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Abstract

Heart failure is a syndrome with a pathophysiological basis that can be traced to dysfunction in

several interconnected molecular pathways. Identification of biomarkers of heart failure that allow

measurement of the disease on a molecular level has resulted in enthusiasm for their use in

prognostication and selection of appropriate therapies. However, despite considerable amounts of

information available on numerous biomarkers, inconsistent research methodologies and lack of

clinical correlations have made bench-to-bedside translations rare and left the literature with

countless publications of varied quality. There is a need for a systematic and collaborative

approach aimed at definitively studying the clinical benefits of novel biomarkers. In this review,

on the basis of input from academia, industry, and governmental agencies, we propose a

systematized approach based on adherence to specific quality measures for studies looking to

augment current prediction model or use biomarkers to tailor therapeutics. We suggest that study

quality, rather than results, should determine publication and propose a system for grading

biomarker studies. We outline the need for collaboration between clinical investigators and

statisticians to introduce more advanced statistical methodologies into the field of biomarkers that

would allow for data from a large number of variables to be distilled into clinically actionable

information. Lastly, we propose the creation of a heart failure biomarker consortium that would

allow for a comprehensive list of biomarkers to be concomitantly analyzed in a pooled sample of

randomized clinical trials and hypotheses to be generated for testing in biomarker-guided trials.
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Such a consortium could collaborate in sharing samples to identify biomarkers, undertake meta-

analyses on completed trials, and spearhead clinical trials to test the clinical utility of new

biomarkers.
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“Out of clutter, find simplicity. From discord, find harmony.”

Albert Einstein (1)

Heart failure is among the leading causes of death and disability worldwide (2). Among the

challenges in treating this patient population are inadequacies in prediction of disease

severity, with a resultant mismatch between risk stratification and intensity of therapy (3).

Identification of biomarkers that allow measurement of the disease on a molecular level has

resulted in considerable enthusiasm for their use in prognostication and selection of

appropriate therapies (4–6). Illustrating this point, a PubMed search of the phrase

“biomarkers in heart failure” resulted in close to 6,500 publications over the last decade

(Fig. 1) (5). Reasons for this include high-throughput molecular biology techniques that

allow increased availability of point-of-care, rapid-turnaround biomarker testing, and

reductions in costs of analysis (7).

Nonetheless, the current state of biomarker research in heart failure is one of exponential

gains in information that have far exceeded the ability to contextualize findings: more

“interesting data” than “clinically actionable information”. As a result, despite considerable

amounts of information available on numerous biomarkers, inconsistent research

methodologies, insufficient study size, and lack of clinical correlations have made bench-to-

bedside translations rare, leaving the literature with numerous publications of varied quality.

This has led to slow adoption of established biomarkers, debates about the utility of

biomarkers in standard clinical care, and delays in approval by regulatory agencies for

clinical use (8,9). For example, the clinical efficacy of natriuretic peptide–guided therapy in

heart failure remains unclear, despite 12 studies over the last decade that included >2,500

patients; fortunately, a multicenter trial is currently underway (GUIDE-IT [Guiding

Evidence Based Therapy Using Biomarker Intensified Treatment]; NCT01685840) to

provide clearer recommendations (10). Furthermore, considering the large number of

biomarkers discussed in the literature, it is worth noting that beyond the natriuretic peptides,

only galectin-3 and serum ST2 (sST2) are cleared by the Food and Drug Administration

(FDA) for use as aids in assessing prognosis in heart failure. Even so, the appropriate

clinical use of these 2 novel biomarkers is unclear due to a shortage of well-designed studies

informing their proper clinical use, accompanied by a large number of studies repeatedly

depicting their prognostic value.

This paper describes unanswered questions in the field of heart failure biomarkers and

recommends a roadmap for further studies that will provide more definitive answers about

the clinical role of biomarkers in diagnosis, prognosis, and treatment of heart failure. It is

based on discussions among cardiologists, epidemiologists, clinical trialists, statisticians,

Ahmad et al. Page 2

JACC Heart Fail. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



journal editors, and regulatory agency representatives at the ninth annual Global Cardio

Vascular Clinical Trialists Forum (CVCT) in Paris, France.

What Qualifies as a Useful Heart Failure Biomarker?

In theory, a biomarker can be any measurement made on a biological system. In practice,

however, biomarkers in heart failure typically refer to substances measured in the blood

other than commonly used laboratory tests and imaging studies (6).

To understand the added clinical utility of biomarkers in heart failure, criteria have been

previously recommended by van Kimmenade and Januzzi (Table 1) (5,11). When bio-

markers are considered for clinical use (together with other clinical parameters and cardiac

tests), currently only the natriuretic peptides meet the proposed standards. The majority of

the remaining emerging biomarkers remain entangled in debates as to whether they provide

any incremental value over established clinical measurements.

We argue that instead of the current piecemeal approach in which biomarkers are evaluated

with a variety of statistical approaches with or without comparisons with other markers,

there is a need for standardized methodologies for clinical assessment of biomarkers in heart

failure. Presently, the vast majority of biomarker publications in heart failure are related to

prognosis, and considerable opportunities exist for harmonization of research methods for

these studies. Although demonstration of prognostic value is of importance, modification of

therapeutics based on biomarker values in a time-sensitive and cost-effective manner that

improves patient outcomes is the sine qua non of a useful biomarker. Unfortunately, studies

attempting to address these questions are scarce.

Biomarkers for Diagnosis

To date, heart failure biomarkers have had their greatest impact in the realm of disease

diagnosis. Prior to the widespread use of natriuretic peptides for this purpose, clinicians

relied on data from subjective variables such as clinical symptoms and physical examination

findings to diagnose patients with heart failure (7). In 2002, publication of the BNP

(Breathing Not Properly) study triggered a paradigm shift toward a biomarker-based method

of evaluating dyspnea, and widespread use of both B-type natriuretic peptide (BNP) and N-

terminal proBNP (NT-proBNP) has since then fundamentally impacted the standard of care

in heart failure (7,12). Confirmed by studies such as PRIDE (ProBNP Investigation of

Dyspnea in the Emergency Department), natriuretic peptide assessment for diagnosis of

heart failure in the setting of clinical uncertainty now has the highest level of

recommendation by all major professional cardiology societies (13,14).

Despite the widespread use of BNP assays for diagnosis of heart failure, there remains a lack

of well-defined and accepted diagnostic cutoffs. Additionally, elevations in natriuretic

peptide levels can occur as a result of several cardiac and noncardiac disease states, making

the negative predictive value of the test most clinically helpful (13). As a result of these

limitations, there is a need for better diagnostic algorithms, potentially through addition of

novel biomarker information, to objective clinical and natriuretic peptide data (15). Ideal

diagnostic biomarkers would feature rapid sustained elevation, high tissue specificity

Ahmad et al. Page 3

JACC Heart Fail. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(myocardial origin), release proportional to disease extent, and assay features conducive to

high quality point-of-care testing (16). Additionally, as discussed below, clinical diagnostic

algorithms involving biomarkers should aim for high levels of sensitivity, specificity,

predictive values, as well as low overall cost (16).

Biomarkers for Risk Stratification

Risk assessment is important in the care of patients with heart failure because many key

therapeutic decisions depend on these evaluations. Effective therapies in heart failure such

as implanted devices and cardiac transplantation are complex, costly, and rely on accurate

risk stratification (17). Therefore, an ideal prognostic biomarker in heart failure should allow

for early identification of individuals at risk for adverse clinical outcomes and should be

relatively easy to measure, with acceptable costs (5,15). The biomarker measurement should

display accuracy (the test is measuring what it is supposed to measure and generalizability

(capacity to provide accurate predictions in population samples different than that in which

the biomarker was originally validated). Lastly, the biomarker should not provide

information that is already obvious at the bedside or through measurement of clinically

available biomarkers.

Prognostic studies of novel biomarkers should have well-defined outcome measures, and

when sufficiently powered, they should report 3 measures of prognostic accuracy:

discrimination, calibration, and reclassification. These measures should be standardized as

much as possible to provide consistency between studies (18). Although these approaches

are becoming more routinely performed in modern heart failure studies, they are by no

means considered mandatory—improvement in this regard is needed.

Other common shortcomings in biomarker studies include the use of inadequately modeled

survival analyses, use of low-quality comparator assays, and lack of validation. We suggest

that prognostic models examining a novel biomarker must include currently used clinical

measures as covariates, such as New York Heart Association functional class, left

ventricular ejection fraction, and natriuretic peptides using high-quality assays. Also,

whenever possible, findings from novel biomarker studies should be verified in an

independent sample of patients to demonstrate generalizability.

Statistical Considerations

Despite significant overlaps, statistical evaluation of novel biomarkers depends on intended

clinical use. Detailed standards have been proposed for designing and reporting the results

of studies evaluating the performance of bio-markers for diagnosis and for prognosis

(11,16,19). Here, we provide an outline of these guidelines (Table 2, Fig. 2).

Diagnostic biomarkers.

For a diagnostic biomarker, the first step is evaluating test accuracy in terms of its sensitivity

(detection of disease when disease is truly present) and specificity (recognition of absence of

disease when disease is truly absent) at clinically relevant cut points. This information can

be summarized using receiver-operating characteristic (ROC) curves to illustrate the trade-
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off between sensitivity and specificity. Likelihood ratios are calculated with these data and

address the likelihood of obtaining a positive test result in someone with disease compared

with someone without disease, as well as the converse (16). Clinical use would depend on

the balance between consequences of missing disease versus overdiagnosis.

Prognostic biomarkers.

For prognostic biomarkers used to track disease progression, the key factors to consider are

discrimination, calibration, and reclassification. Table 2 summarizes the pros and cons of

various statistical methods used to address these factors in biomarker studies.

Discrimination reflects the ability of a prognostic model to identify a clinical status (event

vs. nonevent) and is of particular importance to clinicians whose decision making may hinge

on the ability to predict an outcome. Calibration measures how much the model estimate of

a specific outcome matches the “real” probability of the outcome (20,21). The key

difference between discrimination and calibration is that the former reflects the ability of a

given prognostic biomarker to distinguish between an event versus nonevent, whereas

calibration measures how frequently the estimation by the model matches the real outcome.

Whereas statistical methods for gauging calibration exist, we prefer to rely on visual

displays: instead of categories, one might look at the plot of predicted versus smoothed

observed risk (11). When logistic regression is used, it is preferable to look at the slope and

intercept of a model that uses predicted risks as independent variables and true outcome

status as the dependent variable (22). Below we summarize statistical tests of discrimination.

C-statistic

The most commonly used measure to evaluate the discriminatory ability of a new biomarker

in heart failure is the area under the ROC curve (AUC), often referred to as the C-statistic

(20,21,23,24). The ROC curve plots 1 the specificity (the false-positive rate) on the x-axis

versus the sensitivity (the true positive rate) on the y-axis for different biomarker

concentrations for a fixed follow-up time. The AUC reports the probability of correctly

ranking cases and noncases appropriately: If the AUC has a value of 0.50, it is as if scores

were randomly assigned to individuals and the marker has no better prognostic value than

flipping a coin. As the AUC approaches 1.0, it demonstrates increasing discrimination or

separation of diseased and nondiseased. An advantage of this approach is the ability to

compare changes in AUC that result from the addition of a new biomarker to the predictive

model that already contains clinical variables and other biomarkers: a significant increase in

AUC might indicate significant “value” beyond the variables in the model. However, small

increases in the AUC may be clinically irrelevant, whereas a lack of change in the AUC may

result from an overly optimistic model containing variables not typically available to the

clinician. For models that are already very good, the change in AUC can be an insensitive

measure of model improvement; markers with large associations, and a large accompanying

relative risk, may have little effect on the ROC curve. Furthermore, AUC tends to be heavily

influenced by population admixture and the distribution of major risk factors (e.g., using the

same model, if the sample of interest has a wide distribution of age, the AUC will be much

larger than a case in which the distribution is narrow). Finally, AUC cannot adequately

capture the clinical usefulness of new markers in situations in which treatment decisions are

based on established categories. Thus, although ROC analyses are considered standard for
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the general comparison of results from biomarkers, they are not conclusive and differences

in AUC alone should not be considered sufficient to argue clinical utility.

Reclassification metrics

The integrated discrimination improvement (IDI) offers an alternative way to quantify the

incremental value of new biomarkers (25). It has a simple and intuitive interpretation as an

increase in the distance between the mean risks for events versus nonevents. However,

judging the magnitude of the IDI may be context specific because the values depend on the

incidence rate of the outcome of interest. To account for this, Pencina et al. (26) proposed

heuristic benchmarks based on the relative IDI that put the increment offered by the new

biomarker in the context of the average value contributed by each of the predictors already

incorporated into the model.

The IDI shares with the AUC the issue of unequal clinical implications of various risk

classifications. As a response to this, risk reclassification measures have been introduced

and are being increasingly used for evaluation of novel biomarkers. Of these, the net

reclassification improvement (NRI) is most commonly used (20,21,25,27). The NRI

summarizes net changes of allocation in clinically meaningful risk categories for events and

nonevents when a novel predictor (biomarker) is added to an existing model. It is computed

by summing up the proportions of correctly upward classified events (correctly qualifying

for treatment) and downward classified nonevents (correctly qualifying for no treatment)

subtracted by the proportions of incorrectly downward classified events (incorrectly

qualifying for no treatment) and upward classified nonevents (unnecessarily qualifying for

treatment). This approach is readily applied in situations in which categories of risk are well

established.

Limitations of reclassification analyses include the fact that a lack of “gold standard”

categories of risk may result in the use of arbitrary risk strata that may bias the result either

in favor of a novel biomarker or against it. However, even if the risk models are valid and

the risk categories chosen are clinically relevant, current methods of reporting NRI may not

meaningfully summarize improvements in risk reclassification in all instances because

changes in risk categories are counted equally and such changes may not reflect clinically

equivalent events. Additional work is needed to develop a consensus for quantifying

improvements in risk prediction performance and linking these to clinically important

events.

Competing risks

Although the statistical methodology described is not specific to it the issue of competing

risks is of particular importance in heart failure, in which patients can suffer from severe

comorbid conditions and different treatments exist for the risk of sudden death versus pump

failure. The simplest approach to competing risks is to censor follow-up at the time of their

occurrence. However, this approach implicitly assumes that those censored could still

develop the primary event of interest, which is not true in the example of death due to other

causes. We recommend the competing risk model proposed by Fine and Gray (28). The use

of competing risk models also raises the question of appropriate performance metrics. This
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choice might depend on the role of the competing event in the analysis. If not considered

clinically important, the method outlined might still be applicable. On the other hand, if we

have multiple and equally important outcomes that we try to model, performance methods

specific to multinomial outcomes might be used (29).

In summary, when reporting results of biomarker studies reporting on prognostication, we

propose the following statistical steps be followed. First, the study design and levels of

standard risk factors as well as the joint prognostic strength should be reported. Against this

backdrop, the effect of the new marker on relative risk should be presented, with P values

and CIs. Then, impact of model discrimination should be quantified using AUCs and the

IDI. If meaningfully risk categories exist, the NRI can be presented to quantify the impact

on risk reclassification. We prefer that the components of the NRI are presented separately

for events and nonevents. Furthermore, following the newest research developments in this

area, we recommend that no statistical testing be conducted and no P values reported for

measures of incremental value in model performance (30). Instead, once the new biomarker

has been shown to be significantly associated with the outcome in a multivariable model,

CIs should be given to quantify the precision of the estimate of incremental value.

If the biomarker appears promising according to these statistics, one should consider more

formal assessment of clinical utility. Simple and appealing choices of metrics in this regard

include the increment in net benefit and weighted NRI (31,32). Both measures quantify the

net gain offered by the new biomarker: the net benefit does it in terms of gains in true

positives and weighted NRI in terms of monetary cost or quality-adjusted life-years.

How Can We Use Biomarkers in Heart Failure?

The most relevant question in the field of heart failure biomarkers is whether the addition of

a biomarker to clinical work flow improves clinical decision making to the degree that the

added cost and complexity are justified. Such an approach has been successfully used in the

treatment of patients suspected to have acute coronary syndromes: cardiac troponin

measurements routinely influence aggressiveness of care. In preventive cardiology,

cholesterol levels and high-sensitivity C-reactive peptide (CRP) levels influence the use of

medical therapies (33). In the field of heart failure, however, beyond the use of natriuretic

peptides for diagnosis, the concept that a biomarker can influence therapeutic decisions

remains in its infancy. The reasons for this range from complexity of the disease state to a

lack of definitive evidence from studies. Because establishing the therapeutic utility of

prognostic biomarkers is more challenging and in need of study than evaluating their use as

a diagnostic test (which can be done via a cross-sectional design), we will focus our

discussion on the former topic.

Prognostic Biomarkers for Treatment Guidance

Despite the considerable number of heart failure biomarker studies in the literature, very few

address the question of how prognostic biomarkers might be used for therapeutic guidance.

We suggest that this should be a pivotal consideration for future studies of novel heart

failure biomarkers—a prognostic biomarker may be of no clinical consequence if a

meaningful response cannot be triggered from its measurement. We can use lessons learned
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from the evaluation of natriuretic peptides as well as other biomarkers in cardiology to

recommend guidelines for biomarker-targeted studies that help demonstrate whether a

prognostic biomarker can also classify patients into distinct subgroups that respond

differently to therapy. To address this question, we describe the 3 most commonly used

methods: biomarker-stratified, enrichment, and biomarker strategy designs. Elements of

each approach may be combined (Fig. 3) (34).

Biomarker-stratified designs can be used if there is no definitive evidence to suggest that

treatment efficacy may depend on biomarker levels. All patients are randomly assigned to

treatments, but the results are analyzed according to biomarker status. This design

maximizes the advantage of randomization by providing unbiased estimates of benefits

across biomarker categories as well as for the entire population. This design is the most

commonly reported biomarker analysis in heart failure, and most contemporary clinical

trials of testing therapeutics with evaluable plasma have been subject to post hoc biomarker

analysis.

Example 1: In the CORONA (Controlled Rosuvastatin Multinational Trial in Heart Failure)

study, patients with chronic heart failure were randomly assigned to rosuvastatin or placebo.

It was observed that those with galectin-3 levels less than the median (19.0 ng/ml) benefited

more from statin therapy (35,36). These results raised the possibility that galectin-3, a

biomarker of myocardial fibrosis, might be used to define heart failure subtypes that respond

differently to rosuvastatin (37).

Example 2: In the Val-HeFT (Valsartan Heart Failure Trial) study, valsartan caused a

significant reduction in heart failure hospitalizations in patients with galectin-3 levels below

the median level of 16.2 ng/ml but not in patients with levels above the median (38). These

results suggested that galectin-3 might be used to predict benefit from valsartan therapy in

patients with heart failure.

Enrichment designs should be performed to test the hypothesis that a biomarker-defined

subgroup of patients will benefit from a treatment. This should only be done when there is

evidence to suggest that treatment benefit is limited to this subgroup; therefore, treatment is

randomized only among a subset of patients. In some cases, natriuretic peptide levels have

been used in the inclusion criteria for heart failure trials (e.g., ASTRONAUT [Aliskiren

Trial on Acute Heart Failure Outcomes]); in these cases, the study design is a variation

along the enrichment design theme as the biomarker is being used as a diagnostic test to

confirm presence of heart failure rather than to define a subgroup that might benefit from

therapy.

Example 3: The GRAVITAS (Gauging Responsiveness With a VerifyNow Assay-Impact on

Thrombosis and Safety) trial evaluated the effects of high-dose compared with standard-

dose clopidogrel in patients with high on-treatment platelet reactivity after percutaneous

coronary intervention. Patients with stable angina/ischemia or non–ST-segment elevation

acute coronary syndrome with high residual platelet reactivity on clopidogrel therapy

(P2Y12 reaction units [PRU] ≥230) post-intervention were randomized to standard-of-care

clopidogrel therapy (75 mg) or high-dose clopidogrel therapy (150 mg) (39). This study
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design allowed the investigators to gauge the efficacy of an experimental therapy (high-dose

clopidogrel) only in the subset of patients in whom there was clinical equipoise: high PRU

on therapy.

Example 4: The JUPITER (Justification for the Use of Statins in Primary Prevention

Intervention Trial Evaluating Rosuvastatin) study randomized patients with low-density

lipoprotein (LDL) cholesterol levels of less than 130 mg/dl and high-sensitivity CRP

(hsCRP) levels of 2.0 mg/l or higher to rosuvastatin or placebo. Prior to the study, it was

unknown if patients with LDL cholesterol levels of less than 130 mg/dl would benefit from

statin therapy. This trial showed that, among these patients, hsCRP levels might identify

those who would derive the clinical benefit from statin therapy (33).

A biomarker strategy design may be used in the presence of reliable data that support varied

levels of therapeutic effectiveness according to biomarker concentrations. Patients are

randomly assigned to a treatment arm that uses biomarker values to determine therapy. For

example, the use of natriuretic peptides to guide the management of chronic heart failure

treatments has been recently explored (7,40). Based on favorable findings from a meta-

analysis of previous studies and a recently published single-center study, the strategy of

including natriuretic peptide reduction as part of the standard approach to heart failure care

may soon become standard of care (40,41).

Example 5: The PROTECT (Pro-BNP Outpatient Tailored Chronic Heart Failure Therapy)

study followed a biomarker strategy methodology by randomizing patients with systolic

heart failure to standard guideline-based care or biomarker-guided care, with the goal to

reduce NT-proBNP concentrations below 1,000 pg/ml (40). The study found that patients

randomized to the biomarker-guided arm had fewer adverse cardiovascular events, better

quality of life and improved echocardiographic parameters at study conclusion (42,43).

Example 6: The STOP-HF (St. Vincent's Screening to Prevent Heart Failure) study

randomized patients with risk factors for heart failure to a BNP-guided intervention arm

versus usual care. The study found that BNP-based screening and collaborative care reduced

rates of adverse events (44).

Example 7: The GUIDE-IT trial (Guiding Evidence Based Therapy Using Biomarker

Intensified Treatment; NCT01685840), a prospective, randomized trial of 1,100 patients

randomized to usual care versus biomarker-guided therapy is underway to provide definitive

information about the efficacy of this approach.

The approaches discussed here may be modified and combined according to the clinical

question, a priori knowledge about biomarkers being evaluated, and consideration of the

pros and cons of each approach (Fig. 3). With consideration of the limitations of these study

designs, heart failure clinical studies should employ and modify the designs as needed; they

may be imperfect but are a prerequisite to move forward with clinical implementation of

new biomarkers.
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The Path Beyond Natriuretic Peptides in Heart Failure

A plethora of candidate biomarkers now exist that encapsulate varying aspects of heart

failure pathology, with theoretical roles in therapeutic tailoring, but lack data from testing

within clinical trials. Instead of a fragmentary approach toward answering these questions,

there is a need for a collaborative effort that involves pooling together data from large

randomized, controlled heart failure trials with blood samples available for prospective

analyses. To achieve this goal, researchers, clinicians, government, and regulatory agencies,

as well as the in vitro diagnostic industry will need to align their goals.

In this regard, we recommend the creation of a heart failure biomarker consortium. We

envision this being a public-private biomedical research partnership with broad participation

from a variety of stakeholders, including government, industry, academia, and potentially

patient advocacy groups. An initial goal of this consortium would be hypothesis-driven

treatment interaction testing of “first-tier” biomarkers (i.e., those with the most convincing

data in support of potential value). Concomitant testing of bio-markers, something that is

rarely done—yet so crucially neede—dwould allow for an appraisal of which ones are best

suited as surrogates for specific pathophysiological pathways (e.g., cystatin C vs. neutrophil

gelatinase-associated lipocalin for acute kidney injury). This approach would also allow the

study of whether efficacy of therapies in heart failure varies according to biomarker levels.

The consortium could establish consensus criteria for meaningful differences in prognosis

and treatment response; based on these results, future studies could be performed in patients

with heart failure with therapeutic choices based on biomarker testing. Involvement of

investigators and cohorts from diverse geographic backgrounds would be important because

the clinical implications of biomarkers might vary according to patient characteristics. The

long-term goal of this consortium would be to identify novel biomarkers that can be

transitioned to the bedside as well as spearhead the creation of biobanks within ongoing and

future clinical trials. This effort would also facilitate the development of biomarkers using

newer technology, help decide which biomarkers should be used for specific decisions in

heart failure, provide advice to regulatory bodies, and disseminate information.

Examples of consortia that might serve as models are: 1) HOMAGE (Heart Omics in

Ageing), a project aiming to identify and validate specific biomarkers of heart failure; 2)

EDRN (Early Detection Research Network), an initiative of the National Cancer Institute

that brings together dozens of institutions to help accelerate the translation of biomarker

information into clinical applications and to evaluate new ways of testing cancer in its

earliest stages; and 3) the Bio-markers Consortium, a public-private biomedical research

partnership managed by the National Institutes of Health that aims to discover, develop, and

qualify biomarkers to support new drug development, preventive medicine, and medical

diagnostics.

Recommendations on Grading Biomarker Studies

Although the use of biomarkers in heart failure has the potential to improve care of patients,

large variations in study quality have overwhelmed the literature with contradictory

findings, causing confusion, rather than increasing clarity about the value of novel
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biomarkers, and added resistance to clinical uptake of established biomarkers. Therefore, we

believe that the field would benefit from more consistent methodologies and greater

collaboration.

Although general criteria for evaluation of biomarkers have been proposed, they are vague

and thus lack necessary impact. In an attempt to provide specific guidelines for biomarker

studies in heart failure, we propose a systematized approach based on adherence to specific

quality measures: The Paris Criteria (Table 3). We have focused our recommendations on

studies designed to augment current prediction models or tailor therapeutics.

Our classification system rates studies based on tiers of depth and quality. Of course, the

ability of studies to achieve the highest tier may be limited in analyses of novel bio-markers

or new indications. In cases such as these, novelty of the approach should be valued, but the

authors should be requested to provide concrete future steps. To avoid false-positive leads,

negative findings should be evaluated in the same manner as positive findings and receive

equal weight when considered for publication.

For diagnostic and prognostic biomarkers, third-tier studies should be expected to adhere to

minimum statistical requirements (Fig. 2). They should all follow the guidelines laid out by

the STARD (Standards for Reporting of Diagnostic Accuracy) statement (45,46). The

objective of the STARD initiative is to improve the quality of reporting of studies involving

diagnostic testing across the spectrum of medical research, allowing readers to detect the

potential for bias in the study and to judge the generalizability and applicability of the

results. Furthermore, the study should include clinically impactful previously established

variables into prediction models (including results from high-quality natriuretic peptide

assays), and testing should be performed in a representative cohort. The addition of

validation analyses, preferably in an external dataset, would elevate the analysis to the

second tier. Highest-tiered studies would include multiple novel biomarkers in unbiased

comparisons, rather than the current piecemeal approach of 1 to 2 novel assays. Additional

aspects of value would include interaction testing of subgroups to identify specific areas of

value for novel biomarker applications, as well as carefully designed analyses to detect

influence of heart failure therapeutics on biomarker-derived risk assessment.

Once a biomarker is being considered for clinical use, lowest-tiered studies should show

differential effects of therapy according to treatment in a well-defined randomized,

controlled trial of patients with heart failure. Results that are validated in another cohort

merit a middle-tier rating. Both tiers of studies may be retrospective. However, we suggest

that the highest tier of quality be reserved for prospectively designed randomized, controlled

trials of therapeutic assignments based on biomarker concentrations.

Simultaneous Use of Multiple Biomarkers

Testing multiple biomarkers when each has not been appropriately validated adds additional

complexity to inferring their usefulness in a clinical setting. On the one hand, a multimarker

approach may allow us to integrate various aspects of the disease process such as renal

disease, inflammation, and myocardial fibrosis. Such an approach has the potential to

improve prognostication and selection or titration of therapeutics. However, there is the risk
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that increasing the number of variables to describe heart failure may greatly increase

complexity without generating actionable knowledge that improves clinical outcomes. To

strike a balance between inclusion of information and minimizing complexity, studies must

be carefully designed and use of more advanced statistical approaches might be required.

Thus far, despite the ability to simultaneously ascertain dozens of biomarkers in patients

with heart failure, the majority of studies have evaluated only pairs or triplets in a piecemeal

approach. Two recent studies represent important initial steps toward using biomarkers

reflecting different pathophysiological pathways for clinical decision making. The first,

performed in patients with heart failure, combined a group of 7 biomarkers that represented

different disease pathways into a multimarker score and found that addition of the

multimarker score to the Seattle Heart Failure Model led to a significantly improved AUC

and appropriate reclassification of patients (47). The second study, performed in patients

without known heart failure, showed that a multimarker score consisting of BNP, hsCRP,

growth differentiation factor-15, high-sensitivity troponin I, and sST2 provided incremental

information for predicting onset of heart failure (48). In these studies, each biomarker was

subjected to thorough evaluation via C-statistic analysis, Cox proportional hazards

modeling, and NRI and IDI assessment to verify their additive nature prior to the assembly

of the multimarker score. These exhaustive methods are an example of the necessary

approaches to ascertain the appropriate role of biomarkers beyond the natriuretic peptides.

Although these are important “proof-of-concept” studies, further investigations are required

to understand the best combinations of biomarkers for use in clinical practice and the

potential therapeutic implications of this approach. Also, because unbiased biomarker

screens continue to reveal an exponentially increasing number of candidates, there is a need

for more advanced statistical methodologies, such as the use of artificial neural networks

and support vector machines to analyze intricate changes in multiple biomarkers at the same

time. An ideal approach would allow for algorithms to recognize clinically relevant patterns

in data without prior knowledge of relationships (49,50). However, these data-driven

techniques tend to underperform in validation settings; therefore, it is essential that results

are appropriately validated.

Conclusions

Over the last decade, significant advances in understanding the pathophysiology of heart

failure have provided us with numerous biomarkers that allow for a more complete

understanding of the disease process. Whether integration of this information into clinical

decision-making algorithms may improve care of patients with heart failure rather than

simply increase complexity is unknown. To answer these questions, there is a need for a

systematic and collaborative approach aimed at definitively studying the clinical benefits of

novel biomarkers.

Despite numerous potential candidates, few novel bio-markers of heart failure have

successfully made the transition from bench to routine clinical practice; to accelerate this

process will require assiduously designed studies with a clear focus on quality. We propose

a systematized approach based on adherence to specific quality measures, both for studies
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looking to augment current diagnostic and prediction models and for studies using

biomarkers to tailor therapeutics. We suggest that study quality, rather than results, should

determine publication because this would minimize false publication bias (51). There is an

unmet need for clinical investigators and statisticians to collaborate, with the goal of

introducing more advanced statistical methodologies into the field of biomarkers that would

allow for data from a large number of variables to be distilled into clinically actionable

information. Lastly, we propose the creation of a heart failure biomarker consortium that

would allow for a comprehensive list of bio-markers to be concomitantly analyzed in a

pooled sample of randomized clinical trials and hypotheses to be generated for testing in

biomarker-guided trials. Such a consortium could collaborate in sharing samples to identify

biomarkers, undertaking meta-analyses on completed trials, and undertaking new clinical

trials to test the clinical utility of new biomarkers.
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AUC area under the receiver-operating characteristic curve

BNP B-type natriuretic peptide
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IDI integrated discrimination improvement

NRI net reclassification improvement
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Figure 1. Publications Involving Heart Failure Biomarkers
The number of publications involving heart failure biomarkers has dramatically increased

over the last decade. This has likely resulted from high-throughput molecular biology

techniques that allow increased availability of rapid-turnaround biomarker testing and

reductions in costs of analysis. The majority of these studies report associations between

novel biomarkers and prognosis from heart failure.
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Figure 2. Approaches to Evaluation of Novel Biomarkers in Heart Failure
The methodology depends on proposed use of biomarkers, especially whether they are for

diagnosis or prognostication. IDI = integrated discrimination improvement; NRI = net

reclassi fication improvement; ROC = receiver-operating characteristic.
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Figure 3. Strategies for Biomarker-Guided Trials in Heart Failure
Data from Freidlin et al. (34).
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Table 1

Evaluation of Heart Failure Biomarkers

Method

    The method by which a novel biomarker is judged should be thorough: novel tests should be evaluated across a wide range of patients typical
of the diagnosis for which the biomarker will be applied, and the statistical methods used to evaluate the biomarker should be contemporary,
rigorous, standardized, and fair.

Measurement

    Measurement of a novel heart failure biomarker should be easily achieved within a short period of time and provide acceptable accuracy.
Assays for its measurement should have defined biological variation and low analytical imprecision.

Mechanism

    The biomarker should primarily reflect important pathophysiological processes involved in heart failure presence and progression. Use of a
biomarker that is reflective of heart disease but originates outside the myocardium is acceptable as long as such a biomarker provides
independently useful information involved in the diagnosis, prognosis, progression, or therapy of heart failure syndromes.

Clinical Information

    The biomarker must provide clinically useful information for caregivers and patients to facilitate more swift and reliable diagnosis accurate
estimation of prognosis and to inform more successful therapeutic strategies. The information from such a biomarker should not recapitulate
clinical information already available at the bedside and must be additional to information provided by established biomarkers.
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Table 2

Statistical Approaches to Evaluation of Novel Biomarkers in Heart Failure

Property Metric Strengths Weaknesses

Discrimination • Area under the curve
• Survival C-statistic
• Discrimination slope

• Familiar
• Allows for comparison of different
variables and additive value of variables
beyond a base model through statistical
change in discrimination
• Based on absolute risks
• Intuitive measure of separation

• Ignores the potentially random nature of
prognosis
• May be influenced by case mix of the
cohort studied and does not take
distribution of risk into account
• May underestimate the importance of
variables when added to robust base
model
• Dependent on model calibration

Calibration • Visual inspection of prediction
and observation risk
• Slope and intercept of model
using predicted risk as
independent variable and true
outcome status as the dependent
variable

• Allows for assessment of areas of poor
calibration
• Measures amount of average bias of
prediction and degree of overdispersion

• Interpretation might be arbitrary
• May be difficult to understand

Reclassification • NRI
• IDI
• Increment in net benefit
• Weighted NRI

• Provides clinical context
• NRI is particularly useful when
predefined categories of risk exist
• Weighted NRI and increment in net
benefit provide measure of consequences

• When used with categories, NRI result
may be influenced by the arbitrary choice
of risk thresholds
• Choice of costs and weights might be
controversial

IDI = integrated discrimination improvement; NRI = net reclassification improvement.
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Table 3

Proposed Tier System for Quality of Biomarker Studies: The Paris Criteria

Improved Diagnosis and Prognostication Tailoring Therapeutics

Tier 1 Tier 1

• Satisfies criteria for tiers 2 and 3
• Interaction testing of subgroups
• Influence of therapeutics on predictive abilities

• Satisfies criteria for tiers 2 and 3
• Randomized, controlled trial in which biomarker
levels determine therapeutic choices

Tier 2 Tier 2

• Satisfies criteria for tier 3
• Compares multiple biomarkers concomitantly
• Validates results in a representative cohort

• Satisfies criteria for tier 3
• Validates results in a representative cohort

Tier 3 Tier 3

• Follows STARD statement
• Pathophysiological link to heart failure
• Confirms association with well-defined outcomes in a representative cohort of
patients with heart failure after controlling for clinical factors and natriuretic peptides
• Reports AUC with and without addition of biomarker and shows that there is
statistically significant improvement with the addition of the biomarker
• Demonstrates that addition of the new biomarker improves the classification of
those who had the biomarker event

• Shows differential effect of treatment based on
biomarker levels in a retrospective analysis of
randomized, controlled trials

AUC = area under the receiver-operating characteristic curve; STARD = Standards for Reporting of Diagnostic Accuracy.

JACC Heart Fail. Author manuscript; available in PMC 2015 October 01.


