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Abstract

Biological network inference is a major challenge in systems biology. Traditional correlation-

based network analysis results in too many spurious edges since correlation cannot distinguish

between direct and indirect associations. To address this issue, Gaussian graphical models (GGM)

were proposed and have been widely used. Though they can significantly reduce the number of

spurious edges, GGM are insufficient to uncover a network structure faithfully due to the fact that

they only consider the full order partial correlation. Moreover, when the number of samples is

smaller than the number of variables, further technique based on sparse regularization needs to be

incorporated into GGM to solve the singular covariance inversion problem. In this paper, we

propose an efficient and mathematically solid algorithm that infers biological networks by

computing low order partial correlation (LOPC) up to the second order. The bias introduced by the

low order constraint is minimal compared to the more reliable approximation of the network

structure achieved. In addition, the algorithm is suitable for a dataset with small sample size but

large number of variables. Simulation results show that LOPC yields far less spurious edges and

works well under various conditions commonly seen in practice. The application to a real

metabolomics dataset further validates the performance of LOPC and suggests its potential power

in detecting novel biomarkers for complex disease.

Keywords

Systems biology; undirected network inference; correlation; Gaussian graphical models; low order
partial correlation; biomarker discovery

1. Introduction

Systems biology is a rapidly developing field that gives insights that genes and proteins do

not work in isolation in complex diseases such as cancer, Parkinson’s disease and diabetes.
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To better understand the mechanisms of these diseases, different omic studies (e.g.,

transcriptomics, proteomics, metabolomics) need to be assembled to take advantage of the

complementary information and to investigate how they complement each other. One major

challenge in this field is the problem of inferring biological networks, such as gene co-

expression network, protein-protein interaction network or metabolic network using high-

throughput omic data.

Generally speaking, network inference methods can be divided into two groups depending

on whether the resulting networks are directed graphs or undirected graphs. Bayesian

network (BN) [1] is the most popular method for directed network inference. BN is a

probabilistic graphical model where nodes represent genes, proteins or metabolites and

edges denote conditional dependence relationships. It models the biological networks as

directed acyclic graphs. However, cyclic network structures, such as feedback loops, are

ubiquitous in biological systems and are, in many cases, associated with specific biological

properties [2]. Considering this, the assumption of acyclic structure behind BN is limiting.

In comparison, undirected network inference methods model the biological networks as

undirected graphs thereby circumventing the problems of inferring cyclic network

structures. One conventional method for undirected network inference is based on

correlation [3–5], but correlation confounds direct and indirect associations. While direct

association represents the pure association between two variables, indirect association

indicates the induced association due to other variables. For example, Figure 1B illustrates

that given three variables (x1, x2 and x3), a strong correlation between x1 and x2 as well as x2

and x3 (direct association) may lead to a relatively weak but still significantly large

correlation between x1 and x3 (indirect association). As a result, when the number of nodes

is large, the resulting correlation-based network will yield too many spurious edges due to

indirect associations.

Partial correlation measures the correlation between two variables after their linear

dependence on other variables is removed. It can distinguish between direct and indirect

associations. The formal definition of the partial correlation between x1 and x2 given a set of

other variables X+ = {x3, x4, …, xn} is the correlation between the residuals resulting from

the linear regression of x1 with X+ and that of x2 with X+, respectively. One widely used

method for undirected network inference with partial correlation is Gaussian graphical

models (GGM) [6]. For an undirected graph with p nodes, GGM calculate the partial

correlation coefficients between each pair of nodes conditional on all other p-2 nodes.

However, in order to obtain the exact undirected network for p variables, one needs to

calculate from zero-th order (simply correlation) up to (p-2)-th order (full order) partial

correlation [7]. By only considering the full order partial correlation, it is insufficient for

GGM to uncover the network structure faithfully as seen in Figure 2C. This is because two

nodes may be conditionally independent when only conditional on a subset of other nodes

while conditionally dependent when conditional on all remaining ones [8]. Furthermore,

when the number of samples is far smaller than the number of variables, a common case in

omic studies, GGM face the difficulty of inverting a singular covariance matrix. Techniques

based on sparse regularization such as graphical lasso offer a solution to address this

problem within the framework of GGM [9]. In comparison, methods based on low order
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partial correlation (LOPC) have been proposed [8, 10–12]. Low order partial correlation

between two variables is obtained only conditional on a subset rather than all other

variables. If only zero-th order and first order partial correlations are considered, the

resulting undirected graph is called 0–1 graph [13]. 0–1 graph has the advantage that it can

be efficiently estimated from small sample-size data, but it fails to infer complex network

structure (e.g., cyclic structures) as seen in Figure 2D. The reason is that in Figure 2A, x1

can reach x4 through either x2 or x3, so only conditioning on one of them (0–1 graph only

calculates up to the first order partial correlation) is not enough to remove the indirect

association between x1 and x4. In [8], de la Fuente et al. proposed to calculate up to the

second order partial correlation to take into account more complex network structure while

trying to keep the computational complexity still manageable. However, calculating the

second order partial correlation for regular microarray experiments involving several

thousands of variables is computationally intractable. This limits the application of method

proposed by de la Fuente et al. to infer large biological networks. In addition, their method

sets correlation threshold empirically without statistical support.

In this paper, we propose an efficient and mathematically sound algorithm to infer biological

networks by calculating partial correlation from zero-th order up to the second order. For a

given dataset with p variables, we first compute the zero-th order and first order partial

correlation for each pair of variables. Then, we calculate the second order partial correlation

only in cases in which both the zero-th order and first order partial correlations are

significantly different from zero. With this step, the efficiency of LOPC is largely increased

since it excludes most of the possible pairs before calculating the second order partial

correlation. Furthermore, we use Fisher’s z transformation to create test statistics to set a

reasonable threshold. To take into account multiple testing, we control the False Discovery

Rate (FDR) using the Benjamini-Hochberg procedure. Simulation results show that LOPC

works well under various conditions commonly seen in real applications and the spurious

edges (i.e., false positives) for the inferred network are significantly reduced. We then apply

LOPC on a real metabolomics dataset, the result validates the performance of LOPC and

shows its potential in discovering novel biomarkers.

The rest of the paper is organized as follows. In Section 2, we discuss different undirected

network inference methods based on correlation, GGM and LOPC. Also, we introduce test

statistics for correlation and partial correlation methods (GGM and LOPC). Then, we

propose an efficient algorithm, LPOC. The input, output, tools and databases involved are

summarized. Section 3 presents two simulation datasets and a real metabolomics dataset to

evaluate the performance of LOPC. The above undirected network inference methods are

compared and the results are discussed. Finally, Section 4 summarizes our work and

presents possible extensions.

2. Methods

2.1 Undirected network construction methods

Consider p random variables x1, x2, …, xp, denoted by X={x1, x2, …, xp}, that represent

either metabolite levels or expressions of proteins or genes. Suppose the covariance matrix

of X is Σ with the correlation coefficient between xi and xj defined as:
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(1)

In a correlation-based network, xi and xj are considered to be connected if and only if (iff)

ρij≠0 (i.e., its estimate rij is significantly different from zero).

One common criticism for the above correlation-based network is that it yields too many

spurious edges since correlation confounds direct and indirect associations. Let’s consider

an example where X={x1, x2, x2, x4} and the relationships between x1, x2, x3 and x4 are

modeled as x1=s+ε1, x2=λ· x1+ε2, x3=μ· x2+ ε3, x4=ε4 assuming s ~N(0,σs
2), denoting the

signal; ε1, ε2, ε3, ε4 ~N(0, σn
2), denoting the independent and identically distributed (i.i.d.)

noise; signal and noise are independent; λ, μ are non-zero constants. Figure 1A represents

the above relationships and the arrow directions are assigned manually to represent

causality. In this model, the relationships between x1 and x2, x2 and x3 are direct associations

while x1 and x3 are indirectly related. Figure 1B shows that the undirected network inferred

based on correlation confounds direct and indirect associations, thus leading to a spurious

edge or false positive (i.e., the edge between x1 and x3).

In contrast, GGM remove the linear effect of all remaining p-2 variables when calculating

the partial correlation coefficient between two variables conditional on all other variables.

Suppose X follows a multivariate Gaussian distribution, R and Q are two subsets of X where

R={xi, xj} and Q=X\R. The conditional covariance matrix of R given Q can be computed as

follows as long as ΣQQ is nonsingular:

(2)

where the covariance matrix of X is .

Similarly, the precision matrix of X (the inverse of Σ) can be represented as:

(3)

In Eq. 3, ΩRR = (ΣRR − ΣRQΣQQ
−1ΣQR)−1 [14].

Suppose , then from Eq. 2, the conditional covariance matrix ΣR|Q can

be obtained as:

(4)
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Under a Gaussian distribution assumption, partial correlation and conditional correlation are

equivalent. A proof involving three variables is shown in the Appendix. For a more general

proof, one can refer to [15, 16].

Once the precision matrix is known, the partial correlation coefficient between xi and xj

conditional on all other variables can be computed as:

(5)

In a GGM-based network, xi and xj are considered to be connected iff ρij·Q≠0 (i.e., its

estimate rij․Q is significantly different from zero).

By removing the effect of all other variables, GGM can distinguish between direct and

indirect associations as seen in Figure 1C. However, it requires that the covariance matrix be

full rank for a well-defined matrix inversion, so the sample size should be at least as large as

the number of variables. This poses a challenge for most omic datasets, which typically

involve thousands of variables but much less number of samples. Furthermore, even when

the sample size is large enough, GGM could lead to unreliable result as seen in Figure 2C

since it only considers the (p-2)-th order partial correlation.

Rather than conditioning on all other variables, LOPC conditions on only a few of them. The

order of the partial correlation coefficient is determined by the number of variables it

conditions on. The advantage of using LOPC relies on a recursive equation (i.e., a higher

order partial correlation coefficient can be computed from its preceding order) [17].

For X={x1, x2, x3, x4} modeled in Figure 1, without loss of generality, we assume σs
2=σn

2=1

and e1=0, then the covariance matrix Σ is:

(6)

From Eq. 2, the conditional covariance matrix of {x1, x2} given x3 is:

(7)

Since partial correlation is equivalent to conditional correlation under Gaussian distribution,

the first order partial correlation coefficient between x1 and x2 conditional on x3 can be

computed from Eq. 7:

(8)
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When the zero-th order partial correlation coefficients ρ12, ρ13, ρ23 are computed from Eq. 6

and compared with Eq. 8, the following relationship exists between zero-th order and the

first order partial correlation coefficients:

(9)

Eq. 9 can be generalized so that higher order partial correlation coefficient can be calculated

from its preceding order. For example, similar equation exists between the first order and the

second order partial correlation coefficients:

(10)

Theoretically, in order to obtain the exact undirected graph for p variables, one needs to

potentially calculate the partial correlations from zero-th order up to the (p-2)-th order [7].

Correlation considers only the zero-th order; GGM consider only the (p-2)-th order. It was

previously reported that neither of them is sufficient to uncover the conditionally

independent relationships between variables [8]. Surprisingly, though the idea behind LOPC

is simple, it can serve as a good approximation to the true network as seen in Figure 2. In

addition, LOPC has the advantage of working well when the sample size is small and the

number of variable is large.

If only zero-th order and first order partial correlations are considered, the resulting network

is called a 0–1 graph. The network is constructed based on the following rule: the edge

between nodes xi and xj is connected iff all rij and rij·k are significantly away from zero,

where k considers each possible xk in X\{xi, xj}.

Similarly, if we calculate up to the second order partial correlation, the resulting network is

constructed based on the rule that the edge between nodes xi and xj is connected iff all rij,

rij·k and rij·kq are significantly different from zero, where k and q correspond to every

possible xk and xq in X\{xi, xj}.

2.2 Test statistics

The test statistics for non-zero correlation coefficient is  and follows a

t-distribution with n-2 degrees of freedom under the null hypothesis.

In contrast, the test statistics for non-zero partial correlation can be calculated using the

Fisher’s z transformation [18]:

(11)

where Q̃ corresponds to the elements of X\{xi, xj} conditional upon and |Q̃| is the order of

the partial correlation.
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For a zero partial correlation coefficient with sample size equal to n, z is approximately

normally distributed with zero mean and  variance. Given a partial correlation

coefficient, the two-sided p-value is:

(12)

2.3 Algorithm

The proposed algorithm contains four parts:

1. calculate the zero-th, first and second order partial correlation coefficients;

2. calculate test statistics and corresponding p-values to evaluate the null hypothesis

that the corresponding partial correlation coefficient is zero;

3. calculate adjusted p-values for multiple testing correction;

4. construct the network.

Among the four steps, most of the computation time is spent on calculating the second order

partial correlation coefficient rij·kq since one needs to consider all possible xk, xq in X\{xi,

xj}. It was previously suggested that the distribution of connections in metabolic, regulatory

and protein-protein interaction networks tends to follow a power law [19, 20]. Thus, the

resulting networks are very sparse.

Here, we present an efficient algorithm taking advantage of this sparsity property of

biological networks. Instead of calculating the second order partial correlation coefficients

rij·kq for all possible xi, xj, we only calculate those whose corresponding zero-th and first

order partial correlation coefficients are significantly different from zero. Since the true

biological networks are sparse, this step can exclude most of the possible spurious edges

before calculating the second order partial correlation. As a result, LOPC can dramatically

reduce the computational burden.

The detailed algorithm is outlined below:

Algorithm LOPC

1: Zero-th order partial correlation:

2: for each pair (xi, xj) do

3:   Calculate an estimate of the zero-th order partial correlation coefficient rij;

4:   Construct the test statistic for rij and compute the corresponding p-value p(rij);

5:   Compute the multiple testing adjusted p-value for the zeroth order partial correlation coefficient p̄(xij) across all
pairs.

6: end for

7: First order partial correlation:

8: for each pair (xi, xj) do
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Algorithm LOPC

9:   Calculate estimates of the first order partial correlation coefficients rij·k for all possible xk ∈ X/{xi, xj};

10:   Select the maximum in terms of absolute value as r̂ij·k;

11:   Construct test statistics for r̂ij·k using Fisher’s z transformation and compute corresponding p-value p(r̂ij·k);

12:   Compute the multiple test adjusted p-values for the first order partial correlation coefficient p̄(r̂ij·k) across all
pairs.

13: end for

14: Second order partial correlation:

15: for each pair (xi, xj) do

16:   if max {p̄(rij), p̄(r̂ij·k)} < 0.05 then

17:     Proceed to compute the second order partial correlation:

18:     Calculate estimates of the second order partial correlation coefficients rij·kq for all possible xk, xq ∈ X/ {xi, xj};

19:     Select the maximum in terms of absolute value as r̂ij·kq;

20:     Compute the multiple test adjusted p-values for the second order partial correlation coefficient p̄ (r̂ij·kq) across
all pairs.

21:   else

22:     Do not need to compute the second order partial correlation:

23:     Set p̄(r̂ij·kq) to be 1.

24:   end if

25: end for

26: Connect xi and xj iff p̄(r̂ij·kq) < 0.05.

2.4 Summary

LOPC is an efficient algorithm for constructing a simplified undirected network that

captures the direct associations between variables (genes, proteins, and metabolites) based

on high-throughput omics data. The input, output, tools and databases involved are listed

below.

Input: The input of the proposed algorithm is a p × n matrix with p variables (genes,

proteins, or metabolites) and n samples. The elements in the matrix either represent the

expression level of the corresponding genes and proteins or the intensity of the

associated metabolites.

Output: The output of the algorithm is a p × p matrix, also known as adjacent matrix,

along with a p × p weight matrix. The elements of the adjacent matrix are either 1 or 0,

indicating whether there exists a connection between two variables or not. The weight

matrix includes the value of the second order partial correlation between different pairs.

Tools: Tools such as Matlab and Cytoscape are used for implementing the algorithm

and visualizing the network, respectively.

Databases: While no databases are involved in the algorithm, databases such as DAVID

(http://david.abcc.ncifcrf.gov/home.jsp), Reactome (http://www.reactome.org/), and

KEGG (http://www.genome.jp/kegg/) are often used to look into the resulting networks

for functional interpretation and pathway analysis.
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3. Results and discussion

This section presents two numerical simulations (A and B) to infer undirected network based

on correlation, GGM, 0–1 graph, and LOPC, as well as one real application of LOPC on a

metabolomics dataset.

3.1 Analysis on simulated data

In simulation A, we consider an example where variables X={x1, x2, x3, x4} form a cyclic

structure as shown in Figure 2A. The relationships between x1, x2, x3, x4 were modeled as:

x1=s+ε1, x2=λ·x1+ε2, x3=μ·x1+ε3, x4=α·x2+β·x3+ε4 assuming s ~N(0,σs
2), denoting the

signal; ε1, ε2, ε3, ε4 ~N(0, σn
2), denoting the i.i.d. noise; signal and noise are independent; λ,

μ, α, β are non-zero constants. Without loss of generality, we set σs
2=1, σn

2=0.01 and

λ=μ=α=β=1. The resulting covariance matrix for X is:

(13)

We generated dataset fromN(0,Σ)with a sample size of n=50 and inferred networks based on

correlation, GGM, 0–1 graph and LOPC as seen in Figure 2.

The correlation, partial correlation for each pair of variables and the corresponding adjusted

p-values are shown in Table 1.

In Figures 2B and 2C, we see that both correlation and GGM-based networks yield spurious

edges. This is because correlation confounds direct and indirect associations, while GGM

are insufficient to uncover the network structure faithfully in this model by only considering

the (p-2)-th order partial correlation. In fact, from the perspective of probabilistic graphical

models [21], x1 is a common ancestor of x2 and x3, while x4 is a causal descendent of x2 and

x3. Since conditioning on any common causal descendent would introduce a correlation

between two variables, there is a dependence estimated between x2 and x3 by conditioning

on both x1 and x4 using GGM.

The resulting networks based on 0–1 graph and LOPC are shown in Figures. 2D and 2E,

respectively. For 0–1 graph, since there are multiple paths from x1 to x4 either through x2 or

x3. By only calculating up to the first order partial correlation, it is insufficient to remove the

indirect association between x1 and x4. However, when we calculate up to the second order

partial correlation, the cyclic structure can be faithfully recovered. In fact, Figure 2E can be

viewed as the result of merging Figures. 2B, 2C and 2D together and only keeping common

edges.

In simulation B, we consider a more complex structure where ten variables X={x1, x2, x3, x4,

x5, x6, x7, x8, x9, x10} were involved and their relationships were modeled as: x1=s1+ε1,

x10=s2+ε10, x2=λ1·x1+ε2, x3=α1·x2+ε3, x4=α2·x3+ε4, x5=α3·x4+λ2·x1+ε5, x6=α4·x5+μ1·x10+ε6,

x7=α5·x6+ε7, x8=α6·x7+ε8, x9=α7·x8+μ2·x10+ε9 with s1, s2 ~N(0,σs
2), denoting the signal; ε1,
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ε2, …, ε10 ~N(0, σn
2), denoting the i.i.d. noise; signal and noise are independent; λ1, λ2, μ1,

μ2, α1, α2, …, α7 are non-zero constants. The network structure is shown in Figure 3A. In

this network, x1 and x10 can be interpreted as regulators while x2 to x9 represent genes,

proteins or metabolites being regulated. Correspondingly, λ1, λ2, μ1, μ2 denote the strength

of the regulation. Without loss of generality, we set σs
2=1, σn

2=0.01, all the coefficients (i.e.,

λ1, λ2, μ1, μ2, α1, α2, …, α7) to be 1. The resulting covariance matrix for X is seen in Eq. 14.

We generated dataset fromN(0,Σ)with a sample size of n=50 and inferred networks based on

correlation, GGM, 0–1 graph and LOPC. For the correlation-based network, the number of

spurious edges (false positives) increases dramatically with nearly every possible variable

pair being connected. In Figures 3B to 3D, we show the inferred networks based on GGM,

0–1 graph and LOPC.

(14)

As shown in Figure 3B, GGM-based network yields a few false positives. This is because

GGM only considers the (p-2)-th order partial correlation. As seen in Figure 3C, the 0–1

graph yields similar number of false positives compared with GGM-based network but starts

to have missing edges (false negatives). The network inferred with LOPC (Figure 3D) also

has false negatives, but calculating up to the second order removes all the false positives.

Using a similar model, we generated 100 simulation datasets for varying number of

variables and sample sizes and calculated the mean of false positives and false negatives for

each method as shown in Table 2.

Generally speaking, we expect LOPC to lead to far less number of false positives compared

to GGM and 0–1 graph with a possible drawback of selecting a few more false negatives. In

real application, this is desirable since one would usually prefer to be confident about the

existence of edges already detected, though some edges might be missed. As shown in Table

2, when the sample size is slightly larger than the number of variables, LOPC works well,

whereas GGM’s performance begins to decline due to the difficulty of inverting singular

matrix. To address this, further technique such as graphical lasso has been incorporated into

GGM [9].

3.2 Application to real data

In this section, we applied LOPC on a real untargeted metabolomics dataset previously

collected and analyzed by our group for hepatocellular carcinoma (HCC) biomarker

discovery study [22]. The data were acquired by analysis of sera from 40 HCC cases and 50
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patients with liver cirrhosis using liquid chromatography coupled with mass spectrometry

(LC-MS). Following preprocessing, a data matrix was obtained with 984 input variables -

larger than the sample size 90. In [22], we identified 32 metabolites with intensities

significantly different between the HCC cases and cirrhotic controls.

Rather than looking into each statistically significant metabolite, in this paper, we generated

undirected network using LOPC after normalization of the preprocessed data matrix. The

aim of the normalization is to bring the intensities of the metabolites in both cases and

controls to a comparable level. The resulting networks are depicted in Figure 4A. We then

mapped the 32 statistically significant metabolites onto Figure 4A and extracted functional

modules which contained multiple metabolites. Two interesting functional modules are

shown in Figures 4B and 4C, respectively, with blue nodes representing the metabolites and

white nodes representing non-significant ones. Due to the limitation in metabolite

identification, some of the nodes have been assigned multiple putative IDs (e.g., Glycine;

Haloperidol decanoate) or have no IDs (unknowns).We see that metabolites connecting with

each other tend to be involved in the same chemical reaction and have similar

functionalities. The extracted functional modules may help identify other non-significant

metabolites that might be missing from the statistical analysis due to subtle differences in

ion intensities.

Finally, we evaluated the efficiency of LOPC by randomly sampling various numbers of

metabolites from the above dataset to generate 100 undirected networks. We compared the

averaged run-time between LOPC and the traditional method to calculate up to the second

order partial correlation. While the traditional method calculates the 0th, 1st, and 2nd order

partial correlations, LOPC evaluates the outcome of the 1st order partial correlation to

determine whether or not the calculation of the 2nd order partial correlation is needed. As

shown in Figure 5, when the input variable number increases beyond 50, LOPC starts to

become more efficient than traditional method. With an input variable number of 200,

LOPC can be as 4 times fast as the traditional method. The run-time comparison was

performed using a PC with an Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz and 16.0 GB

RAM.

4. Conclusion

In this paper, we propose an efficient algorithm, LOPC, to infer biological networks by

calculating up to the second order partial correlation. Compared with other undirected

network inference methods (correlation, GGM, and 0–1 graph), LOPC offers better solution

for inferring networks with less spurious edges (false positives). It also has the advantage of

handling well cases that involve a large number of variables but a small sample size. These

properties make LOPC a promising alternative to infer from omic datasets relevant gene co-

expression, protein-protein interaction and metabolic networks, which may give insights into

the mechanisms of complex diseases. A real application on metabolomics dataset validates

the performance of LOPC and shows its potential in discovering novel biomarkers. Future

research will focus on incorporating prior knowledge from the existing database and causal

information from time course data to build directed network.
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Appendix

Conditional independence relationship is crucial for network inference. Here, we prove the

equality of partial correlation and conditional correlation involving three variables under

Gaussian assumption so that we can use partial correlation to infer conditional independence

relationships between nodes and build a network.

By definition, the partial correlation coefficient between x and y conditional on z (rxy·z) is

obtained by first regressing x on z and y on z separately and then calculating the correlation

between the residuals of the models for x and y:

(15)

(16-1)

(16-2)

where ε̂x,ε̂y are the residuals of x and y after regressing on z; â, b̂, ĉ, d̂ are regression

coefficients.

Conditional correlation coefficient between x and y given z (rxy|z) is defined as:

(17)

where Ex|z, Ey|z and Ex,y|z denote expectations of the marginal and joint distribution of x and

y conditional on z.

To show the relationship between partial correlation and conditional correlation, we

consider the following case of x=b0+b1·z+a and y=d0+d1·z+c, where b0, b1, d0 and d1 are

constants, x, y, z, a and c are random variables. Under this assumption, the conditional

correlation between x and y given z is reduced to:

(18)

From Eq. (4), the partial correlation equals to conditional correlation. To be more general,

these two correlations are the same when the conditional variance and covariance of x and y

given z are free of z [15, 16]. The above condition is satisfied in normal distribution.
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Figure 1.
Correlation confouds direct and indirect associations while partial correlation does not. (A)

The true network from the model. (B) The network inferred based on correlation. The dot

line represents the spurious edge due to the indirect association. (C) The network inferred

based on GGM.
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Figure 2.
Cyclic structure networks inferred based on correlation, GGM, 0–1 graph and LOPC. (A)

The true network from the model. (B) Network inferred based on correlation: the dot lines

represent the spurious edges. (C) Network inferred based on GGM: by only conditioning on

the (p-2)-th order (i.e., second order in this model), it is insufficient to uncover the

relationships between variables faithfully. (D) Network inferred based on 0–1 graph (up to

first order): by only conditioning on up to first order, the indirect association between x1 and

x4 cannot be removed since there are two paths from x1 to x4 either through x2 or x3. (E)

Network inferred based on LOPC (up to second order): the connections in A are faithfully

uncovered.
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Figure 3.
Complex structure networks inferred based on GGM, 0–1 graph and LOPC. (A) The true

network from the model. (B) Network inferred based on GGM: the dot lines represent the

spurious edges. (C) Network inferred based on 0–1 graph (up to first order): by only

conditioning on up to first order, the resulting inferred network has similar number of

spurious edges (false positives) as that from GGM but has several missed edges (false

negatives). (D) Network inferrred based on LOPC (up to second order): while the missed

edges are inherited from 0–1 graph, calculating up to the second order successfully removes

spurious edges in the inferred network.
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Figure 4.
Undirected network and functional modules inferred from real data by LOPC. (A)

Undirected network encoding the direct associations between different nodes (B–C)

Functional modules extracted from the undirected network. Blue nodes represent the

candidate biomarkers previously reported. White nodes represent the non-significant ones.
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Figure 5.
Run-time comparison between LOPC and the traditional method in calculating up to the

second order partial correlation.
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