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c-Src drives intestinal regeneration
and transformation
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Abstract

The non-receptor tyrosine kinase c-Src, hereafter referred to as
Src, is overexpressed or activated in multiple human malignancies.
There has been much speculation about the functional role of Src
in colorectal cancer (CRC), with Src amplification and potential
activating mutations in up to 20% of the human tumours,
although this has never been addressed due to multiple redundant
family members. Here, we have used the adult Drosophila and
mouse intestinal epithelium as paradigms to define a role for Src
during tissue homeostasis, damage-induced regeneration and
hyperplasia. Through genetic gain and loss of function experi-
ments, we demonstrate that Src is necessary and sufficient to
drive intestinal stem cell (ISC) proliferation during tissue self-
renewal, regeneration and tumourigenesis. Surprisingly, Src plays
a non-redundant role in the mouse intestine, which cannot be
substituted by the other family kinases Fyn and Yes. Mechanisti-
cally, we show that Src drives ISC proliferation through upregula-
tion of EGFR and activation of Ras/MAPK and Stat3 signalling.
Therefore, we demonstrate a novel essential role for Src in
intestinal stem/progenitor cell proliferation and tumourigenesis
initiation in vivo.
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Introduction

Since its discovery in the 1970s, the non-receptor tyrosine kinase Src

has been implicated in multiple types of human cancers (Irby & Yeat-

man, 2000). There is rationale for a driver role for Src within CRC,

and putative Src activating mutations were reported specifically

within CRC, with amplification found in up to 20% of the advanced

human CRC tumours (Irby et al, 1999; The Cancer Genome Atlas

Network, 2012; www.cbioportal.org/public-portal). There is also

increased Src activity in progressive stages of CRC (Talamonti et al,

1993; Termuhlen et al, 1993; Jones et al, 2002). Consistent with this,

multiple studies have shown high percentage Src activation in CRC

and suggested that this upregulation and/or hyperactivation of

Src contributes to CRC progression and metastasis (Yeatman,

2004). Studies using Src family kinases (SFKs) inhibitors within

CRC cell lines have predominantly shown an impact on invasion

rather than proliferation (Serrels et al, 2006). One of the difficul-

ties in interpreting the results with SFK inhibitors is the broad

number of targets they inhibit. Given the strong evidence for a

role for Src in CRC, it is somewhat surprising that Src inhibitors

do not inhibit tumour cell proliferation. Therefore, we here

performed genetic studies to more definitely address Src’s role in

the intestine.

CRC is one of the most common cancers and the third most

common cause of cancer deaths in the western world. Inactivating

mutations in the gene encoding for the negative regulator of Wnt

signalling, adenomatous polyposis coli (Apc), are detected in 80% of

hereditary and sporadic forms of CRC (Kinzler et al, 1991; Korinek

et al, 1997). Mouse models have shown that inactivation of Apc is

sufficient to drive intestinal hyperplasia (Sansom et al, 2004; Andreu

et al, 2005). Moreover, Apc deletion within the murine intestinal

stem cells (ISCs) results in rapid adenoma formation suggesting they

can act as cells of origin in CRC (Barker et al, 2009). Wnt signalling

is also required during intestinal regeneration, and this process

mimics many of the features of Apc loss, further suggesting that stem

cell proliferation, for example during regeneration, and cancer

initiation are linked and co-regulated by key signalling molecules

(Cordero & Sansom, 2012; Cordero et al, 2012a,b).

The adult Drosophila midgut resembles the vertebrate intestine

(Casali & Batlle, 2009), and it has proven to be an extremely useful

model to study intestinal homeostasis, regeneration and disease

(Biteau et al, 2011; Jiang & Edgar, 2012; Seton-Rogers, 2013). The fly
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intestinal epithelium is self-renewed by dedicated ISCs (Micchelli &

Perrimon, 2006; Ohlstein & Spradling, 2006). Upon division,

ISCs give rise to an undifferentiated progenitor, the enteroblast (EB),

which differentiate into either the secretory cell linage,

enteroendocrine cells (ee) or the absorptive epithelial cell linage

represented by the enterocytes (EC). Importantly, recent work from

ourselves and others demonstrated that loss of Apc from the fly

midgut results in ISC hyperproliferation (Lee et al, 2009; Cordero

et al, 2012a) and recapitulates several hallmarks from mouse models

and human CRC (Sansom et al, 2004, 2007; Cordero et al, 2012a).

Unlike the nine SFKs encoded in mammalian genomes, there are

only two Src family kinase members in Drosophila, Src42A and

Src64B as well as a single fly orthologue of the mammalian Src

inhibitor, COOH-terminal Src kinase (Csk) and its paralogue, the

C-terminal Src kinase homologous kinase (Chk). Hyperactivation of

Src in developing Drosophila tissues leads to a wide range of

outcomes including cell migration, perturbed differentiation, hyper-

proliferation and apoptosis (Vidal et al, 2006, 2007). Indeed, the

precise level of Src deregulation is very important to the phenotypic

outcome, as the relative levels of Src overexpression compared to

surrounding normal cells are vital for Drosophila development and

mammalian cells in culture (Vidal et al, 2007; Kajita et al, 2010).

However, the mechanism of action of Src in Drosophila and

mammals in vivo is still poorly understood, particularly how it

contributes to intestinal homeostasis.

Here, we use Drosophila and mouse genetic models to directly

address the role of Src within the intestinal epithelium. We show

that Src is necessary and sufficient to drive ISC proliferation during

normal tissue homeostasis, damage-induced regeneration and

tumour development in vivo. We define, for the first time, key roles

for EGFR/Ras/MAPK and Stat signalling as functional mediators of

Src-dependent ISC proliferation.

Results

Ectopic Src activation is observed in mouse models of CRC

Src is either hyperactivated or amplified in human CRCs (Yeatman,

2004). We tested whether this was also the case in the mouse intes-

tine. We stained tissue sections from mouse small intestines with

an antibody to detect the activated form of Src (pSrc), which cross-

reacts with other p-SFKs (Fig 1A–D). Intestines from control

animals showed membrane pSrc staining, which was largely

restricted to the proliferative ‘crypt’ region of the intestinal epithe-

lium (Fig 1A). No pSrc staining was observed in tissues form mice

bearing conditional depletion of Src from the intestinal epithelium

combined with constitutive loss of related kinases Fyn and Yes

(AhCre Srcfl/fl; Fyn�/�; Yes�/�; Fig 1B). These results confirm the

specificity of the antibody to pSFKs in the mouse intestine and indi-

cate that Src, Fyn and Yes are the major SFKs expressed in this

tissue. We next analysed the pSrc levels in mouse models of CRC.

While we observed no change in Src transcription (data not shown),

pSrc immunoreactivity was significantly expanded throughout the

hyperproliferative ‘crypt progenitor cell-like’ domain of the intesti-

nal epithelium from mice subject to acute loss of Apc (Fig 1C,

dotted line; Sansom et al, 2004). Similarly, ectopic pSrc staining

was observed within the core of intestinal polyps from ApcMin/+

mice (100%; n = 10; Fig 1D). To visualize Src activation at the

early stages of human CRC, we stained non-invasive human adeno-

mas for pSrc and found it consistently upregulated (100%; n = 7;

Fig 1E and F). Therefore, ectopic activation of SFK is detected from

the earliest stages of transformation following Apc loss, prior to the

formation of invasive tumours and dissemination. This suggested

that SFKs might have important roles in the initial stages of tumouri-

genesis in addition to their recognized roles in invasion and

metastasis (Yeatman, 2004).

Src overexpression is sufficient to drive intestinal
hyperproliferation

We next asked whether elevated SFK activity was a driver of intes-

tinal hyperproliferation, or a passive event. To address this, we

used the adult intestine of Drosophila melanogaster, which was

previously validated as a model system to study aspects of CRC

(Cordero et al, 2009, 2012a; Lee et al, 2009). Unlike the mouse

intestine, which contains proliferating stem- and transit-amplifying

(TA) cells, only the stem cells are proliferative in the adult Drosoph-

ila midgut (Micchelli & Perrimon, 2006; Ohlstein & Spradling,

2006). Therefore, assessment of mitotic proliferation in the fly

midgut represents a direct measure of ISC proliferation. We used

the temperature-sensitive driver escargot-gal4, UAS-GFP; tubulin-

gal80ts (esgts>gfp; Micchelli & Perrimon, 2006) to induce over-

expression of Src within ISCs/EBs (stem/progenitor cells) in the

adult Drosophila midgut. The ectopic activation of Src kinase was

achieved by overexpression of independent UAS-Src transgenes—

wild-type Src64B (esgts>Src64WT) and constitutively active form of

Src42A (esgts>Src42CA)—or by overexpression of an RNA interfer-

ence transgene to knockdown Csk (Vidal et al, 2006; esgts>Csk-IR).

All three approaches resulted in substantial ISC hyperproliferation

and hyperplasia of the adult Drosophila intestine (Fig 1G and H

and Supplementary Fig S1). Histological analysis of sections of

paraffin-embedded midguts from 7-day-old esgts>Src64WT animals

revealed ‘polyp-like’ structures containing multiple big and

small BrdU+ve cell nuclei, which were not observed in age-matched

control intestines (Fig 1I and I’ and Supplementary Fig S1A and B).

To further characterize the phenotype of esgts>Src64WT midguts,

we stained tissues with anti-pH3 (Fig 1J–K’) and anti-Delta

(Fig 1M–O) antibodies to specifically label cells undergoing

active mitosis and ISCs, respectively. Src–overexpressing midguts

showed significant upregulation in the number of pH3+ve and

Delta+ve cells when compared with control counterparts (Fig 1J–P

and Supplementary Fig S1C and C’). Consistent with previous

reports (Micchelli & Perrimon, 2006; Ohlstein & Spradling, 2006),

pH3+ve staining was restricted to small nuclei ISCs (Fig 1J–K’)

indicating that big BrdU+ve cell nuclei (Fig 1I’) are likely to

represent newly made, endoreplicating enterocytes (ECs; Micchelli

& Perrimon, 2006). Importantly, Src-dependent ISC hyperprolif-

eration in the midgut was largely suppressed by concomitant

overexpression of the human homologue of Csk, Chk (Vidal et al,

2006; Fig 1L and Supplementary Fig S1G–J), highlighting the

conserved nature of SFK regulation by upstream inactivating

kinases. Altogether, these data demonstrate that enhanced expres-

sion of Src in stem/progenitor cells is sufficient to drive hyperprolif-

eration and increase numbers of ISCs in the adult Drosophila

midgut.
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Figure 1. Src upregulation drives ISC proliferation.

A–D Immunohistochemistry to detect the activated form of Src (pSrc) in tissue sections from mouse and human intestines. pSrc is detected in the proliferative ‘crypt’
region (indicated with dashed line) at the base of the mouse small intestinal epithelium in control animals (A). Conditional knockout of Src (Srcfl/fl) combined with
full knockout of related kinases Fyn and Yes, resulted in no staining within the intestinal epithelium (B). Intestines with conditional Apc knockout (Apcfl/fl) depict
the expected ‘crypt-like’ progenitor phenotype (dashed line) and expansion of the pSrc domain (C). Example of a small intestinal polyp from an ApcMin/+ mouse,
showing high p-Src staining within the core of the polyp (arrow), is shown in (D). Note normal tissue around polyp showing pSrc localized at the crypt base
(dashed line). Scale bars, 100 lm.

E, F pSrc is upregulated within benign human intestinal adenoma lesions (arrows) when compared with normal surrounding tissue (asterisks). Scale bars, 100 lm.
G, H Adult Drosophila midguts overexpressing gfp (G; control) or Src (H) for 7 days under the stem/progenitor cell (ISCs/EBs) driver escargot-gal4 (esgts > gfp and

esgts > Src64wt, respectively). Unless otherwise noted green marks esg > gfp cells and Dapi (blue) stains all cell nuclei. Scale bars, 100 lm.
I, I’ Paraffin-embedded sections from 7-day-old Src-overexpressing midguts (esgts > Src64wt) analysed by Haematoxylin and Eosin H+E (I) and BrdU (I’) staining.

Arrows point to ‘polyp-like’ structures containing BrdU+ve cells.
J–K’ 7-day-old esgts > Src64wt posterior midguts stained with anti-pH3 (red) to visualize proliferating ISCs (arrows). Scale bars, 20 lm.
L ISC proliferation quantified as the number of cells which stained positive for phosphorylated histone 3 (pH3) in posterior midguts from control animals

(esgts > gfp) or animals overexpressing Src (esgts > Scr64wt or esgts > Src42CA) or RNA interference for the Src inhibitor Csk (esgts > Csk-IR). Note that co-
expression of human ChK (esgts > Scr64wt; Chk) suppresses Src-driven hyperproliferation in the Drosophila midgut.

M–O 7-day-old adult posterior midguts from animals of the indicated genotypes stained with anti-Delta (red) to label ISCs. Scale bars, 20 lm.
P Quantification of the number of Delta+ve ISCs per field from posterior midguts as in (M-O).

Data information: Data in (L) and (P) represent average values � SEM (***P < 0.0001 one-way ANOVA with Bonferroni’s multiple comparison test)
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Src is required to drive stem cell proliferation during intestinal
homeostasis and regeneration

We next tested whether endogenous Src was required for prolifera-

tion within the Drosophila intestine. To do this, we examined the

role of Src in homeostatic self-renewal and damage-induced regener-

ation of the adult midgut.

Like its vertebrate counterpart, the adult Drosophila posterior

midgut is replenished by dedicated ISCs and displays a remarkable

regenerative response to damaging agents (Cordero & Sansom, 2012).

Damage-induced intestinal regeneration is characterized by an acute

expansion of the stem/progenitor cell population and increase in ISC

proliferation, which is required to regenerate the damaged intestinal

epithleium (Amcheslavsky et al, 2009; Buchon et al, 2009; Jiang et al,

2009; Fig 2A and B). We first assessed the regulation of Src during

intestinal regeneration after feeding flies with the pathogenic bacte-

ria Pseudomonas entomophila (Pe; Buchon et al, 2009; Fig 2A–C).

While immunostaining for pSrc showed barely detectable signal in the

midgut epithelium from unchallenged animals, pSrc levels became

more evident within the intestinal epithelium of animals subject to

damage by Pe (Fig 2A–B’). RT–qPCR fromwholemidguts confirmed a

threefold transcriptional upregulation of Src42 in regenerating tissues

(Fig 2C). We next tested the functional role of Src42 during intestinal

regeneration. We used RNAi transgenes to knockdown Src42 within

stem/progenitors cells of the adult midgut (esgts>Src42-IR). Knock-

down of Src42 by using two independent RNAi lines resulted in almost

complete suppression of ISC proliferation in regenerating midguts

(Fig 2D–F and Supplementary Fig S2). Midguts from animals hetero-

zygous for a loss-of-function allele of Src42 (Src42K10108) also showed

significantly impaired regeneration (Fig 2F and Supplementary Fig

S2C and C’) showing that Src42 is rate-limiting during regeneration.

RNAi knockdown of Src64 did not significantly affect intestinal regen-

eration (data not shown).

We also noted that esgts>Src42-IR midguts looked ‘thinner’ than

their control counterparts (Fig 2E; compare with Fig 2D and

Supplementary Fig S2B; compare with Supplementary Fig S2A),

even when unchallenged. We therefore tested whether Src42 was

required for ISC proliferation during homeostatic self-renewal of the

adult midgut. We first overexpressed a Src42-IR transgene within

the intestinal epithelium using the inducible ‘escargot flip out’

system (esgts F/O>gfp; Jiang et al, 2009), in which every progenitor

cell and its new progeny will express Gal4 and UAS-gfp in addition

to the UAS-Src42-IR RNAi transgene. We then visualized the newly

produced esg cell lineage 7, 14 and 30 days after transgene induc-

tion (Fig 2G–L). Knockdown of Src42 from the epithelium of

undamaged midguts impaired homeostatic self-renewal in the adult

posterior midgut (Fig 2G–L) as evidenced by the reduced esg linage

labelling in esgts F/O>Src42-IR midguts after 14 and 30 days of trac-

ing (Fig 2K and L; compare with Fig 2H and I). We next used the

MARCM system (Lee & Luo, 1999) to create adult midgut clones

from a control transgene (MARCM LacZ; Fig 2M–O) or with Src42

knockdown (MARCM Src42-IR; Fig 2P–R) and follow their growth at

7, 14 and 30 days after clonal induction (ACI). No significant differ-

ence was observed in the size of control and Src42-IR during the

intimal phase of clonal growth (Fig 2M, P and S). However, unlike

control clones, 14- and 30-day-old Src42-IR clones failed to progres-

sively grow over time and even decreased their size (Fig 2Q–S;

compare with 2N, O and S). These results indicate that endogenous

Src42 activity is essential to sustain ISC proliferation during homeo-

static self-renewal as well as to drive ISCs during regeneration of

the adult Drosophila midgut.

Src is activated downstream of Wg/Wnt signalling in the adult
Drosophila midgut

c-Src is hyperactivated in response to Apc loss in mouse and human

intestinal adenomas (Fig 1C–F). Work from us and others has

shown that Wnt/Wg signalling drives ISC hyperproliferation and is

required for regeneration of the adult Drosophila midgut (Lin et al,

2008; Lee et al, 2009; Cordero et al, 2012a,b). We therefore tested

whether Src activation was dependent on Wnt signalling in the

midgut. Src42 mRNA showed a 1.7-fold upregulation in whole

midguts from animals homozygous for the Apc1 null allele Apc1Q8

(Ahmed et al, 1998; Fig 3A). Immunofluorescence staining revealed

pSrc upregulation within stem/progenitor cells from Apc1Q8 midguts

(Fig 3B–C’) and in midguts overexpressing Wg (esgts>wg) or an

activated from of b–catenin/Armadillo (esgts>armS10; Fig 1D–F’).

Importantly, upregulation of pSrc upon Pe infection was impaired in

midguts unable to regenerate due to wg knockdown in stem/progen-

itor cells (esgts>wg-IR; Fig 3G–I’). Altogether these results suggest

that Wnt signalling is necessary and sufficient for Src activation in

the Drosophila midgut.

Src is required for tumourigenesis after Apc loss in Drosophila

We next tested the functional role of Src42 in ISC hyperproliferation

driven by loss of Apc1 in the adult Drosophila midgut (Cordero et al,

2012a). We created adult midgut clones of cells deficient for Apc1

only (MARCM Apc1Q8; Fig 4B) or combined with Src42 knockdown

(MARCM Src42-IR; Apc1Q8; Fig 4D). As previously reported, posterior

midgut Apc1�/� mutant clones contained significantly more cells

and displayed increased ISC proliferation when compared with

control (MARCM Lac-Z) clones (Cordero et al, 2012a; Fig 4A, B, E

and F). Consistent with our previous results (Fig 2M–S), Src42-IR

clones (MARCM Src42-IR) were smaller than control clones (Fig 4A,

C, E and F). Importantly, knocking down Src42 inhibited hyperprolif-

eration in Apc1�/� clones (Fig 4B, D, E and F). These data demon-

strate an essential role for Src42 in Apc1-dependent ISC

hyperproliferation in the adult Drosophilamidgut.

Src drives ISC hyperproliferation through regulation of the EGFR/
MAPK and Stat signalling pathways

The EGFR/Ras/MAPK and Jak/Stat signalling pathways are required

for Drosophila intestinal homeostasis and regeneration (Buchon

et al, 2009; Jiang et al, 2009, 2011; Beebe et al, 2010; Biteau &

Jasper, 2011) and are essential mediators of Apc1-driven intestinal

hyperproliferation (Cordero et al, 2012a). We therefore tested

whether these pathways were potential mediators of the role of Src

in ISC proliferation in vivo. Src overexpression (esgts>Src64WT and

esgts>Src42CA) resulted in ectopic activation of MAPK/Erk1/2

(pErk1/2; Fig 5A, A’, C, C’, E-G and not shown). Such phenotype

resembled the one resulting from overexpression of activated Ras in

stem/progenitor cells (Jiang et al, 2011) and correlated with

upregulation of total levels of EGFR within the same cells (Fig 5B,

B’, D and D’ and not shown). Transcriptional upregulation of egfr
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by Src overexpression was confirmed through qRT–PCR from whole

midguts (Fig 5H). Importantly, knocking down EGFR or Ras

completely suppressed ISC hyperproliferation in esgts>Src midguts

(Fig 5J–L and Supplementary Fig S3A-I). Altogether, our results

suggest that EGFR expression and downstream pErk activation are

key mediators of intestinal hyperproliferation driven by Src.

qRT–PCR of Src-overexpressing midguts also indicated a signifi-

cant upregulation of the Jak/Stat target Socs36E (Fig 5I). To test the

functional relevance of Jak/Stat signalling activation in esgts>Src

midguts, we combined Src overexpression with RNAi knockdown

for stat92E/marrelle (esgts>stat-IR; Src42CA) or the Upd/IL-6 recep-

tor domeless (esgts>dome-IR; Src42CA; Fig 5M). Unlike in intestinal

regeneration and Apc1-dependent hyperproliferation (Buchon et al,

2009; Jiang et al, 2009; Cordero et al, 2012a), Stat but not dome

knockdown suppressed Src-dependent ISC hyperproliferation in the

adult Drosophila midgut (Fig 5M and Supplementary Fig S3J–M).
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These results support a direct activation of Stat by Src (Yu et al,

1995; Cao et al, 1996), which does not involve cytokine receptor.

Previous work on the Drosophila eye imaginal disc links Src-depen-

dent overgrowth to parallel activation of Stat and JNK signalling

(Read et al, 2004). qRT–PCR to assess levels of the JNK target gene

puckered (puc) shows that Src overexpression results in JNK upreg-

ulation in the midgut (Supplementary Fig S3R). However, blocking

JNK signalling within stem/progenitor cells does not mediate

Src-dependent hyperproliferation in the fly midgut (Supplementary

Fig S3S and T). Similar outcomes have been reported in the analysis

of JNK activation and requirement during intestinal regeneration in

Drosophila (Jiang et al, 2009). Together these results place EGFR/

MAPK and Stat activation as key in vivo mediators of Src-driven

stem cell hyperproliferation in the Drosophila intestine.

Mammalian SFKs are redundant for intestinal homeostasis

An important question posed by our results on the role of Src in the

Drosophila intestine was whether these would translate to the

mammalian system. We first assessed whether there was an exclu-

sive role of Src in the adult mammalian intestine.

Using the ‘Cre-Lox’ technology (Sauer, 1998), we conditionally

knocked out Src from the epithelium of the mouse small intestine.

To achieve this, we bred mice carrying a LoxP-flanked Src allele

(Srcfl/fl; Marcotte et al, 2012) with mice carrying a Cre recombinase

driven under the control of the Cyp1A1 aryl hydrocarbon-responsive

promoter (AhCre). Induction of AhCre recombinase results in high

penetrance Cre expression within the intestinal epithelium and liver

(Ireland et al, 2004; Reed et al, 2008; Supplementary Fig S5K). Dele-

tion of Src from the mouse intestinal epithelium (AhCre Srcfl/fl; Src

KO) resulted in no apparent defects in homeostatic self-renewal of

unchallenged intestines (Fig 6A and B). We next conditionally

knocked out all SFKs expressed in the intestine: Src, Fyn and Yes

(Fig 1B; AhCre Srcfl/fl Fyn�/� Yes�/�; Src Fyn Yes KO; Fig 6C). Those

mice displayed multiple signs of poor health 4 days post-Cre

induction, unless when subject to a reduced induction regime,

which resulted in partial recombination within the intestinal

epithelium (Supplementary Fig S5K). We next assessed levels of cell

proliferation, migration, apoptosis and linage differentiation in

control, Src KO and Src Fyn Yes KO intestines 4 days after Cre

induction. Interestingly, intestinal cell proliferation and migration

(Supplementary Fig S4A–I) as well as the differentiation of Goblet

and enteroendocrine cell lineages (Supplementary Fig S4J–O) were

unaffected in Src Fyn Yes KO mice. On the other hand, Src Fyn Yes

KO intestines displayed significant levels of villae apoptosis

(Fig 6D–F’’ and J) and a complete ablation of Paneth cells (Fig 6G–I

and K). No liver phenotypes were detected (Supplementary Fig

S5A–K). Consistent with the absence of Paneth cells, which are

essential components of the mouse intestinal stem cell niche (Sato

et al, 2011), isolated crypts from Src Fyn Yes KO intestines were

unable to form organoids in culture (Sato et al, 2009; Fig 6L–P).

These data suggest that, in parallel to our observations in the fly

midgut, the activity of SFKs (Src, Fyn and Yes) is required for

homeostatic self-renewal of the mammalian intestinal epithelium

with the three kinases acting redundantly in such context.

Src is required for mouse intestinal regeneration

We next tested whether Src was required for either intestinal regen-

eration in the mammalian intestine. Our previous work had identi-

fied that Wnt/MYC signalling is essential for intestinal regeneration

and tumourigenesis downstream of Apc loss, and that this is

conserved from mammals to Drosophila (Sansom et al, 2004;

Ashton et al, 2010; Cordero et al, 2012a,b).

pSrc was upregulated within the crypt membranes of intestines

regenerating following DNA damage by gamma irradiation (Fig 7A

and B). Conditional deletion of Src from the intestinal epithelium

(Fig 7C and D) was sufficient to impair intestinal regeneration as

determined by the decreased number of surviving crypts scored

72 h after damage when compared with equally treated control

intestines (Fig 7E and F and Supplementary Fig S5M). Surviving Src

KO crypts were significantly smaller than their control counterparts

(Fig 7C and D and Supplementary Fig S5L and M; arrows) but

displayed normal Paneth cell numbers (Supplementary Fig S6A–D).

Given that available anti-pSrc antibodies cross-react with multiple

SFK members, the reduced p-Src staining observed in irradiated Src

KO intestines (Fig 7D’) suggests that Src is responsible for the

majority of SFK activity upregulated during intestinal regeneration.

Altogether, these results uncover an essential role of epithelial Src

driving mouse intestinal regeneration in response to damage.

We next tested whether mechanisms mediating the role of Src in

the Drosophila midgut were conserved in the mammalian intestine

Figure 2. Src is required for ISC proliferation during homeostasis and regeneration of the adult Drosophila midgut.

A–B’ Immunofluorescence staining to detect pSrc (red) in midguts from esg > gfp (green) animals after feeding with Sucrose (Suc) (A, A’) or subject to intestinal damage
by feeding bacteria (Pe) (B, B’). Arrows point to examples of cell membranes stained with anti-pSrc. Scale bars, 20 µm.

C qRT-PCR from whole midguts as in (A–B’) to detect transcript levels of Drosophila Src42 and Src64. Only Src42 was significantly upregulated in damaged midguts.
Data represents average values � SEM.

D–E’ Posterior midguts from 14-day-old Suc- or Pe-fed control animals (D, D’; esgts > gfp) or animals subject to RNAi knockdown of Src42 in ISCs/EBs (E, E’; esgts >
Src42-IR).

F Quantification of ISC proliferation in regenerating posterior midguts from animals of the indicated genotypes and treated as in (D–E’). Data represent average
values � SEM (***P < 0.0001 one-way ANOVA with Bonferroni’s multiple comparison test).

G–L Homeostatic self-renewal in control and Src42-IR posterior midguts using the escargot ‘flip out’ system (esgts F/O). The lineage from gfp (control) and Src42-IR
esg+ve cells (green) was analysed 7, 14 and 30 days after transgene induction. Scale bars, 50 µm.

M–R Adult posterior midguts carrying 7-, 14- and 30-day-old MARCM clones (green) from a control transgene (M–O; LacZ) or from Src RNAi (P–R; Src42-IR). Scale bars,
20 µm.

S Quantification of the number of cells per clone in posterior midguts as in (M–R). Note that, unlike their control counterparts, MARCM Src42-IR clones failed to
grow and even decreased in size over time. Clonal size distribution is presented as a dot plot with the mean clonal size � SEM (***P < 0.0001; **P < 0.001 one-
way ANOVA with Bonferroni’s multiple comparison test).
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by examining activation of Erk1/2 and Stat3, the closest orthologue

of Drosophila stat92E/marrelle, in those regenerating Src KO intes-

tines, which showed robust gene knockdown (Fig 7D’). We

observed that while pErk1/2 and pStat3 strongly stained throughout

the regenerating crypts in control intestines (Fig 7H, K, M and N

and Supplementary Fig S6F), small regenerating Src KO crypts

mimicked those from unirradiated control intestines displaying only

a few cells positive for either protein (Fig 7G, J, I, L, M and N and

Supplementary Fig S6E and G). Taken together, these results suggest

that activation of EGFR/MAPK/Erk and Stat3 signalling is likely

to be conserved outcomes downstream of Src activation in the

intestine.

A B B’

C

D E F

D’ E’ F’

G H I

G’ H’ I’

C’

Figure 3. Src is activated downstream of Wnt signalling in the adult Drosophila midgut.

A qRT-PCR of whole midguts from 7-day-old control and Apc1�/� (Apc1Q8) animals to assess transcript levels of Src42 and Src64. Only Src42 was significantly
upregulated in the midgut in response to Apc1 loss. Data represent average values � SEM.

B–C’ 7-day-old control (B, B’) and Apc1Q8 midguts (C, C’) co-stained with anti-pSrc (red) and anti-Delta (green). Apc1Q8 midguts display significant pSrc upregulation
within Delta+ve ISCs (arrows). Scale bars, 20 µm.

D–F’ pSrc immunofluorescence (red) in 14-day-old midguts from control animals or animals subjected to Wg signalling upregulation by overexpressing Wg or activated
b-catenin/Armadillo within ISCs/EBs (esgts > gfp; esgts > wg and esgts > armS10, respectively). Note pSrc upregulation in ISCs/EBs in response to Wg signalling
activation (arrows). Scale bars, 20 µm.

G–I’ pSrc staining (red) in 14-day-old midguts from control animals or animals subject to wg knockdown by overexpressing a wg RNAi within ISCs/EBs (esgts>wg-IR)
and fed with Suc (G, G’) or Pe (H-I’). Note that pSrc upregulation in ISCs/EBs upon Pe feeding (H, H’; arrows) is suppressed by wg knockdown (I, I’). Scale bars,
20 µm.
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Src is required for mouse intestinal tumourigenesis following
Apc loss

Finally, we addressed whether Src was important for intestinal

tumourigenesis following Apc loss in the mouse. We therefore bred

Srcfl/fl animals into two models of intestinal tumourigenesis driven

by Apc loss: the ApcMin/+ and Lgr5CreER Apcfl/fl mice. Both of these

models mimic intestinal tumourigenesis; however, the timing of Src

deletion is different. The ApcMin/+ mouse, which forms adenomas

sporadically on loss of the remaining copy of Apc, was bred into the

AhCre Srcfl/fl mice, and Cre was induced post-weaning. The

Lgr5CreER Apcfl/fl mice, which form tumours rapidly following Cre

induction (Barker et al, 2009), were interbred with Srcfl/fl mice and

Cre induction therefore leads to simultaneous loss of Apc and Src.

Conditional deletion of Src significantly increased the survival of

Lgr5CreER; Apcfl/fl and ApcMin/+ (Min) mice (Fig 8A and B, respec-

tively). We next analysed the intestines of mice from the Min

cohorts, which present discrete and therefore scorable tumours to

further characterize the effect of Src deletion on pre-established

intestinal adenomas. Min; AhCre Srcfl/fl mice exhibited reduced

tumour burden when compared with control ones (Fig 8C). Further-

more, even though the overall distribution of tumour types (n = 40

Min; n = 25 Min; AhCre Srcfl/fl) was similar (Fig 8D and Supplemen-

tary Fig S7), Min; AhCre Srcfl/fl small, medium and big adenomas

displayed significantly reduced proliferation as determined by BrdU

staining (Fig 8E–H and Supplementary Fig S7). Unlike during regen-

eration (Fig 7G–L), pStat3 and pErk1/2 levels do not appear to

provide a robust staining pattern within ApcMin/+ tumours (not

shown), which precluded further analysis of the effect of Src on

such pathways in tumourigenesis. Importantly, our results indicate

that preventing Src activity is sufficient to slow down intestinal

tumourigenesis in mammals.

Discussion

Using two genetic model systems, our work provides definitive

evidence for a conserved functional role for Src in intestinal

regeneration and oncogenic transformation (Fig 9). Moreover, using

the adult Drosophila intestine, we demonstrate that Src is sufficient

to drive intestinal hyperproliferation. Our work elucidates a key

new role for Src during initial stages of tumourigenesis.

A conserved role of SFKs in intestinal stem/progenitor cells

Our results show that Src activation within the mouse intestinal

epithelium is restricted to the stem/progenitor cell population,

which includes proliferating stem and transit-amplifying cells

(Fig 1A). Consistently, functional data on the use of AhCre recom-

binase demonstrate Src’s requirement in intestinal regeneration and

ApcMin-dependent tumourigenesis. A comparable scenario can be

drawn from our studies on the adult Drosophila midgut where Src

A

E F

B C D

Figure 4. Src mediates Apc1-dependent intestinal hyperproliferation in the Drosophila midgut.

A–D Adult posterior midguts carrying 14-day-old MARCM clones (green) of the indicated genotypes. Scale bars, 20 µm.
E, F Quantification of the number of cells per clone (E) and percentage of pH3+ve clones (F) in posterior midguts as in (A–D). Note that Src42 knockdown completely

suppressed ISC proliferation in Apc1Q8 MARCM clones (B, D, E, F). Clonal size distribution is presented as a dot plot with the mean clonal size � SEM
(***P < 0.0001 one-way ANOVA with Bonferroni’s multiple comparison test).
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activation is detected and required within the esg+ve stem/progenitor

cell population represented by ISCs and EBs, respectively (Fig 2, 3

and 4). Unlike in the mouse intestine, stem cells represent the only

proliferative cell within the fly midgut and therefore Src’s role can be

unambiguously assigned to a function of the protein within stem

cells. Similar conclusions are not easy to draw in the mammalian

A A’ B B’ G

H

K L M

I J

C C’ D D’

E E’ F F’
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paradigm given the presence of multiple stem cell populations with

apparent redundant roles (Tian et al, 2011).

Our previous work has shown that Apc deficiency drives a crypt

progenitor phenotype, which is mimicked in intestinal regeneration

(Sansom et al, 2004; Ashton et al, 2010). Following Apc loss, there

is increased stem/progenitor proliferation, perturbed cell migration

and a 2–4 increase in Lgr5 positive cells (Sansom et al, 2004; Barker

et al, 2009). These data would suggest that, in order to target Apc-

deficient cells, the crypt progenitor phenotype would need to be

inhibited and sole inhibition of the Lgr5/stem cell phenotype would

not be sufficient. Consistently, recent work has suggested that the

Apc crypt progenitor phenotype is not inhibited upon ablation of

Lgr5 cells (Metcalfe et al, 2014). Thus, our finding that Src is over-

expressed within stem and progenitor cells following Apc loss and

during regeneration together with Src’s requirement in both contexts

explains the selectivity of Src for both regenerative and cancer cell

proliferation.

Non-redundant roles of SFKs

Work in cell lines has previously shown distinct properties of SFKs

(Sandilands et al, 2007). However, the evidence regarding non-

redundant roles of SFK in vivo is rather limited. Examples include

classical work on the role of Src in bone formation (Stein et al,

1994; Lowell & Soriano, 1996) and recent work indicating a non-

redundant role of the kinase in mouse mammary carcinogenesis

(Marcotte et al, 2012). Our results show that loss of Src is sufficient

to slow down intestinal regeneration and tumourigenesis in vivo

without affecting overall tissue homeostasis. Surprisingly, constitu-

tive loss of Fyn and Yes (Fyn�/�; Yes�/�) was also sufficient to

prevent intestinal regeneration (Supplementary Fig S5N and O). The

overall poor survival of Fyn�/�; Yes�/� mice prevented us from

assessing the contribution of those kinases in our intestinal tumouri-

genesis models. Therefore, there is a therapeutic window, which

would allow targeting of Src within transformed intestinal epithelia

without affecting the normal tissue.

A redundant role of SFKs in the mammalian intestine

The deletion of Src, Fyn and Yes from the adult intestine using the

AhCRE transgene led to ill health so that all mice required euthana-

sia. Src Fyn Yes triple KO intestines displayed two main phenotypes,

which were not observed upon loss of Src alone: significant levels

of villae apoptosis and ablation of Paneth cells (Fig 6). While the

latter is consistent with the inability to obtain intestinal organoids

from isolated Src Fyn Yes KO crypts, it does not explain animal

viability. The precise cause of the ill health is unknown; however,

perturbed intestinal epithelial barrier dysfunction, which is in part

characterized by exacerbated villae apoptosis, could cause similar

phenotypes. This is currently under further investigation.

Src as a therapeutic target in early stage
colorectal tumourigenesis

The complete rescue of Src-dependent hyperproliferation in the fly

midgut by human ChK overexpression (Fig 1 and Supplementary Fig

S1) suggests a main involvement of Src kinase activity in this process

and highlights the level of functional conservation in these kinases.

Treatment with the kinase inhibitor dasatinib, a widely used Src

inhibitor, has been effective to target Src in multiple cell lines and

mouse models of tumour invasion and metastasis (Serrels et al,

2006; Morton et al, 2010). However, dasatinib and other Src inhibi-

tors have proven ineffective when used in mouse models of CRC initi-

ation (data not shown) as well as in the clinic (Serrels et al, 2006).

Key issues with such inhibitors are their broad spectrum of targets

and unclear in vivo efficacy (Brandvold et al, 2012). The current

scenario emphasizes on the importance of developing more selective

Src inhibitors and highlights the need for genetic experiments to vali-

date results from pharmacological targeting of molecules.

Distinct molecular events mediate Src-dependent proliferation in
the intestine

Mechanistically, we have defined the action of Src in the Drosophila

intestine as working via EGFR/Erk1/2 and Stat pathway activation

(Fig 5). EGFR/Ras activation is a limiting step in stem/progenitor

cell proliferation in the fly midgut (Jiang et al, 2011). Consequently,

our genetic experiments are not sufficient to unambiguously estab-

lish the epistatic relationship between Src and EGFR/MAPK signal-

ling. However, our expression data suggest that EGFR levels and

pErk activation are increased in response to Src overexpression in

the fly midgut. Furthermore, we see impaired activation of Erk1/2

and Stat3 in Src-deficient mammalian intestines during regeneration

(Fig 7). Therefore, our evidence suggests that EGFR/MAPK and Stat

signalling activation are key events downstream of Src activation in

the intestine. However, there may be other pathways downstream

of Src aside EGFR/MAPK important for the phenotypes we observed

that warrant future testing.

Previous work on Drosophila suggests that Src drives hyperprolif-

eration of the developing eye epithelium through parallel activation

of Stat and JNK signalling (Read et al, 2004). However, such role of

Src does not appear to involve EGFR activation. Reciprocally, our

Figure 5. Src drives ISC hyperproliferation through upregulation of EGFR/MAPK and Stat signalling.

A-D’ Immunofluorescence from control (A–B’; esgts > gfp) and Src-overexpressing midguts (C–D’; esgts > Src64WT) stained with anti-pErk1/2 (A, A’, C, C’; red or grey) or
anti-EGFR (B, B’, D, D’; red or grey) after 7 days of transgene expression. Src overexpression in ISCs/EBs results in significant upregulation of EGFR and ectopic
pErk1/2. Scale bars: 20 µm.

E-F’ Magnified views from midguts as in (A, A’, C, C’). Note that, while in control midguts pErk1/2 staining is restricted to small nuclei esg > gfp+ve cells (E, E’;
arrowhead), esgts > Src64WT midguts show ectopic pErk1/2 staining in big nuclei esg > gfp+ve cells (F, F’; arrows).

G Quantification of the esg > gfp/pErk1/2 cell area in midguts as in (E–F’). Data represent mean values � SEM (***P < 0.0001 unpaired t-test).
H, I qRT-PCR from whole midguts of genotypes as in (A–D’) to measure degfr transcript levels (H) and Stat signalling activation thorough Socs36E levels (I). Src

overexpression results in transcriptional upregulation of egfr and Socs36E in the midgut. Data represent average values � SEM.
J-M Quantification of ISC proliferation in posterior midguts from animals of the indicated genotypes after 7 days of transgene expression. Knockdown of EGFR/Ras in

ISC/EBs suppresses hyperproliferation in Src-overexpressing midguts (J–L). Knockdown of Stat but not the domeless receptor suppresses hyperproliferation in Src-
overexpressing midguts (M). Data represent average values � SEM (***P < 0.0001 one-way ANOVA with Bonferroni’s multiple comparison test).
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Figure 6. SFKs are redundantly required for mouse intestinal homeostasis.

A–C H&E staining of small intestines from a control mouse (A) or mice subject to 4 days of intestinal epithelial knockout of Src only (AhCre; Srcfl/fll) (B) or in combination
with constitutive knockout of Fyn and Yes (AhCre; Srcfl/fll; Fyn�/�; Yes�/�) (C). Scale bars, 100 lm.

D–I Small intestines from mice as in (A–C) stained with anti-cleaved caspase-3 (D–F’’) and anti-lysozyme (G–I). Close up views (F’, F’’) from boxed areas in (F). Combined
loss of Src, Fyn and Yes leads to villae apoptosis (F–F’’; arrows) and loss of Paneth cells (I). Scale bars, 100 lm.

J Quantification of villae apoptosis from intestines as in (D–F). Data represent average values � SEM (**P < 0.001 one-way ANOVA with Bonferroni’s multiple
comparison test).

K Quantification of the percentage Paneth cells per crypt from intestines as in (G–I). Data represent mean values � SEM (***P < 0.0001 one-way ANOVA with
Bonferroni’s multiple comparison test).

L–O In vitro organoid formation from intestinal crypts of mice of the indicated genotypes. Note that combined loss of Src, Fyn and Yes from the intestinal epithelium
prevents organoid formation.

P Quantification of the percentage of organoids formed per 100 crypts seeded. Organoids were scored 1 week after seeding. Data represent average values from two
independent experiments � SEM (***P < 0.0001 one-way ANOVA with Bonferroni’s multiple comparison test). N.S.: statistically not significant).
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results indicate that JNK signalling is, at least not directly, involved

in Src-dependent ISC hyperproliferation in the fly midgut. Impor-

tantly, our work presents the first direct evidence demonstrating

that Wnt signalling is required to activate Src in vivo (Fig 3). These

results indicate the presence of an ‘intestine-specific’ molecular

network mediating the role of Src in this tissue.

One generic Src target is focal adhesion kinase (FAK). Our previ-

ous work in the intestinal epithelium has suggested that this is also

A
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Figure 7. Src is required for mouse intestinal regeneration.

A, B pSrc immunostaining of mouse small intestines from unchallenged control animals or 72 h following DNA damage by gamma irradiation (14 Gy for 72 h). The
dotted lines indicate the proliferative crypt domain of the intestine. Scale bars, 200 lm.

C, D H&E staining showing regeneration after DNA damage in the small intestine of a control mouse or following Src deletion from the intestinal epithelium (AhCre;
Srcfl/fl). Conditional Src deletion from the intestinal epithelium resulted in significantly impaired regeneration. pSrc immunostaining of irradiated AhCre; Srcfl/fl

intestines is shown in (D’). Arrows in (C–D’) point to regenerating intestinal crypts. Scale bars, 200 lm.
E, F Quantification of the number of crypts in control and AhCre; Srcfl/fl intestines before and after irradiation. Data are presented as dot plots indicating mean values

from all mice scored � SEM. Each dot represents average value per animal (**P = 0.0016 Unpaired t-test).
G–L pErk1/2 (G–I) and pStat3 (J-L) immunostaining of small intestines from control, unirradiated (G, J), irradiated control (H, K) and AhCre; Srcfl/fl mice (I, L). Arrows

point to regenerating intestinal crypts. Scale bars, 100 µm.
M, N Quantification of the percentage pErk1/2+ve and pStat3+ve cells per crypt from intestines as in (G–L). Data represent mean values � SEM (***P < 0.0001;

**P < 0.001 one-way ANOVA with Bonferroni’s multiple comparison test).
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a key node for transformation and regeneration (Ashton et al,

2010). Therefore, our current results might reflect a regulation of

Fak activation by Src. Nevertheless, while our results suggest that

Src appears to activate EGFR/Erk1/2 and Stat in the intestine, Fak

is primarily required for Akt/mTOR signalling activation in this

tissue (Ashton et al, 2010). Importantly, unlike Src, loss of

Drosophila Fak (Fox et al, 1999; Fujimoto et al, 1999; Palmer et al,

1999) does not affect intestinal regeneration. Furthermore, Fak

overexpression in adult Drosophila midgut does not lead to ISC

hyperproliferation (data not shown). Thus, in contrast to Src, Fak

is not sufficient for intestinal hyperproliferation, even though in

the mammalian system is necessary for the survival of Apc-defi-

cient cells.

In summary, we have elucidated novel roles for Src in intestinal

regeneration and as an early driver of tumourigenesis in addition to

its established role in invasion and metastasis. Src-overexpressing

fly midguts may represent an excellent platform for initial testing of

more specific Src inhibitors not yet tested in vivo (Brandvold et al,

2012). Inhibitors that could specifically target Src may be very

useful in those patients that are of high risk of developing CRC.

Materials and Methods

Fly stocks

The following fly stocks were kindly provided to us by our collea-

gues: the null allele Apc1Q8 (Yashi Ahmed), escargot-gfp (Shigeo

Hayashi), UAS-egfrDN (Mathew Freeman), EGFRtop1/Cyo (Marek

Mlodzik), UAS-JNK DN (Aron DiAntonio), esgtsF/O (Bruce Edgar),

MARCM 82B line (David Bilder). The rest of the lines used were

obtained from VDRC and the Bloomington Stock collection.

VDRC ID numbers

UAS-stat-IR (43866), UAS-dome-IR (2612), UAS-Src42-IRKK (100708),

UAS-egfr-IRKK (107130), UAS-Ras-IRKK (106642), UAS-Ras-IRCG (28129).

Bloomington stock numbers

UAS-Src42CA (6410), UAS-Src64wt (8477), Src42K10108/Cyo (10969),

UAS-Src42-IRCG (44039).

Fly and mouse genetics

A complete list of fly genotypes and mouse strains used in this study

can be found as part of the Supplementary Materials and Methods.

Fly maintenance

Crosses were maintained at 18°C in standard medium. Animals

of the desired genotypes were collected within 48–72 h of eclosion

and then switched to the desired temperature. All experiments

involving the activation of a transgene under the control of gal4/

gal80ts were switched from 18 to 29°C to allow transgene activation

for as long as necessary. Animals were kept in incubators with

controlled 12-h light-dark cycles. Flies were changed into new food

every 2 days.

Figure 8. Src is required for Apc-dependent tumourigenesis in the mouse intestine.

A, B Kaplan–Meier survival analysis of animals of the indicated genotypes showed increased survival of animals with combined Apc and Src deletion in the intestine. Src
deletion significantly suppressed tumourigenesis in Lgr5-CreER; Apcfl/fl (A) and ApcMin/+ (B) mouse models of colorectal cancer. The P-values of a log-rank test are
shown in each panel.

C Intestinal tumour burden (tumour number/tumour area) in Min; AhCre Srcfl/+ (control) and Min; AhCre Srcfl/fl mice. Data are presented as dot plots indicating mean
values from all mice scored � SEM. Each dot represents average tumour burden per animal (*P = 0.018, unpaired t-test).

D Percentage tumour type scored in small intestines from animals as in (C).
E, F BrdU scores from the different tumour types in small intestines from mice as in (C). Src deletion from the intestinal epithelium results in reduced proliferation in

small/medium and big adenomas from ApcMin/+ mice (F) (****P < 0.0001, chi-square test).
G, H BrdU immunostaining in big adenomas from mice of the indicated genotypes. Scale bars, 100 µm.

◀

Figure 9. A conserved role of Src in intestinal regeneration and
tumourigenesis.
dSrc42/c-Src is activated in response to damage and upon Wg/Wnt signalling
upregulation within stem/progenitor cells of the adult Drosophila midgut and
mouse small intestine leading to tissue hyperproliferation. Src knockdown
prevents intestinal regeneration and tumourigenesis in both model systems.
ISC/EB: intestinal stem cell/enteroblast; EC: enterocyte; ee: enteroendocrine cell;
TA: transit-amplifying cell; Paneth: Paneth cell.

ª 2014 The Authors The EMBO Journal Vol 33 | No 13 | 2014

Julia B Cordero et al Src in regeneration and tumourigenesis The EMBO Journal

1487



Regeneration assays

Experimental flies were collected within 48 h of eclosion at 18°C

and moved to 29°C for 14 days on standard media. Flies were then

transferred to either 5% sucrose (vehicle) or 10× overnight (Pe)

culture on filter-paper discs (Whatman) for the last day of the incu-

bation period. Midguts were then dissected and analysed using

immunofluorescence and confocal imaging.

Analysis of intestinal homeostasis

Three- to five-day-old animals carrying the inducible ‘escargot flip

out’ system (esgts F/O>gfp; Jiang et al, 2009) were switched from

18 to 29°C and their midguts analysed 7, 14 and 30 days after trans-

gene induction to visualize the esg cell lineage over time.

Clonal analysis

Recombinant clones were generated using the MARCM technique

as previously described (Lee & Luo, 1999). Crosses were carried

out at 25°C. Two- to five-day-old adults of the desired genotypes

were selected and subject to three 30-min heat shocks at 37°C

in 1 day. Flies were then incubated at 25°C for 7, 14 and

30 days.

RNA quantification

Total RNA was extracted from at least 10 midguts using RNAeasy

mini kit (Qiagen) followed by DNase treatment (Qiagen). cDNA

synthesis was performed using the High-Capacity cDNA reverse

transcription kit (Applied Biosystems). Transcript levels were

measured using the primers pairs shown underneath. RNA extrac-

tions were performed from three biological replicates. DNA was

analysed in triplicate using the Applied Biosystems 7500. Expres-

sion of the target genes was measured relative to that of RpL32

(rp49). A series of 10-fold dilutions of an external standard was

used in each run to produce a standard curve. MAXIMA SYBR

GREEN Master Mix (Fermentas) was used for qPCR following

manufacturer’s instructions. Data were extracted and analysed

using Applied Biosystems 7500 software version 2.0 and Prism

GraphPad software. Primer sequences are indicated in Supplemen-

tary Table S1.

Sample number and statistical analysis for mouse data

Only posterior midguts of female flies were analysed in this study.

Between 7 and 15 midguts were analysed in each experiment. Data

were plotted using GraphPad Prism 5 software. Statistical methods

used for the analysis of each experiment are detailed in the corre-

sponding figure legends.

Quantification of pErk1/2 and Delta staining

pErk1/2 staining (Fig 5G) was quantified with ImageJ by measuring

total esg>gfp+ve and pErk1/2+ve areas normalized by the total

number of cells (identified by Dapi staining) within that area. Five

posterior midguts were scored per genotype.

The number of ISCs (Fig 1M–P) was scored manually by count-

ing the total number of Delta+ve within a consistent region of the

posterior midgut, which was imaged with a 40× objective and

comprised a field of 0.04 mm2. Six to seven posterior midguts were

analysed per genotype.

Mouse experiments

All experiments were performed under the UK Home Office guide-

lines. Mouse strains were backcrossed into a C57Bl6J background

for 5–10 generations.

Mice carrying the AhCre recombinase were induced by single

injection (Supplementary Fig S5K) or 3 daily intraperitoneal (i.p.)

injection of 80 mg/kg b-Napthoflavone for 1 day. Intestinal pheno-

types were analysed 4, 6 or 7 days after transgene induction. Mice

carrying the Lgr5-CreER recombinase were given one i.p. injection

of 120 mg/kg tamoxifen, followed by one daily i.p. injection of

80 mg/kg tamoxifen for 3 days.

Intestinal regeneration was induced by irradiating mice with

14 Gy gamma irradiation 4 days after recombinase induction.

Mice were sacrificed 72 h post-irradiation and the small intestine

isolated and flushed with tap water. 10 × 1 cm portions of small

intestine were bound together with surgical tape and fixed in

4% neutral buffered formalin. Haematoxylin-and-Eosin-stained

sections were used for analysis. Crypts were scored as regenerat-

ing if they contained six or more consecutive cells. The average

number of regenerating crypts across cross sections of the 10

gut pieces was used for statistical analysis. Intestines from 12

control and nine Srcfl/fl mice were analysed. Age-matched (7-day

post-induction) unirradiated mice where used as controls

(Fig 7E).

Quantification of villae apoptosis

Villae apoptosis was scored by counting the number of cells stained

for activated caspase-3 from small intestinal gut rolls.

Quantification of tissue staining

Staining with anti-lysozyme, anti-pErk1/2 and anti-pStat3 was quan-

tified by scoring the percentage of crypt cells, which stained with

each of the markers.

Organoid formation assay

Data were scored as the percentage of crypts that formed intestinal

organoids in culture 1 week after seeding.

Sample number and statistical analysis for mouse data

In all cases, data represent average values � SEM from at least

three mice. Cell migration values for AhCre; Srcfl/fl; Fyn�/�; Yes�/�

mice (Supplementary Fig S4I) are from a single mouse due to the

low availability of surviving mice from such genotype.

Data were plotted using GraphPad Prism 5 software. Statistical

methods used for the analysis of each experiment are detailed in the

corresponding figure legends.
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Histology and tissue analysis

Immunofluorescence

Tissues were dissected in PBS and fixed 30 min in 4% paraformalde-

hyde (Polysciences, Inc.). Midguts processed for pErk1/2 staining

were subject to additional fixation in ethanol. After fixation, samples

were washed three times in PBS + 0.1% Triton X-100 (PBST) and

incubated in primary antibodies overnight at 4°C. Samples were then

washed as described and subjected to secondary antibody staining

for 2 h at room temperature followed by washing and mounting on

Vectashield containing DAPI (Vector Laboratories, Inc.). Primary

and secondary antibodies were incubated in PBST+ 0.5% BSA.

Primary antibodies used (Drosophila)

Chicken anti-GFP 1:4,000 (ab13970; Abcam); mouse anti-dEGFR

1:10 (C-273; Sigma); rabbit anti-pH3 S10 and S28 1:100 (9701 and

9713; Cell Signalling); rabbit anti-p-Src 1:100 (44660G; Invitrogen);

rabbit anti-pErk1/2 1:100 (9101; Cell Signalling).

Secondary antibodies used (Drosophila)

Alexa 488 1:200 and Alexa 594 1:100 (Invitrogen). Nuclei were count-

erstained with DAPI. Confocal images were collected using a Zeiss

710 confocal microscope and processed with Adobe Photoshop CS.

BrdU labelling

300 µg/ml BrdU (RPN 201V1; GE Healthcare) was mixed into the

fly food, and animals were fed ad libitum ON prior to midgut dissec-

tion. Mouse intestines were labelled by i.p. injection of 250 µl BrdU

2 and 48 h prior to tissue dissection.

Immunohistochemistry of fly midguts

Whole midguts were dissected and fixed at 4°C ON using a 10%

formalin solution including 2% toluidine blue to improve visualiza-

tion of the midguts during the embedding and sectioning process.

Tissues were then mounted between two layers of 1% agar with the

posterior midguts appropriately oriented. Agar-embedded tissues

were further incubated in 10% formalin ON and then subjected to

paraffin embedding. The paraffin blocks were trimmed in at 10 lm
until the beginnings of the orientated midguts were revealed. Serial

4-lm sections of posterior midguts were cut, placed onto polysine

slides and processed for staining.

Immunohistochemistry of mouse intestines

Briefly, tissues were flushed with water and fixed in 4% neutral

buffered formalin and then subjected to paraffin embedding and

processing for histological analysis.

Primary antibodies used (Mouse tissue)

rabbit anti-p-Src 1:100 (2101; Cell Signalling); rabbit anti-pErk1/2

1:400 (9101; Cell Signalling); rabbit anti-pStat3 1:50 (9131; Cell

Signalling); mouse anti-BrdU 1:200 (347580; BD Biosciences); rabbit

anti-cleaved caspase-3 1:50 (9661; Cell Signalling); rabbit anti-Ki67

1:100 (RM-9106, Thermo); rabbit anti-lysozyme 1:150 (A099, Dako).

Tissue dyes used

Alcian Blue, Grimelius and Sirius Red staining solutions were used

to visualize Goblet and enteroendocrine cells in the intestine and

liver fibrosis, respectively.

Secondary antibodies used (Mouse tissue)

Mouse and rabbit EnVision (K4001 and K4003; Dako). Images were

collected using an Olympus BX51 microscope and images taken

with a DP70 camera and processed with Adobe Photoshop CS.

Supplementary information for this article is available online:

http://emboj.embopress.org
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