and

sample size from an existing cohort are described. This empirical evaluation approach relies on

simulating case-control outcomes from risk sets in the cohort from which the case-control study is

to be performed. Because it is based on the underlying cohort structure, the empirical evaluation

can provide an assessment that is tailored to the specific characteristics of the study under

consideration. The methods are illustrated using samples from the Colorado Plateau uranium

miners cohort.

Introduction

While well-established as an epidemiologic study design, a number of articles and letters

have appeared recently asserting that the nested case-control study design is susceptible to a

form of “study design bias.”1-5 Given the theoretical understanding of the validity of the

standard nested case-control design, in which case-control sets consist of the case and a

simple random sample of controls from the risk set,6-9 and which we will henceforth refer to

as the “simple random sampling case-control” (SRS) design, such contentions might be

dismissed as untenable. However, the repeated assertion of bias in the SRS design has raised

concerns in the occupational health community that “tried and true” case-control methods

may be flawed.10 Noting that methods to empirically evaluate potential study design biases

within the context of existing cohort data have not been described, Deubner, Roth, and Levy

(DRL) proposed an approach which they then applied to a cohort of beryllium workers to

illustrate problems that they contend arise in SRS studies.4 We have three goals in this

paper. First, we give a heuristic description of the nested case-control methodology and

provide some intuition why the approach is valid for assessing exposure-disease

associations. Second, we examine the evidence presented by DRL that the SRS design can

be biased when evaluating lagged exposure variables. In particular, we review the DRL

method of empirical investigation and show why it not a valid way to evaluate bias
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questions in SRS designs. Third, we provide a valid approach to empirical evaluation of

nested case-control study designs and analysis methods. This approach can be used to

evaluate study design validity, investigate the behavior of estimates under model

misspecification, and for sample size and power calculations.

As pointed out by DRL, an important advantage of an empirical analysis is that the results

are specific to the cohort that serves as the basis for the case-control study.4 Thus, while a

flawed study design can in general result in biased estimation, with an empirical evaluation,

one can explore the magnitude of such potential bias in the particular study in question.

Throughout we will illustrate the concepts and methods using the Colorado Plateau uranium

miners cohort.11,12

Nested case-control studies: A brief overview

The Colorado Plateau uranium miners (CPUM) cohort study is a study of radon exposure

and lung cancer mortality and has been used extensively both to characterize the radon-lung

cancer association and as methodological example.13-15 Although radon exposure has been

estimated for all miners in this cohort, we consider a hypothetical situation in which the only

radon exposure-related information available on cohort members are the dates of start and

end of mining.

Risk set representation of cohort data—Figure 1A depicts the ages on study and lung

cancer mortality information for miners in the underlying cohort. Each horizontal line

represents the ages over which the given miner was under observation or at risk for lung

cancer death, meaning that at each age on the line, the miner meets the eligibility

requirements for cohort membership (e.g., uranium miner in the four states mining area

during 1950-1960 enrolled by a United States Public Health Services researcher) and that

lung cancer death status is known. Thus, the line starts at the age the miner was enrolled,

and ends at the age that the worker is known to have died or at age of last contact if alive.

Death due to lung cancer (as noted on the death certificate) is the outcome of interest and is

denoted by the ‘●'s. Now, with the goal of assessing the impact of radon exposure on risk of

lung cancer, the question becomes “what are reasonable comparisons to make from data of

this type?” The nested case-control approach is based on risk sets defined by the ages of

lung death and is illustrated by 24 of the 3347 miners in the CPUM cohort in Figure 1A. The

risk set at a given lung-cancer death age consists of the case, the miner who died of lung

cancer at the risk set age, and controls, miners who were alive and on-study at the risk set

age, denoted by the ‘|’s, in the Figure. Comparison of the lung cancer case exposure to that

of the controls in the risk set provide a reasonable and intuitive basis for estimation of radon

exposure-lung cancer risk relationships. The risk set defines a population of miners of the

same age from which any risk set member could have been the lung cancer case, and higher

exposure in the cases than the controls in their respective (age-defined) risk sets is evidence

of a positive exposure-lung cancer association.

Exposure summary construction—While the general idea of comparing exposure in

risk set cases and controls is eminently reasonable, we have not described how radon

exposure should be quantified for such a comparison. Miners in the cohort are exposed to
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varying levels of radon, depending on the time and mine worked and inferred for use in the

study based on mine measurements made by federal and state agencies. An analytic

challenge is how to summarize these exposure histories into meaningful exposure

summaries that capture aspects of the history that are relevant to lung cancer risk. The risk

set approach again provides some intuition. With the risk set defined by age of lung cancer

death, it is natural to compare exposures that are experienced only up at that age, i.e., to

compare case-control exposure summaries based on the exposure history up to the risk set

age. This simply implements the principle of temporality, that only exposure experienced

prior to disease occurrence can be involved in causing the disease.16-18 Of course, further

restrictions on exposure summaries may be dictated by the specific study situation. For

instance, radon exposure affects lung cancer incidence but in the CPUM study only

information on lung cancer death is available. Thus, we have restricted exposure summaries

to be functions of radon histories up to two years prior to the risk set age to (approximately)

account for the time from lung cancer diagnosis to death.14 Once reasonable restrictions on

the exposure history are established, risk set case-control comparisons of any radon

exposure summary provides a valid basis for assessing the association between that radon

exposure summary and lung cancer risk.

Matching—The appeal of the risk set approach to the CPUM cohort data is that case-

control comparisons are between miners of the same age. This natural idea of comparing

“like with like” can be extended to other factors as well by restricting the risk set controls to

those similar to the case with respect to these factors. For instance, although miners in the

CPUM risk sets are of the same age, they attained this age at a wide range of dates. For

instance, in the risk set at age 48 in Figure 1A, the case was 48 in 1955, while some the

controls were 48 during the 1940s and others were 48 during the 1970s. To make the

controls used in the comparison more like the case in terms of date at the risk set age,

controls could be required to match the case on, say, year-of-birth. This is illustrated in

Figure 1B in which the controls for comparison to the case are restricted to those who were

in the same five year year-of-birth matched risk set, i.e., those born in the same five year

interval as the case. Intuitively, conclusions drawn from the radon exposure comparisons

between cases and the restricted control sets will be more believable than the full risk set

controls because the controls are “more like” the case in ways related to time trends, say

smoking behavior, that might obscure (confound) a crude analysis of the relationship

between radon exposure and lung cancer. Control for confounding by measured covariates

may, of course, be achieved by means other than matching. However, matching in a case-

control analysis ensures efficiency in the control for matched covariates by achieving

balance in the distribution of controls across strata of the matching factor(s). Just as with

exposure summary construction, temporality considerations lead to the natural constraint

that matching factors should depend on history up to the risk set age.

Cox regression—While a simple measure, such as the mean of the within risk set case-

average control exposure differences, gives a sense of whether exposure is associated with

lung cancer, a formal statistical method is Cox regression to estimate the rate ratio, the

relative change in lung cancer rates per unit of increase in exposure, in which the case-

control comparison from each risk set is quantified in a conditional logistic likelihood
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contribution. The partial likelihood analysis of cohort data is based on the product of the

conditional logistic contributions from each case-control set. Cox regression has been

studied extensively and the validity of the method is well accepted.19-20

Nested case-control studies—Intuitively, comparison of exposure between the case

and controls in the risk sets does not require all the controls; a representative sample of the

controls should be sufficient. The nested case-control study illustrated Figure 1C is an

extension from “full cohort data,” based on the risk set representation, to “case-control data”

with the two sampled controls represented by the ‘○’s. Only a few risk set controls, matched

to the case on five year year-of-birth interval, are selected to represent the distribution of

exposure in all eligible controls. We will use the term nested case-control studies to mean

designs in which controls are sampled (using any of a wide range of sampling methods)

from the risk sets, but are sampled independently across risk sets.21 The most common

design, and the main focus of this paper, is simple random sampling (SRS design) of

controls from the (matched) risk sets . With an SRS design, radon exposure comparisons

between the case and sampled controls will, on average, will be representative of those from

the risk sets, but with added “sampling” variability. We note that the same intuition applies

if one were to first randomly sample the lung cancer cases from the cohort, then randomly

sample risk set controls; the case-control relationships are representative of those in the

cohort risk sets. This is illustrated in Figure 1D in which the ‘●'s denote randomly sampled

cases while the ‘*’s denote cases not sampled. A single control is randomly sampled, the

‘○’s, from the year-of-birth matched risk sets of the three sampled cases. As with the full

cohort, the conditional logistic (partial likelihood) analysis of nested case-control data

provides valid estimation of the rate ratio and accounts for the sampling variability in the

standard errors and confidence intervals. The analysis is completely analogous to the Cox

regression method, only just using the “sampled risk sets.” Again, these methods have

strong theoretic justification and have been validated extensively.7,9,22

The DRL assertion that nested case-control studies are methodologically flawed

In a series of articles and letters, DRL have asserted that estimates of effect based on lagged

exposure variables in SRS nested case-control studies can be biased. In particular, they

claim that associations between a lagged exposure variable and disease can be introduced by

the SRS nested case-control study design when none, in fact, exists. Lagging of exposure

assignment is done in epidemiological analyses in order to account for a period of time from

an exposure to an increase in disease risk (an induction and latency period). For instance, the

risk of lung cancer does not increase until five years after radon exposure.23 In order to

explore the DRL claim of bias, we need a clear definition of nested case control bias. Our

definition, which we believe to be the only meaningful one, is that (aside from sampling

error) the nested case-control study yields different conclusions from those based on the

comparable analysis (i.e., using the same statistical model) of the cohort from which it is

drawn. Thus, in the context described by DRL, the assertion is that disease associations with

a lagged exposure can be present in the SRS design data that are not present in the cohort.

This claim is based on theoretic and empiric evidence. We consider each of these in turn.
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Theoretic arguments that SRS nested case-control studies can be biased—
The first point made by DRL that we consider is that “...the theoretical foundations on which

incidence density (nested case-control) sampling is based do not address exposure

lagging.” 3 This assertion would imply that there is a “hole” in the statistical theory that

opens the possibility that the SRS design can introduce spurious associations.3,4,5 However,

lagged exposure is clearly a summary of past exposure history and thus is a reasonable and

valid variable for analysis for which the statistical theory applies. 20,24,25 They further prove

that lagging exposure assignment in a SRS study disproportionately truncates exposure

information for controls (i.e., the controls tend to have more exposure information truncated

due to lagging exposure assignment than the cases).3 However, while the observation and

proof that controls have “greater likelihood than cases of having some or all of their

exposure truncated” is true, it is irrelevant. When exploring a latency effect, the exposure

experienced during the latency (lag) period should be ignored if one wishes to assess an

association under the assumption that exposure experienced during this period is not related

to disease risk. Intuitively, the lagged exposures of controls from a SRS study will be

representative of those from all controls in the risk set (cohort study). If there is no

difference in exposure during the lag period in the cohort data, there will be no difference in

the SRS nested case-control data.

Emperic evidence that nested case-control studies are biased—To support their

theoretic argument, DRL developed an approach to empirically evaluate bias in nested case-

control studies using available cohort data and then showed, in a cohort of beryllium

workers, that the lagged exposure was associated with mortality in SRS samples, when it

was not associated in the cohort.4 Starting with a cohort of 3569 beryllium workers followed

for (lung cancer) mortality through 1988, 142 workers were randomly sampled from the

cohort and designated as “probands” with exit age taken as the worker's age at last

observation (age at death if deceased, and age at end of follow-up if not deceased). A risk set

was formed at each of these proband exit times which included the proband and all workers

alive and under study at the proband exit age. Five controls were then sampled from these

risk sets. Because the probands were a random sample from the cohort, one might

reasonably believe, as DRL assert, that there should not be associations between exposure

(or any other variables) and “proband-status.” However, it turns out that associations

between exposure and proband-status found in SRS samples by this method reflect

associations present in the cohort. To see this, consider our discussion of the nested case-

control design. Figure 2A illustrates a DRL sample, with ‘x’ denoting a sampled proband

and ‘○’ marking controls. Since controls are randomly sampled from the proband defined

risk sets, they are representative of controls in the entire risk set, shown in Figure 2B. Then,

because probands are randomly sampled from all members of the cohort, the sampled

proband-control comparisons are representative of risk sets in a cohort in which all members

are probands, as illustrated in Figure 2C. Due to the random sampling, it should be apparent

that any case-control differences in exposure are preserved and that any exposure-outcome

associations estimated from the case-control sets in Figure 1A are sample approximations of

the same associations in the underlying cohort, Figure 1C. Thus, contrary to the presumption

that there should be no association between (lagged) exposure and disease using SRS data

generated using the DRL empirical evaluation method, the random sampling of probands
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preserves any associations between exposure and age at exit that exist in the full cohort.

Therefore, the finding that lagged exposure was associated with proband status cannot be

used to conclude that nested case-control methods can lead to bias with lagged exposure

variables.

Now, exposure may be associated with age at exit for many reasons including actual

increases in rates due to exposure for some other causes of death, or more likely, artifactual

associations between exposure and age of exit for subjects alive at the end of the study. To

further demonstrate that the DRL empirical investigation does not work, we generated

simulated data in which subjects are enrolled during a one year accrual period then followed

for one additional year. We assigned a dichotomous exposure to each subject with

probability dependent on enrollment time, with 20% exposure probability during the first

half of the enrollment year, and 80% during the second half. An exit date from the study was

the minimum of the enrollment time plus a random (exponentially distributed) time to

disease or three years, the time at the end of follow-up. The rate of disease was set so that

approximately 10% of cohort subjects would develop the disease, the rest were alive at end

of follow-up. The results from a SRS study with five controls sampled per case and a DRL

empirical evaluation, as well as the corresponding cohort study analyses described above,

are shown in Table 1. The disease outcome SRS study exposure rate ratio (RR) estimate is

0.93 (95% CI: 0.76-1.13) is consistent with the true RR value of 1 and very close to the

cohort estimate of 0.90. The RR estimate from the DRL empirical evaluation is 2.29 (95%

CI: 1.89-2.82), a result of the date of entry-exposure correlation and is completely consistent

with the cohort results with all subjects as probands.

Empirical evaluation of design and analysis questions from cohort data

While the DRL empirical evaluation method fails to provide a technique for assessing nested

case-control performance when basic cohort data is available, such a procedure would be of

some value in assessing design and analysis questions within the context of specific study

situations. In this section, we describe a valid approach to this problem.

Description of the method—To simplify the discussion, we will describe the methods

with respect to a nested case-control study from the CPUM cohort. In order to conduct a

valid empirical evaluation of the nested case-control design, we generate data in which there

is a specified association (RR) between exposure and lung cancer. To do this, plausible

radon exposure histories are assigned to each miner in the cohort. Suppose that mine surveys

provide estimates of decade-specific average dose rates of about 6.25, 8.30, 5.00, and 0.83

working levels23 for <1950, 1950s, 1960s, and ≥1970, respectively. To create a radon

exposure history for each miner over the ages between start and end of mining employment,

we assigned exposure to each five year interval of age as five years times the decade-

specific average dose rate, for the decade at the midpoint of the age interval. Risk sets are

then formed at each of ages of the lung cancer death from the cohort. However, we do not

identify the lung cancer case. This is done randomly by specifying the rate (instantaneous

probability) of lung cancer death for each subject at a given time, which we label λi(t), and is

a function of the exposure history of subject i up to time t. For risk set k associated with time
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tk, to simulate a single case-control study we first pick exactly one case from the risk set, a

single draw from a multinomial distribution with probabilities

(1)

where the sum is over risk set members, and then sample controls according to the design of

interest. This is done for each risk set in the cohort to create a simulated case-control study

trial.

The case-control data from each trial is analyzed according to the desired analysis method,

and the results tabulated. While λi(t) can be taken to have any form, in most applications a

standard log linear (Cox model) form will be used with λi(t) = λ0(t) exp(Zi(t)β) where λ0(t) is

the baseline hazard, Zi(t) the exposure summary (vector) for subject i at time t, and β the log

rate ratio parameters.19 The approach is justified implicitly by the based on the conditional

probabilities used in the partial likelihood construction.19,20 We note that one can also

simulate new exposure histories for each trial but this adds to the complexity of the

simulation and will rarely make any qualitative (or even quantitative) difference in the

conclusions.

Using the risk sets associated with the age at each of the 258 lung cancer ages of death,

Zi(tk) were set equal to1 if 20 year lagged cumulative exposure was over 500 working level

months (WLM)21 and to 0 if under 500WLM. We assigned a case in the risk set according

to equation (1) under the Cox model with rate ratios exp(β0) = 1, 2, and 4. We then sampled

controls from the risk set according to the sampling design and estimated the rate ratio using

conditional logistic regression with the model of interest. From 500 trials, we computed the

anti-log of the mean log rate ratio (“estimated RR”), empirical standard error of the

estimated log rate ratio (“empirical s.e.”), average of the estimated standard errors of the log

rate ratio (“Estimated s.e.”), power to detect a radon exposure-lung cancer association, and

other statistics to characterize the performance of the simulation. The SAS statistical

software package (SAS Institute, Cary, NC) was used to perform the simulation. The

programs and data are available at http://hydra.usc.edu/timefactors. We now use this

approach to address a variety of questions that might arise when considering a nested case-

control study from the CPUM study.

Validity of the SRS design for lagged radon exposure—Table 2 gives the results of

the empirical evaluation for analyses of the lagged exposure variable in SRS case-control

studies with one and three controls per case. As indicated by the “Estimated RR” columns,

for all situations considered, the true rate ratio is well estimated using the SRS sampling

design. Furthermore, comparing the empirical standard errors of the 500 estimated log rate

ratio estimates to the average of the estimated standard errors, the likelihood based estimated

standard errors perform as predicted by the theory.

Comparison of tests of radon-lung cancer association using cumulative and
lagged exposure—Continuing with the SRS design, we performed an empirical

evaluation to estimate the power to detect a radon effect when exposure assignment is

lagged by 20 years and when total cumulative exposure (up to tk-2) is used in the conditional
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logistic regression. The results for 1 and 3 controls per case are given in Table 3. When the

rate ratio is one, the “power” should correspond to the size of the test, in this case 5%.

Estimated test size, for both lagged and cumulative exposure analyses, is very close to 5%

indicating that the design and analysis are behaving as theory predicts. When the rate ratio

equals 2 and 4, testing using the lagged exposure (corresponding to the “true” model used to

generate the case outcomes) has nearly 100% power, even with a single control. However,

tests based on cumulative exposure (a “misspecified” model) have low power to detect a

radon effect, with 66% power to detect a rate ratio of 4 or greater with three controls per

case. This empirical investigation shows that, if one were to perform a SRS study in the

Colorado Plateau uranium miners cohort, it would be important to investigate latency effects

as well as cumulative exposure. A cumulative exposure variable will have much less power

to detect an association, when the association is more accurately described by the lagged

exposure.

The effect of matching on age of hire—When designing the nested case-control study,

the choice of matching factors is fundamental to the design. Generally, the goal of matching

is to choose controls more “like the case” in ways that we feel increase the validity of case-

control exposure comparisons. However, matching on factors correlated with exposure can

also reduce the statistical power to detect exposure-disease associations by increasing the

concordance of case-control sets with respect to the exposure of interest.26 For example,

DRL suggest matching on age of hire so that the case-control comparisons will be among

workers who have worked a similar period of time.1,3 Certainly, matching on date of hire

when there are disease and exposure related unmeasured factors will improve the validity of

exposure comparisons, but there may be a large cost in terms of statistical power when the

matching is not needed. To examine this question in the CPUM, we performed an empirical

investigation of an analysis of lagged exposure from SRS samples from risk set controls

matched to the case on 5 year age of first mining interval. The results are shown in Table 4

and, while the average estimated RRs are close to the true, the standard errors are on the

order of ten times larger than from a study with the same number of controls from the full

risk sets and the power to detect the radon-disease association is quite low (e.g., 70% for

RR>4 with 3 controls per case). So, while comparing miners hired around the same age

would increase the validity of the exposure-disease findings, our empirical investigation

indicates that, the power to find a true association would be somewhat lower than without

the matching. Therefore, for a CPUM nested case-control study, we would recommend

against matching on age at hire and carefully include in the statistical models any potential

non-radon factors related to lung cancer risk that might also be correlated to year of hire.

The effect of matching on age of exit—DRL advocated that SRS design controls

should be matched to the case on age of exit from the study.2 Because age of exit will not be

known until a subject exits the study, it is not part of history for any time prior to age of exit

and, thus could in principle, lead to biased estimation of radon-lung cancer associations. For

instance, if non-lung cancer death reasons for exit are associated with radon exposure, the

estimated radon lung-cancer associations will be biased toward the null. However, if the

other reasons for exit are not well correlated with radon exposure, there may be little or no

bias. Here we evaluate of “degree of bias” empirically for the CPUM cohort by sampling
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from the risk set controls who matched the case by five year age-of-exit interval. The

average estimated rate ratios are shown in Table 5. For a study of the CPUM, there is no

evidence that this “improper” matching will result in notable bias.

Pure case-control comparisons—As an alternative to sampling controls independently

across risk sets, consider a design that specifies that cases cannot serve as controls and a

subject can only serve as a control for a single case. This design might be considered as

practical alternative to the standard when inclusion in multiple case-control sets requires

multiple interviews with subjects, depletes a biological sample resource, or complicates the

study implementation in some other way. With the standard conditional logistic analysis,

this method of sampling can lead to bias.27,28 We investigated the performance of this

design for a study from the CPUM cohort; the results are given in Table 6. There is

detectable upward bias that increases with the number of controls sampled. Because the

biases in the table are probably not large enough to invalidate the results of a study using the

pure case-control design, we would conclude that if the pure case-control design is highly

desirable for logistical reasons, and only one or two controls are to be sampled, the design

bias is acceptable within this cohort.

Discussion

It is unfortunate that a series of articles and letters criticizing aspects of a nested case-control

study of beryllium exposure and lung cancer mortality have resulted in confusion about the

validity of standard nested case-control study methods. Many of the methodological

criticisms were based on the false premise that the theory underlying nested case-control

sampling, Cox regression, and, by extension, Poisson regression only accommodates

cumulative (and not lagged) exposure summaries. These false premises were compounded

by a flawed empirical evaluation of the design.

In this paper, we have provided an explanation of why nested case-control sampling is a the

natural sampling analog of analysis based on case-control exposure comparisons in cohort

risk sets and discussed the flaws in evidence that has been presented to show that nested

case-control studies can be misleading for the analysis of lagged exposures. The

investigation of design bias was made in the context of a list of criticisms of a lung cancer

risk in a SRS nested case-control study in a cohort of beryllium.29,30 While no study is

perfect and it is important to examine plausible alternative explanations for observed

exposure-disease associations, “study design bias” should not be considered further as a

weakness of this study.

We have provided appropriate methods to evaluate and compare case-control study designs

within the context of a particular cohort. The approach can be used in study planning, to

assess and compare different candidate study designs, to assess the likely magnitude of

potential bias, and compute power to detect effects. Of course, assumptions need to be made

about covariates not available in the cohort and the hazard model for disease occurrence and,

to the extent that these assumptions deviate from the actual underlying data structure, the

empirical evaluation may be inaccurate. Also, the findings from any empirical evaluation

will be specific to the characteristics of the particular cohort and study design under
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examination. General properties of nested case-control study designs and estimators are best

studied using the powerful counting process and martingale theory statistical tools for failure

time data25. The empirical evaluation methods that we have described complement these

theoretical tools by tailoring the evaluation to the particular study situation, accounting for

the structure of the underlying cohort, and accommodating complex exposure histories and

study designs.
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Figure 1.
Nested case-control sampling from the Colorado Plateau uranium miners cohort. A. Risk

sets at the age of lung cancer deaths. The ‘●’ denote cases and ‘|’ risk set controls. B. Year

of birth matched risk sets. C. Sampling controls from matched risk sets. The ‘○’ are

sampled controls. D. Sampling cases from the cohort. The ‘●’ denote sampled cases, ‘*’

cases not sampled, and ‘○’ are sampled controls.
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Figure 2.
Sampling of the cohort used in the Deubner et al (2007) empirical evaluation. The ‘●’

denote probands and ‘○’ controls. A. Sampled probands (cases) and controls sampled from

the risk sets at the proband exit times. B. Sampled probands and proband risk sets. C. All

probands and risk sets.
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Table 1

Results from simulated cohort data: Nested case-control study based on actual cohort failures (disease),

empirical evaluation according to DRL method and the corresponding cohort analyses. For the simulated data

there was no association between exposure and disease, but exposure was associated with time of entry.

Disease as outcome Nested case-control study Cohort/ failures are diseased subjects

Cases Controls Rate ratio CI Population Rate ratio CI

Unexposed 271 1312 1 -- 2499 1 --

Exposed 205 1068 0.93 (0.76-1.13) 2501 0.90 (0.75-1.09)

Empirical evaluation Sampled proband nested case-control study Cohort/ failures are all subjects

Cases Controls Rate ratio CI Population Rate ratio CI

Unexposed 226 1568 1 -- 2499 1 --

Exposed 250 809 2.29 (1.89-2.82) 2501 2.32 (2.19-2.46)
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Table 2

Estimated rate ratios with empirical and average estimated standard errors when controls are a simple random

sample from the risk sets (SRS design).

1 control 3 controls

True RR Estimated RR Empirical se Estimated se Estimated RR Empirical se Estimated se

1 1.00 0.037 0.036 1.02 0.027 0.024

2 2.05 0.037 0.037 2.01 0.023 0.023

4 4.09 0.048 0.048 4.01 0.031 0.027
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Table 3

Power to detect a radon-lung cancer association when lagged or cumulative exposure variables are used in the

analysis with data generated with rates depending on lagged exposure.

1 control 3 controls

Rate ratio Lagged Cumulative Lagged Cumulative

1 5% 4% 6% 5%

2 98% 16% 100% 18%

4 100% 53% 100% 66%
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Table 4

Empirical evaluation of simple random sample controls matched to the case on 5 year age of hire.

1 control 3 controls

True RR Estimated RR Empirical se Estimated se Estimated RR Empirical se Estimated se

1 0.97 0.557 0.468 1.07 0.341 0.288

2 2.14 0.414 0.470 2.17 0.356 0.342

4 4.19 0.426 0.608 4.55 0.397 0.503
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Table 5

Empirical evaluation of simple random sample controls are matched to the case on 5 year age at exit.

1 control 3 controls

True RR Estimated RR Empircal se Estimated se Estimated RR Empircal se Estimated se

1 1.01 0.047 0.045 1.00 0.031 0.029

2 2.02 0.045 0.046 2.02 0.030 0.029

4 4.10 0.065 0.060 4.06 0.035 0.035
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Table 6

Estimated rate ratios from an empirical evaluation of “pure controls” sampling.

True RR Number of controls

1 3 5

1 0.98 1.04
1.09

*

2 2.08
2.20

*
2.24

*

4
4.51

*
4.49

* 4.70*

*
p<.001 for test of estimated RR equal to the true RR.

Epidemiology. Author manuscript; available in PMC 2014 October 11.


