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Abstract

microRNAs (miRNAs) are a family of small, non-coding RNAs, which
provides broad silencing activity of mRNA targets in a sequence-
dependent fashion. This review explores the hypothesis that the
miRNA machinery is intimately linked with the cellular stress path-
way and apparatus. Stress signaling potentially alters the function
of the miRNA-bioprocessing core components and decompensates
regulation. In addition, dysregulation of miRNA activity renders the
cell more prone to stress and emerges as a new pathway for age-
related insults and diseases, such as neurodegeneration.

Keywords cellular stress; dicer; disease; micrornas; stress granules

DOI 10.15252/embj.201488142 | Received 10 February 2014 | Revised 23 March

2014 | Accepted 28 March 2014 | Published online 27 May 2014

The EMBO Journal (2014) 33: 1428–1437

Introduction

microRNAs

miRNAs are genome-encoded small RNAs that mediate post-tran-

scriptional silencing. Considering hundreds of miRNA genes, each

with many dozens of targets, regulation by miRNAs is very broad

and met in any cellular activity in health or in disease (Bushati &

Cohen, 2008; Bartel, 2009; Carthew & Sontheimer, 2009; Fabian

et al, 2010). miRNA precursors are processed in two steps (Fig 1).

The initial miRNA transcript (pri-miRNA) is subjected to a nuclear

processing by the Drosha–DGCR8 ‘microprocessor’ complex. The

resulting intermediate precursor (pre-miRNA) is exported to the

cytoplasm and then further identified and cut by Dicer, yielding a

22-nt mature miRNA (Gregory et al, 2005). Partners of Dicer are

required for efficient pre-miRNA processing and include Argonaute

(AGO), protein kinase interferon-inducible double-stranded RNA-

dependent activator (Pact) and TAR RNA-binding protein (Trbp;

Chendrimada et al, 2005; Haase et al, 2005; Diederichs & Haber,

2007; Koscianska et al, 2011). Dicer and its co-factors load the

mature miRNA onto AGO in the RNA-induced silencing complex

(RISC), providing sequence-specific silencing activity.

Argonaute RISC catalytic component 2 (AGO2) has dual functions

in the processing of miRNA precursors and in target silencing. First,

AGO2 functions as a Dicer co-factor in pre-miRNA processing, as part

of the RISC-loading complex. Next, AGO2 is loaded with a guide

miRNA strand, making an active RISC (Chendrimada et al, 2005;

Gregory et al, 2005). Once programmed with a particular miRNA

sequence, RISC acts as an effector that facilitates miRNA-dependent

mRNA silencing (Fig 1). Therefore, miRNA processing and target-

RNA repression are physically and functionally interlinked by sharing

many common protein components.

miRNA circuitry buffers unwanted gene expression, and loss of

miRNA activity enables drift from normal cellular function (Horn-

stein & Shomron, 2006; Li et al, 2009; Herranz & Cohen, 2010;

Mukherji et al, 2011; Pelaez & Carthew, 2012; Cassidy et al, 2013;

Siciliano et al, 2013). In recent years, an intimate link between

miRNA activity and the cellular stress response has been uncov-

ered and is the focus of this review. We explore the evidence that

stress signaling and the miRNA biosynthesis machinery are inter-

linked at various levels of activity. miRNAs emerge as critical

regulators of the stress response, and dysregulation of miRNA

expression or activity renders the cell more prone to stress and to

its insults.

Stress and stress granule formation

Extreme environmental conditions and chemical stressors invoke

a cellular cascade, which reduces the damage and conserves

integrity. This adaptive response for coping with stress is

executed primarily by transient blockade in translation of most

cellular mRNAs and directing cellular RNA metabolism toward

damage repair (Ron & Walter, 2007). The phosphorylation of

eukaryotic translation initiation factor 2 alpha (eIF2a) is the

canonical signal for blocking translation initiation and promoting

polysome disassembly. Accordingly, the phosphorylation of eIF2a

is controlled by stress-activated kinases, PKR, HRI, PERK, or

GCN2 (Chen et al, 1991; Dever et al, 1992; Carroll et al, 1993;

Harding et al, 1999).

mRNA from disassembling polysomes is often found in cyto-

plasmic stress granules (SGs), the structural correlate of the stress

response (Kedersha et al, 1999; Anderson & Kedersha, 2006;

Anderson & Kedersha, 2008; Buchan & Parker, 2009). SGs are

composed of stalled translation preinitiation complexes: 40S

ribosomal subunits, translation initiation factors (eIFs) and RNA-

binding proteins that are involved in other facets of RNA metabo-

lism (Fig 2). Recruitment of proteins into SGs is regulated and

in specific conditions is facilitated by so-called ‘piggyback’
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protein-protein interactions (Anderson & Kedersha, 2008). Several

of the reported SG inhabitant RNA-binding proteins are: poly(A)-

binding protein (PABP1), GTPase activating protein (SH3 domain)

binding protein (G3BP), Tristetraprolin (TTP), Pumilio, cyto-

plasmic polyadenylation element binding protein (CPEB), Ataxin-2

(ATXN2), ELAV like RNA-binding protein (HuR), 50-to-30 exonu-

clease (Xrn1), fragile X mental retardation protein (FMRP) and its

autosomal homolog FXR, DEAD box polypeptide 6 (DDX6/RCK),

polysomal ribonuclease 1 (PMR1/PXDNL), Zipcode-binding protein

1 (ZBP1), TIA-1 and its homolog TIAR, STAUFEN and Fas-

activated serine/threonine kinase (FAST). PACT and AGO2, two

RISC-loading complex proteins are also found in SGs (Leung et al,

2006; Pare et al, 2009; Johnston et al, 2010).

Several RNA-binding proteins that are identified in SGs are

encoded by genes that are mutated in different neurodegenerative

states, including TAR DNA-binding protein 43 (TDP-43; Liu-

Yesucevitz et al, 2010; McDonald et al, 2011), fused in sarcoma

(FUS; Bosco et al, 2010; Vance et al, 2013), heterogeneous

nuclear ribonucleoprotein A1 (hnRNPA1; Kim et al, 2013), valosin

containing protein (VCP; Johnson et al, 2010; Buchan et al, 2013)

and SMN (survival motor neuron 1; Hua & Zhou, 2004). Other

SG resident proteins were also linked to the molecular pathogene-

sis of neurodegeneration, including eukaryotic translation initia-

tion factor 2A (eIF2a; Kim et al, 2014), HuR, TIA1 (Lu et al,

2009), ATXN2 (Farg et al, 2013) and protein arginine methyltrans-

ferase 1 (PRMT1; Tradewell et al, 2012; Yamaguchi & Kitajo,

2012). Therefore, SG proteins are intriguingly linked to human

neurodegeneration.

The interconnection between miRNAs and the cellular
stress response

Association between the Dicer complex and the cellular stress response

Several lines of evidence reveal links between the Dicer complex and

the cellular stress response. Stress may be experimentally induced by

many reagents. Stressors, including reactive oxygen species (ROS),
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Figure 2. A diagram of representative components present in stress
granules, grouped according to the known protein function.
The translation preinitiation complex, including the small ribosomal subunit
(40S; upper panel); RNA-binding proteins with role in regulation of mRNA
translation or stability (middle panel); Splicing and other mRNA metabolism
activities (lower panel). For comprehensive reviews see Anderson & Kedersha
(2006, 2008), Buchan & Parker (2009) and references therein. Several of the
presented RNA-binding proteins, depicted in green, were suggested to be
involved in neurodegeneration. Incomplete list of references, linking particular
stress granule components to motor neuron diseases include: eIF2a (Kim et al,
2014); HuR (Lu et al, 2009); TIA1 (Lu et al, 2009); SMN (Hua & Zhou, 2004);
TDP-43 (Liu-Yesucevitz et al, 2010; McDonald et al, 2011); FUS (Bosco et al,
2010; Vance et al, 2013); hnRNPA1 (Kim et al, 2013); ATXN2 (Farg et al, 2013); VCP
(Johnson et al, 2010; Buchan et al, 2013); PRMT1 (Tradewell et al, 2012;
Yamaguchi & Kitajo, 2012).
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Figure 1. Canonical pathways for miRNA maturation and loading of the
RISC.
After transcription, an initial pri-miRNA transcript is subject to microprocessing
by the Drosha/DGCR8 complex. The resultant intermediate precursor, pre-
miRNA, is a ~70-nt hairpin that is exported from the nucleus into the cytoplasm
in a regulated manner by Exportin 5. Assembly of the Dicer complex/miRNA-
RISC-loading complex is required for further processing and for AGO loading.
Upon disassembly of the RISC-loading complex, AGO is the chief protein factor of
an active RISC, which is programmed with a specific miRNA guide strand.
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phorbol ester, UV radiation or type I interferon, cause a reduction in

the expression of Dicer (Wiesen & Tomasi, 2009; Mori et al, 2012).

These changes in Dicer levels appear to be particularly relevant for

further coping with stress, since loss of Dicer function reduces stress

tolerance, whereas Dicer over-expression confers stress resistance, at

least in invertebrates (Lim et al, 2011; Mori et al, 2012). Therefore,

Dicer activity contributes to stress resistance. In addition, Dicer co-

factors AGO, PACT and TRBP participate at multiple levels of stress

signaling, as summarized in Fig 3, substantiating the connection

between the Dicer/miRNA-RISC loading complex and the stress

response.

Stress signaling alters AGO2 function by post-translational modifi-

cations, and these are suggested to impact RISC and Dicer activity.

Epidermal growth factor receptor (EGFR) signaling phosphorylates

tyrosine 393 under hypoxic conditions, which reduces the binding of

AGO2 to Dicer and inhibits pre-miRNA processing (Shen et al, 2013).

In addition, stress-induced P38/MAPK signaling phosphorylates

AGO2 at Serine 387 (Zeng et al, 2008). Hypoxic stress regulates

AGO2 post-translationally as well, via hydroxylation of proline 700

(Qi et al, 2008), which leads to AGO2 SG localization (Wu et al,

2011). Taken together, it appears that various stress signaling

cascades control AGO2 activity and contribute to AGO2 translocation

into SGs and to attenuation of miRNA processing. However, further

mechanistic studies will be required for understanding of the

full picture.

PACT and TRBP are two co-factors of Dicer, which are engaged

in the cellular stress response via direct interaction with PKR. PKR

is a dsRNA-dependent serine/threonine protein kinase sensor of

viral dsRNA that phosphorylates eIF2a on Ser51, thereby causing

global reduction of protein synthesis (Taylor et al, 2005; Garcia

et al, 2006). PACT and TRBP both contribute to Dicer complex func-

tions but possess distinct, non-redundant, activities (Lee et al,

2013). Intriguingly, they reciprocally modulate PKR, as PACT acti-

vates PKR, whereas TRBP inhibits PKR via dsRNA sequestration

and direct protein-protein interactions (Park et al, 1994; Cosentino

et al, 1995; Patel & Sen, 1998; Lee et al, 2006; Daniels & Gatignol,

2012). The interaction of both TRBP and PACT with PKR links

miRNA processing to stress signaling, but it is not known whether

or how TRBP and PACT provide crosstalk between these systems.

Stress granules and the miRNA machinery are interlinked

SGs recruit proteins, which are involved in miRNA regulation path-

ways. This further suggests that SGs are integrated with miRNA-

induced translational silencing pathways. Indeed, fragile X mental

retardation protein (Caudy et al, 2002; Jin et al, 2004; Li et al, 2008)

and Papb1 (Moretti et al, 2012) interact with the miRNA machinery.

Furthermore, AGO2 and PACT are recruited into stress granules, a

process that depends at least partially on HSP90 activity (Leung et al,

2006; Pare et al, 2009; Johnston et al, 2010). In this context, Leung

and Sharp suggested that AGO translocation into SGs may reflect a

dynamic change in its activity (Leung et al, 2006). Stress response is

extended also to the regulation of RISC activity, by poly-ADP ribosyla-

tion and probably other mechanisms. Additional investigations will

substantiate initial reports in this field that focus on specific subsets of
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Figure 3. Interrelations between the miRNA-bioprocessing machinery,
stress and stress granules.
(A) A simplified illustration of the Dicing complex with its documented
components: Dicer, AGO2, TRBP and PACT. Stress was suggested to modify AGO2
at a post-translational level: Hypoxia induces Proline 700 hydroxylation, which
recruits AGO2 into stress granules. Likewise, EGFR-mediated phosphorylation of
Tyrosine 393 leads to impaired miRNA processing of specific pre-miRNAs.
Stress-mediated p38/MAPK signaling phosphorylates AGO2 on Serine 387, but the
impact of this phosphorylation event on miRNA maturation is not characterized.
Several types of cellular stress down-regulate Dicer levels and inhibit miRNA
processing. Kinases of eukaryotic translation initiation factor 2 alpha (eIF2a)
phosphorylate it on Serine 51, which is a critical step in halting translation and
inducing stress granules. eIF2a is phosphorylated by eIF2aK3/PERK as part of the
unfolded protein response, in response to endoplasmic reticulum stress (ER
stress), or by eIF2aK2/PKR in response to viral doubled-stranded RNA. For
simplicity, eIF2aK1 and eIF2aK4 are not mentioned. eIF2aK2/PKR activity is
modulated by PACT and TRBP in a reciprocal manner. When stress granules are
formed, both PACT and AGO2 are recruited into them. The interactions between
cellular stress and the Dicing complex/miRNA-RISC-loading complex core
components point toward a dynamic regulation of Dicing activity. (B) Stress
signaling potentially alters the function of the miRNA-bioprocessing core
components and leads to decompensated regulation. The consequences may
include a vicious cycle, whereby stress impairs miRNA processing which in turn
renders cells even more prone to stress.
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mRNAs (Leung et al, 2011; Karginov & Hannon, 2013). In addition,

we believe that it will be indeed important to test whether the translo-

cation of AGO2 and/or PACT into SGs impairs the various activities of

Dicer and the RISC complex, for example, pre-miRNA processing.

The activity of specific miRNA species is involved in the stress response

miRNAs contribute in different contexts to modulation of the stress

response, by adjusting the levels of key unfolded protein response

(UPR) components. For example, miR-214 regulates ATF4 levels

(Wang et al, 2013), and miR-30c-2* is upstream of Xbp1 (Byrd et al,

2012). In addition, maturation of a few miRNA species is downstream

of IRE1, one of the three arms of the cellular stress response. IRE1,

commonly known for its activity in splicing Xbp1 in the cytoplasm,

terminates specific pre-miRNAs by preventing them from being

further processed by Dicer into their mature forms (Upton et al,

2012). Therefore, miRNAs fine-tune the expression of components of

the UPR signaling cascade and modulate cellular adaptation to stress,

which is further reviewed in (Byrd & Brewer, 2013; Chitnis et al,

2013; Maurel & Chevet, 2013).

Additional influential reviews (Mendell & Olson, 2012 and Leung

& Sharp, 2007, 2010) describe potential network architectures for

the influence of miRNAs on stress signals: (i) miRNAs may dampen

a stress signal if wired in a negative feedback loop or (ii) miRNAs

may promote pathway activation via the inhibition of negative regu-

lators within a positive-feedback loop. (iii) Finally, miRNAs may

generate a threshold in responsiveness, because the relative levels

of miRNAs and mRNA targets determine how much target protein is

effectively produced (See Fig 4).

This last aspect of miRNA activity warrants further discussion.

Long-lived miRNAs generate threshold for activation, which contri-

butes to filtering transient or low-amplitude signals. Dynamic

increase in the expression of a miRNA would contribute to a higher

threshold and hence to tolerance toward specific stressor agents or

to stress pre-conditioning. Examples for buffering may be observed

in regulation of MICA and MICB, two stress-induced ligands that

mark cells for destruction. The miR-17~92 family chronically

represses MICA/MICB mRNAs levels, thereby filtering fluctuations

in expression under normal conditions. However, when MICA/

MICB transcription is induced at higher levels, to an extent that

overcomes the threshold of miRNAs, cell destruction ensues (Stern-

Ginossar et al, 2008). In another intriguing example, miRNAs

encoded by herpes simplex virus 1 continuously repress viral

proteins and provide the molecular basis of long-term latency in

neurons. In this case, stress enables breakdown of the miRNA-based

inhibitory mechanism and allows for reactivation of dormant

viruses (Umbach et al, 2008).

miRNA activity and stress signaling in human disease

miRNA activity and stress signaling in animal models

Under favorable laboratory conditions, the loss of miRNA function

infrequently exhibits dramatic phenotypes, unless aggravated by

stress. Horvitz and co-workers have shown that many C. elegans

miRNAs are dispensable under normal conditions and even the

elimination of whole miRNA gene families was of surprisingly

limited impact. However, genetic knockout of specific miRNAs

renders the mutant animals incapable of coping with stress (Miska

et al, 2007; Alvarez-Saavedra & Horvitz, 2010). This conclusion

holds true also in mammals. For example, loss of miR-208a activity

does not affect cardiovascular function, yet it abrogates stress-

responsive cardiac remodeling (van Rooij et al, 2007). Likewise,

nullification of miR-375, a miRNA highly expressed in the endocrine

pancreas, exhibits mild impairments in glucose homeostasis, but

these are aggravated by leptin-resistance obesity (Poy et al, 2009).

These examples suggest that miRNAs will be particularly relevant to

investigations of the response of fully developed tissues to stress

(Leung & Sharp, 2010). In the same train of thought, it is plausible

that miRNA insufficiency will be particularly evident in disease

states.

Stress is a component of many adult-onset diseases

Cellular stress is often considered a vector of pathology. Aberrant

protein folding and aggregation ignite UPR, which is evident in

many chronic diseases including cardiovascular diseases (Minamino

et al, 2010) and diabetes. Diabetes is a common metabolic disease,

whereby insulin supply does not meet the body’s demands. The

endocrine pancreas is under high demand for insulin synthesis in

diabetes. The typical progressive reduction in beta cell mass

observed in diabetes requires that the remaining beta cells increase
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Figure 4. Potential network architecture for miRNA influence on stress
signals.
The cellular response to stressful stimuli ismodulated bymiRNAs. (A) AmiRNAmay
be wired in a negative-feedback loop, inhibiting the expression of a target that is
involved in stress signaling. In this case, miRNA activity dampens the cellular stress
cascade activity. (B) However, a miRNA may contribute to pathway activation via
the inhibition of negative regulators, as part of a positive-feedback loop. (C) The
relative levels of miRNAs and their cognate target mRNAs determine how much
target protein is effectively produced. Therefore, if the miRNA is in excess, there is
effective silencing of the target, which activates the stress cascade with defined
threshold. However, either a continuous stress stimulus or a dynamic change in
the levels of the miRNA may enable adaptation or sensitization of the cellular
stress response. See also reviews by Mendell & Olson (2012) and Leung & Sharp
(2007, 2010).
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insulin synthesis, which subjects them to increased UPR stress.

Accordingly, modulation of the stress response is considered a

potential therapeutic target in diabetes. For example, a chemical

chaperone of unfolded proteins, sodium phenylbutyrate, was able to

reduce UPR/ER stress and to restore glucose homeostasis in a

mouse model of diabetes (Ozcan et al, 2006; Ozcan & Tabas, 2012).

Stress is evident also in brain diseases and particularly in

neurodegeneration. Amyotrophic lateral sclerosis (ALS) is a neuro-

degenerative disease of the motor system (Al-Chalabi & Hardiman,

2013). Motor neurons in ALS are thought to agonize under stress

(Atkin et al, 2008), and ER stress components including Perk (Wang

et al, 2011), Gadd34 (Wang et al, 2014), and phosphorylation of

eIF2a (Kim et al, 2014) were shown to modulate disease progression

in a mouse model of ALS. Moreover, Salubrinal, an ER stress-protec-

tive agent, attenuates ALS manifestations and delayed progression

in similar disease models (Saxena et al, 2009). Stress is plausibly

playing comparable roles in other neurodegenerative states, includ-

ing Alzheimer’s disease, where deposition of aggregated beta-

amyloid triggers ER stress (Lee do et al, 2010).

RNA-binding proteins and stress granules in neurodegeneration

Accumulation of cytoplasmic granules is a patho-histological hall-

mark of several neurodegenerative diseases, including ALS. Muta-

tions in the genes encoding for RNA-binding proteins TDP-43 and

FUS were recently identified as causative in human ALS (Sreedha-

ran et al, 2008; Kwiatkowski et al, 2009; Vance et al, 2009). These

RNA-binding proteins are commonly found within SGs (Bosco et al,

2010; Parker et al, 2012; Daigle et al, 2013). TDP-43 is essential for

proper SG assembly, and both TDP-43 and FUS interact with SG

core components (McDonald et al, 2011; Aulas et al, 2012; Vance

et al, 2013). Additionally, the mutated forms of TDP-43 and FUS

both have the propensity to enhance aggregation (Bosco et al, 2010;

Liu-Yesucevitz et al, 2010), and SGs containing TDP-43 or FUS tend

to be more persistent, larger, and more abundant (Vance et al,

2013; Baron et al, 2013). Altogether, ALS-causing mutations in

RNA-binding proteins contribute to the emergence of stress

granules, which may aggravate other cues for SG formation in

neurodegeneration. Importantly, TDP-43 and FUS are involved in

miRNA processing. TDP-43 is a co-factor of both Drosha and

Dicer, promoting the biogenesis of a subset of miRNAs (Buratti

et al, 2010; Kawahara & Mieda-Sato, 2012; Li et al, 2013), and FUS

stimulates biogenesis of a specific subset of miRNAs as well

(Morlando et al, 2012). Therefore, these specific RNA-binding

proteins provide a new intriguing link between miRNA bioprocessing,

SGs and neurodegeneration.

Altered SG dynamics occur also in other neurodegenerative

diseases. ATXN2 concentration impacts SG assembly by interaction

with SG components PABP1 and Dead box helicase 6 (DDX6/RCK)

and by regulating the translocation of FUS to the cytoplasm

(Nonhoff et al, 2007; Farg et al, 2013). This may be relevant to the

increased risk for ALS observed in ATXN2 intermediate-length poly-

glutamine expansions (Elden et al, 2010). SGs also play a role in

Alzheimer’s disease (Vanderweyde et al, 2012), where SG compo-

nents TIA-1 and tristetraprolin (TTP) bind phospho-tau. DDX6/RCK

and ribosomal protein S6 were observed in degenerating granulo-

vacuolar pyramidal neurons (Castellani et al, 2011). Altogether, the

modulation of stress and SG formation plays a role in several neuro-

degenerative diseases, suggesting potential molecular commonalities

for these conditions, regardless of the neuronal cell type involved or

the particular clinical manifestations.

miRNAs in control of aging and age-related diseases

Aging is often characterized by the declined ability to cope with cellu-

lar stress. Several sources of internal cellular stress were suggested to

impact longevity. Such insults include impaired mitochondrial

activity, excessive production of ROS, DNA damage, and excessive

accumulation of misfolded proteins (Finkel & Holbrook, 2000; Ishii

et al, 2002; Gerstbrein et al, 2005; Heidler et al, 2009; Brown &

Naidoo, 2012; Van Raamsdonk & Hekimi, 2012; Taylor & Dillin, 2013).

miRNAs ensure developmental robustness and homeostasis

(Hornstein & Shomron, 2006) and reinforce cellular programs also

in the adult life (Li et al, 2009; Pelaez & Carthew, 2012; Cassidy

et al, 2013). Therefore, dysregulation of miRNA function may

contribute to aging by allowing the activation of aberrant pathways

that are repressed by normal miRNA activity in younger individuals

(Ibanez-Ventoso & Driscoll, 2009).

One of the most established examples in this emerging field

focuses on miR-34, a specific miRNA family with conserved

functions in control of aging and age-related diseases. miR-34 is up-

regulated in aging nematodes (Kato et al, 2011), and mir-34 over-

expression extends Drosophila life span and reduces the propensity

to acquire age-related neurodegeneration (Liu et al, 2012). In

human neurodegenerative diseases, both up- and down-regulation

of miR-34 have been observed. miR-34 is down-regulated in human

Parkinson’s disease brains (Minones-Moyano et al, 2011). In

contrast, miR-34c is up-regulated in aging mice, in mouse models

for Alzheimer’s disease, and in patients. Furthermore, miR-34c

over-expression impairs memory, whereas targeting miR-34c

rescues memory function in a mouse model for AD-linked amyloid

pathology (Zovoilis et al, 2011). miR-34 is also up-regulated in

plasma of patients of Huntington’s disease (Gaughwin et al, 2011)

and in the organ of Corti in a mouse model of age-related hearing

loss (Zhang et al, 2013). Altogether, it appears that miR-34 is

involved in regulation of proper aging and of age-related brain

diseases, suggesting potentially complex roles, which may include

compensatory mechanisms.

miRNA activity per se is also critical in the C. elegans life cycle.

Dysregulation of many miRNAs was observed in aging C. elegans

with impact on longevity (Ibanez-Ventoso et al, 2006; Kato et al,

2011). A series of exciting studies on this topic from the laboratory

of Frank Slack are reviewed in Smith-Vikos & Slack (2012) and

Inukai & Slack (2013). One of the earliest works in this field showed

that lin-4 and its target, lin-14, regulate the insulin growth factor

(IGF)/DAF-16 pathway, which is a primary cascade for control of

aging in nematodes (Boehm & Slack, 2005). Intriguingly, the expres-

sion of other miRNAs is up-regulated in aging animals, which may

be a protective, compensatory response. For example, miR-71, miR-

238, and miR-246 prolong life span and at least miR-71 functions

via the IGF/DAF-16 (de Lencastre et al, 2010; Pincus et al, 2011;

Boulias & Horvitz, 2012).

In addition to the function of individual miRNA genes, a global

decrease in miRNA abundance or activity has been observed in

aging organisms and suggests that the whole miRNA regulatory network

may play a role in aging and late-onset diseases (Ibanez-Ventoso

et al, 2006; Drummond et al, 2011; ElSharawy et al, 2012; Inukai

et al, 2012; Liu et al, 2012; Mori et al, 2012). In nematodes,
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miRNA-binding proteins Argonaute-like 1 (alg-1), Dicer, Drosha,

and DGCR8/Pasha regulate aging and control life span (Kato et al,

2011; Lehrbach et al, 2012; Mori et al, 2012). The activity of at least

one of these miRNA-binding proteins, Dicer, decreases also in aging

mammals; Dicer was found to be globally down-regulated in old

mouse tissues in comparison with their younger adult counterparts

(Nidadavolu et al, 2013).

In another study, Dicer activity was reduced in aging adipo-

cytes of rodents and humans, noting concomitant reduction of

miRNA expression (Mori et al, 2012). Likewise, Dicer activity is

reduced in cerebro-microvascular endothelial cells of aged rats

(Ungvari et al, 2013) and in age-related macular degeneration in

humans (Kaneko et al, 2011; Tarallo et al, 2012), although the

critical role of Dicer in this model was suggested to regulate ALU

mobile elements.

Together, these observations suggest a link between age-related

Dicer dysfunction and loss of robust cellular function. Reduction in

Dicer levels lessens stress tolerance, whereas increased stress

further inhibits Dicer activity (Lim et al, 2011; Mori et al, 2012).

Because normal Dicer activity contributes to stress resistance, our

proposed model suggests a vicious cycle, in which Dicer activity is

progressively reduced as part of the aging process, whereas stress is

increasingly built. Over time, cells and organisms are rendered more

prone to disease (Fig 3).

Conclusion

miRNA regulation and various aspects of the cellular stress response

are tied together. The data reviewed above suggest the presence of

compensatory mechanisms, whereby miRNA functionality takes

part in the physiological stress response, which are required for

appropriate execution of the stress response and for proper cellular

adaptation. However, stress signaling potentially alters the function

of the miRNA-bioprocessing core components and leads to decom-

pensated regulation. The consequences may include a potentially

vicious cycle, whereby stress in the aging organism impairs miRNA

processing, which in turn renders cells even more prone to stress.

Aging is characterized by progressive decline of robustness and

stress resistance. miRNAs are used to ensure cellular robustness and

homeostasis (Hornstein & Shomron, 2006; Ibanez-Ventoso & Dris-

coll, 2009; Pelaez & Carthew, 2012; Cassidy et al, 2013). Alterations

of miRNA expression can occur as a response to stress-related

phenomena in a variety of diseases. However, currently, it is not

clear whether the dysregulation of a single miRNA or a subset of

miRNAs presents the cause or the consequence of an altered cellular

phenotype. What pathways may modulate dysregulation of miRNAs

in aging and disease? Many research efforts will be directed in

coming years towards deciphering the role of miRNAs of various

aspects of human disease and to uncovering the potential therapeu-

tic activity of manipulating miRNA expression.
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