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Abstract

Performance on visual working memory tasks decreases as more items need to be remembered. 

Over the past decade, a debate has unfolded between proponents of slot models and slotless 
models of this phenomenon. Zhang and Luck (2008) and Anderson, Vogel, and Awh (2011) 

noticed that as more items need to be remembered, “memory noise” seems to first increase and 

then reach a “stable plateau.” They argued that three summary statistics characterizing this plateau 

are consistent with slot models, but not with slotless models. Here, we assess the validity of their 

methods. We generated synthetic data both from a leading slot model and from a recent slotless 

model and quantified model evidence using log Bayes factors. We found that the summary 

statistics provided, at most, 0.15% of the expected model evidence in the raw data. In a model 

recovery analysis, a total of more than a million trials were required to achieve 99% correct 

recovery when models were compared on the basis of summary statistics, whereas fewer than 

1,000 trials were sufficient when raw data were used. At realistic numbers of trials, plateau-related 

summary statistics are completely unreliable for model comparison. Applying the same analyses 

to subject data from Anderson et al. (2011), we found that the evidence in the summary statistics 

was, at most, 0.12% of the evidence in the raw data and far too weak to warrant any conclusions. 

These findings call into question claims about working memory that are based on summary 

statistics.

The English novelist Samuel Butler stated that “life is the art of drawing sufficient 

conclusions from insufficient premises” (Jones, 1912). Nothing is truer in the empirical 

sciences, where data are generally noisy and time to collect them is limited. In such a 

setting, progress critically depends on the application of proper statistical techniques to 

assess the evidence that data provide for different candidate models. Virtually all reputable 

model comparison techniques are directly or indirectly based on the probability of the raw 

data (in psychophysics: individual-trial subject responses) given a hypothesized model and a 

hypothesized set of model parameters. This probability is called the likelihood of the model 

and its parameters, and common methods, like Bayes factors (Kass & Raftery, 1995), the 

Akaike information criterion (Akaike, 1974), the Bayesian information criterion (Schwartz, 

1978), and the deviance information criterion (Spiegelhalter, Best, Carlin, & Van der Linde, 

2002), are all derived from it.
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In recent years, many papers have debated the nature of working memory limitations 

(including Alvarez & Cavanagh, 2004; Anderson & Awh, 2012; Anderson, Vogel, & Awh, 

2011; Bays, Catalao, & Husain, 2009; Bays, Gorgoraptis, Wee, Marshall, & Husain, 2011; 

Bays & Husain, 2008; Buschman, Siegel, Roy, & Miller, 2011; Donkin, Nosofsky, Gold, & 

Shiffrin, 2013; Elmore et al., 2011; Fougnie, Suchow, & Alvarez, 2012; Fukuda, Awh, & 

Vogel, 2010; Heyselaar, Johnston, & Pare, 2011; Keshvari, Van den Berg, & Ma, 2013; 

Lara & Wallis, 2012; Luck & Vogel, 2013; Rouder, Morey, Cowan, Morey, & Pratte, 2008; 

Sims, Jacobs, & Knill, 2012; Van den Berg, Awh, & Ma, 2014; Van den Berg, Shin, Chou, 

George, & Ma, 2012; Wilken & Ma, 2004; Zhang & Luck, 2008). A key aspect of this 

debate has been whether or not there exists an upper limit to the number of items that can be 

held in visual working memory. The common metaphor is that visual working memory 

consists of “slots” that can “hold” items; when the slots are full, extra items are discarded. 

By contrast, in a “slotless” model, the quality of a memory would gradually decrease as 

more items have to be remembered but no items are completely discarded (Palmer, 1990; 

Wilken & Ma, 2004).

To compare slot models with slotless models, many studies have, appropriately, used model 

likelihoods based on raw data (e.g., Donkin et al., 2013; Fougnie et al., 2012; Keshvari, Van 

den Berg, & Ma, 2013; Lara & Wallis, 2012; Rouder et al., 2008; Sims et al., 2012; Van den 

Berg et al., 2014). Among the studies that have not, two stand out because of the strong 

evidence in favor of slot models they appear to provide: Zhang and Luck (2008), which we 

will refer to as paper 1, and Anderson et al., 2011, which we will refer to as paper 2. 

Subsequent papers by Anderson, Vogel, and Awh (Anderson & Awh, 2012; Anderson, 

Vogel, & Awh, 2013) used very similar methods. These studies have been heralded as 

strong evidence in favor of slot models (Luck & Vogel, 2013), and therefore, a close 

examination of their methods is highly relevant to the debate on working memory 

limitations.

Papers 1 and 2 both use the delayed-estimation task developed by Wilken and Ma (2004). In 

this task (Fig. 1), observers estimate, on a continuous scale, the remembered feature value of 

a target item chosen randomly from a set of items in a sample display. For example, color 

memory was tested by having subjects click on a color wheel to report the color they 

remembered of an item that was previously present at an indicated position. The data from 

delayed-estimation experiments are captured by error histograms, one for each set size 

(number of items to be remembered). Error histograms based on the data from paper 2, made 

available by its authors, are shown in Fig. 2a.

To summarize the information in such sets of response errors, Paper 1 introduced an analysis 

method by which a mixture of a uniform distribution and a Von Mises (circular normal) 

distribution is fitted to the measured errors at a given set size (Fig. 2a, red lines). The 

uniform distribution is assumed to correspond to random guesses, the Von Mises 

distribution to estimates of a memorized item. Paper 2 applied the same method. Both 

papers observed that the width of the Von Mises distribution (which we refer to as SDUVM) 

increases at small set sizes but then seems to stay constant. They performed a set of t tests 

between the SDUVM values at different set sizes to confirm the existence of a plateau in 

SDUVM at larger set sizes. They explained this apparent plateau by postulating that an item 
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either is assigned a slot and receives resource or is not and receives no resource. When set 

size is smaller than the number of slots, adding items results in less resource per item and a 

wider Von Mises component in the mixture fit. When there are more items than slots, 

however, the number of remembered items in a slot model is always equal to the number of 

slots; hence, adding items will not result in a widening of the Von Mises component in the 

mixture model.

The width of the Von Mises distribution at a given set size is an example of a summary 
statistic, a quantity that is derived from the raw data that is intended to capture their essence. 

Papers 1 and 2 introduced several other summary statistics based on this plateau prediction 

of the slot model, one of which is the p value of the above-mentioned t test. The main claim 

of both papers is that the values of the summary statistics computed from subject data 

provide strong evidence for their slot model and rule out the entire class of slotless models.

Here, we evaluated how well the slot model proposed in papers 1 and 2 can be distinguished 

from the slotless model of Van den Berg et al. (2012) by either the raw data or one of the 

plateau-related summary statistics. Using synthetic data sets, we found that the two models 

could be recovered near-perfectly from the raw data but only poorly from the summary 

statistics. Moreover, the expected model evidence in the summary statistics was, at most, 

0.15% of that in the raw data. Repeating our analysis on subject data from paper 2, we found 

that the summary statistics provide, at most, 0.12% of the evidence in the raw data. Taken 

together, our results show that the model comparison methods used in papers 1 and 2 are 

untrustworthy and, therefore, that the conclusions of those papers are premature. More 

generally, we conclude that the field must stop using summary statistics for model 

comparison and, instead, use methods based on model likelihoods obtained from raw data.

Background

Figure 2 and Table 1 illustrate the rather involved processing steps that papers 1 and 2 go 

through to compute summary statistics.

Summary statistic #1: p value of t test on SD in set sizes 3 and 4

In the slot model of papers 1 and 2, when set size exceeds working memory capacity K, each 

remembered item is remembered with the same mnemonic noise, regardless of set size. 

Hence, the slot model predicts that mnemonic noise is constant for set sizes that exceed K. 

By contrast, a slotless model would predict that mnemonic noise keeps increasing 

indefinitely, because all items are remembered and mnemonic precision decreases with set 

size. On the basis of this presumed difference, papers 1 and 2 reasoned that if a subject 

shows no significant difference between estimated mnemonic noise at two set sizes that 

presumably are equal to or greater than K, this would provide strong evidence for the 

presence of a slot limit.

To examine this quantitatively, paper 1 introduced an analysis method in which a mixture of 

a uniform and a Von Mises (circular normal) distribution is fitted to a subject’s estimation 

errors at a particular set size (processing step #1 in Fig. 1):
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(1)

where y is an estimation error and I0 is the modified Bessel function of the first kind of order 

zero (here and elsewhere, it is assumed that stimuli, estimates, and estimation errors have the 

domain [0,2π)). The weight and concentration parameter of the Von Mises component, 

denoted wUVM and κUVM, respectively, are free parameters, which were fitted using 

maximum-likelihood estimation. Each estimate of κUVM is converted to a standard deviation 

 (Mardia & Jupp, 1999), where I1 is the modified Bessel function of 

the first kind of order 1 (this slightly funny function is often used because it reduces to the 

regular standard deviation in the limit of large κUVM). The top row of Fig. 2 shows wUVM 

and SDUVM at every set size for a single subject. Paper 1 states that

Experiment 1 (N = 8) tested this model using set sizes of 3 or 6 coloured squares 

(Fig. 1c). s.d. did not vary significantly across set sizes (F < 1).… This result rules 

out the entire class of working memory models in which all items are stored but 

with a resolution or noise level that depends on the number of items in memory.

In a similar vein, paper 2 states the following:

SD values rose monotonically as set size increased until set size 4, after which a 

stable asymptote was apparent. This impression was confirmed by conducting 

paired t tests on the SD values obtained from individual subject data (individual fits 

described below): (set size 1–2, t(40) = 0.63, p < 0.001; set size 2–3, t(40) = 8.04, p < 

0.001; set size 3–4, t(40) = 1.95, p = 0.059; set size 4–6, t(40) = 0.167, p = 0.869; set 

size 6–8, t(40) = 0.724, p = 0.473). Thus, the resolution by set size function derived 

from the aggregate data was well described by a bilinear function, as predicted by 

the discrete-resource model,1

and for a second experiment,

SD values … achieved asymptote at larger set sizes (set size 1–2, t(29) = −13.29, p 
< 0.001; set size 2–3, t(29) = −4.94, p < 0.001; set size 3–4, t(29) = −0.13, p = 0.45; 

set size 4–5, t(29) = −0.72, p = 0.24; set size 5–6, t(29) = 0.038, p = 0.49).

Similar statements are found in Anderson and Awh (2012; Anderson et al., 2013). Thus, we 

define summary statistic #1 to be the p value of a t test on SDUVM between two set sizes that 

are presumably at or above capacity. Following the recommendation of Dr. Edward Awh 

(personal communication), we decided to use set sizes 3 and 4, but we found similar results 

when we used set sizes 6 and 8.

1SD is the notation used by papers 1 and 2 for SDUVM.
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Summary statistic #2: Goodness of fit of piecewise linear function

Papers 1 and 2 observe a plateau in the function of SDUVM versus set size, N. Therefore, 

paper 2 fits, by minimizing the mean squared error, a piecewise linear function2 to the 

SDUVM estimates as a function of N (processing step #2 in Fig. 1):

This function rises linearly when set size is smaller than or equal to a positive real number γ 

and is flat thereafter. Paper 2 refers to γ as the “inflection point” of the function, but the 

correct term is singularity.3 The motivation that the authors give for fitting this function is 

that slot models would predict that SDUVM exactly follows such a function but slotless 

models would not.4 Therefore, if SDUVM as function of set size is fitted well by this 

piecewise linear function, this is considered evidence for slot models and against slotless 

models:

Thus, discrete-resource models predict that WM resolution (operationalized by the 

SD parameter in the mixture model) will follow a bilinear function across set sizes, 

with resolution for the stored items reaching a stable plateau once the item limit has 

been exceeded. To test this prediction, we examined whether or not the resolution 

by set size function was well described by a bilinear function at both the group and 

individual subject level.… The bilinear function provided a strong fit to SD by set 

size functions for each individual observer (average R2 = 0.55).

Finally, the key finding from experiment 1 was also replicated; … the bilinear 

function again provided a strong fit to SD by set size functions for each individual 

observer (average R2 = 0.65).

Similar statements are found in (Anderson & Awh, 2012; Anderson et al., 2013). Thus, we 

define summary statistic #2 as the goodness of the fit of the piecewise linear function to 

SDUVM as function of set size, as expressed by the coefficient of determination, R2, 

averaged across subjects.

Summary statistic #3: Correlation between wUVM and singularity

Finally, Paper 2 computes the correlation between the singularity in the piecewise linear fit 

(i.e., the value of γ) and the value of wUVM at set size 8 (processing step #1 in Fig. 1). The 

reasoning here is that slot models presumably predict a strong correlation and slotless 

models do not. The authors argued that their data show a strong correlation between these 

two variables and that this supports their slot model:

2Paper 2 refers to this function as a “bilinear function.” However, a bilinear function is a function of two variables that is linear in 
both.
3An inflection point is a point where the second derivative changes sign. In a piecewise linear function, all pieces have a second 
derivative of zero. However, the point γ is special because the first derivative is discontinuous; this is an example of a singularity.
4A problem with this analysis is that the authors incorrectly assumed that SDUVM rises linearly at set sizes below capacity. However, 
no model, slot or slotless, has proposed such a relationship between (circular) standard deviation and set size; instead, the (circular) 
variance is typically assumed to rise linearly with set size. In practice, these are hard to distinguish when the rising part of the curve is 
small.
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In addition, the data confirmed the predicted correlation between individual item 

limits (estimated using Pmem for set size 8) and the set size at which SD reached 

asymptote (R2 = 0.657; t(40) = 8.76; p < 0.0001). [T]he item limit determined for 

each observer was strongly predictive of the set size at which the resolution by set 

size function reached asymptote. This finding confirms a clear prediction of 

discrete-resource models5, 6

and later,

Finally, the key finding from experiment 1 was also replicated; estimates of the 

item limit for each observer strongly predicted the set size at which WM resolution 

reached asymptote for each subject (R2 = 0.525; t(28) = 5.554; p < 0.0001).

Thus, summary statistic #3 is the R2 of the correlation (across subjects) between the 

singularity in the piecewise linear fit, γ, and the value of wUVM at set size 8.

Method

Models

To evaluate the effectiveness of the three summary statistics when comparing working 

memory models, we considered two models—one slot model and one slotless model. The 

slot model is the slots-plus-resources model that was introduced by paper 1 and advocated 

by paper 2. In this model, the observer has K slots to store items, where K is called the 

capacity. When the number of items in a display, N, is smaller than K, the available memory 

precision, J1, is equally divided among the N items, so that the precision per item, denoted J, 

is equal to J1/N. Precision is inversely related to the width of the error distribution (see the 

Appendix). When N ≥ K, precision is equally divided among K randomly selected items, so 

that J = J1/K for each item in memory and J = 0 for the remaining items. This model has two 

free parameters, J1 and K. Elsewhere, we termed this type of model the equal precision with 
a fixed number of slots model (EPF; Van den Berg et al., 2014), and we follow that 

terminology here. The EPF model is very similar to the slots-plus-averaging model favored 

by paper 1.

In the slotless model that was tested in papers 1 and 2, a fixed amount of memory precision 

is evenly distributed across all N items; thus, the quality with which items are remembered 

decreases with N. Here, we used a recently proposed variant of this model, which 

incorporates variability in precision and was found to provide a better description of 

working memory data than did the original slotless model (Van den Berg et al., 2012). In 

this model, all N items are remembered, but the precision per item, J, varies across items and 

trials. We model J as being drawn independently for each item from a gamma distribution 

5Pmem is the notation paper 2 uses for wUVM. We changed notation because Pmem is associated with the interpretation that an 
item is either memorized with a fixed precision (with probability Pmem) or completely discarded. We do not subscribe to this 
interpretation (Van den Berg et al., 2014; Van den Berg et al., 2012) and therefore opted for a more neutral notation. For the 
same reason, we do not refer to SDUVM as memory noise, precision, or resolution.
6Our correlation plot in Fig. 1 is not identical to that in Fig. 4B in paper 2, and the R2 we find is lower. The reason is that the 
singularity estimates reported in paper 2 were inaccurate, due to a mistake in their analysis: Due to poor initialization of the 
optimization method used for fitting the mixture model, it often returned SDUVM estimates corresponding to a local maximum, 
instead of the global maximum of the likelihood function. After correcting this mistake, Anderson and colleagues find a different 
plot and an R2 of about .55 instead of .65 (personal communication with the authors).
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with mean  and scale parameter τ. Thus, memory precision is only, on average, equal 

for each item. This model also has two free parameters, J̄
1 and τ. Following Van den Berg et 

al. (2014), we refer to this model as the variable precision with all items remembered (VPA) 

model. Mathematical specifications of both models are found in the Appendix.

Our aim was not to examine whether working memory performance is best described by the 

EPF or the VPA model. Although these particular models have been advocated for in recent 

papers (EPF, papers 1 and 2; VPA, Fougnie et al., 2012; Van den Berg et al., 2012), it is 

important to keep in mind that many other possible slot and slotless models are conceivable. 

In other work, we performed a comprehensive comparison of a large number of slot and 

slotless models (Van den Berg & Ma, 2013). Our goal here was to examine how informative 

the proposed summary statistics are for comparing slot and slotless models of working 

memory. In this context, EPF and VPA merely serve as plausible examples of these classes 

of models. If the methods used by papers 1 and 2 cannot distinguish these example models, 

then, by extension, they are not suitable for categorically comparing slot and slotless 

models.

Synthetic data

To obtain model predictions, we generated synthetic data from both the EPF and the VPA 

models. We define a synthetic data set as a collection of 45 synthetic subjects, all of which 

were generated using the same model (either EPF or VPA), but with different parameter 

combinations. We used set sizes 1, 2, 3, 4, 6, and 8. The set sizes and number of subjects 

matched those used in Experiment 1 of paper 2. We varied the number of trials per subject 

across analyses. For a given number of trials per subject, we generated 1,000 synthetic data 

sets from each model. For each data set, we have four data types: the raw data and three 

summary statistics.

To make the synthetic data statistically similar to subject data, we drew parameter values 

(log J1 and K for EPF; log J̄
1 and log τ for VPA) for each synthetic subject from a bivariate 

normal distribution7 (Fig. 1a) with the same mean and covariance as the maximum-

likelihood estimates that we obtained from fitting the models to the subject data from 

Experiment 1 of paper 2. The values drawn for K in the EPF model were rounded the 

nearest integer. Thus, our simulations are likely relevant to model comparison based on 

subject data. To verify that the precise form of the parameter distribution does not affect our 

conclusions, we also tried uniform distributions over all parameters.

Log Bayes factors

We denote the data by D; they could be either the raw data or one of the summary statistics. 

A principled and, in some sense, optimal way to compare two models is to compute their 

posterior probabilities given the data (Kass & Raftery, 1995; Lynch, 2007); in our case, 

7The log transformations on J1, J̄1, and τ were performed because a normal distribution to the logarithms of the parameter estimates 
fitted much better than a normal distribution to the original values (the differences in maximum log likelihood were larger by 122, 
158, and 152, respectively).
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these probabilities are denoted p(EPF|D) and p(VPA|D). Evidence for the EPF model, 

relative to the VPA model, is captured by the log posterior ratio,

Thus, L measures the strength of the evidence in favor of the EPF model. If L is positive, 

EPF is the best-fitting model; otherwise, VPA. Applying Bayes’s rule and assuming equal 

prior probabilities over the two models, we can rewrite L as

(2)

which is known as the log Bayes factor. Mathematical details of how we computed log 

Bayes factors can be found in the Appendix. All the results reported below remain 

qualitatively unchanged when we use AIC, AICc, or BIC, instead of log Bayes factors. 

Thus, what matters for conclusions about model evidence is what data type is used for D 
(raw data or summary statistics), not exactly which likelihood-based measure of evidence is 

used.

Model recovery and model evidence

Recall that we have two generating models (EPF and VPA), 1,000 synthetic 45-subject data 

sets generated from each model, four data types for each data set (raw data and three 

summary statistics), and one log Bayes factor based on each data type and each data set; 

finally, we repeat all of this for several numbers of trials per synthetic subject. The sign of 

the log Bayes factor indicates whether the selected model is EPF or VPA: Positive Bayes 

factors indicate evidence for the EPF model, and negative ones for the VPA model. We 

define model recovery rate as the percentage of correct model selections among the 1,000 

data sets, where a correct model selection is defined as the sign of the log Bayes factor being 

positive when applied to synthetic EPF data and negative when applied to VPA data. We 

define expected model evidence (for the EPF model relative to the VPA model) as the log 

Bayes factor averaged across the 1,000 data sets. Thus, we obtain one model recovery rate 

and one value of expected model evidence for each combination of a generating model, data 

type, and number of trials.

Results

Model recovery and model evidence from raw data

When comparing models, we want to be confident that the winning model is indeed the one 

that describes reality best. This means that we would like to use a model comparison method 

that gives a perfect or near-perfect model recovery rate on synthetic data: When synthetic 

data are generated using Model X, the ideal model comparison method would select Model 

X 100% of the time. Moreover, model recovery rate and expected model evidence should, 

on average, increase with the size of the data set.
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We first evaluated whether these criteria are satisfied if we select a model based on the log 

Bayes factors based on the raw data (Fig. 3a). We used synthetic data (see the Method 

section) with 8, 16, 32, 64, 128, and 256 trials per subject to compute the model recovery 

rate from the raw data (Fig. 3b). On EPF data sets with 8 trials per subject, the VPA model 

was in 12% of the cases incorrectly selected as the most likely model, but for all synthetic 

EPF and VPA data sets with 16 or more trials per subject, model recovery rate was 100%. 

Hence, as few as 16 trials per subject with 45 subjects, for a total of 720 trials, were 

sufficient to near-perfectly recover these two models when raw data were used.

The expected model evidence in raw EPF and VPA data increased monotonically with the 

number of trials (Fig. 3c). Already at 16 trials per subject, the expected model evidence on 

EPF and VPA data was 31.4 and −42.6, respectively, both of which are considered decisive 

evidence (Jeffreys, 1961).8

These results indicate that the EPF and VPA models are easy to distinguish from raw data 

using a likelihood-based model selection method. Next, we will examine how well the 

models can be distinguished using summary statistics.

Summary statistic #1: p value of t test on SD in set sizes 3 and 4—The first 

summary statistic in papers 1 and 2 is the p value of a t test on SDUVM between set sizes 3 

and 4. Papers 1 and 2 claimed evidence for slot models based on finding a p value higher 

than .05. The critical problem is the implicit assumption that slotless models will produce a 

difference in SDUVM that is significant with a p value smaller than .05. Neither paper 1 nor 

paper 2 produces any evidence for this statement, and we show here that it is not true.

We generated synthetic data (see the Method section) to approximate the predicted 

distribution of summary statistic #1 under both models. When the number of trials per 

subject was very large and the estimates of SDUVM thus essentially noiseless, the EPF 

model showed a clear plateau in SDUVM, and the VPA model a monotonic increase (Fig. 4a, 

left). Consistent with the reasoning behind the methods in papers 1 and 2, we found that the 

difference between set sizes 3 and 4 was highly significant in the VPA model (p < .001), but 

not in the EPF model (p = .54). However, when we reduced the number of trials per subject 

to a value that is more representative for subject data sets (Fig. 4a, right), the estimates of 

SDUVM became noisy, and neither model produced a significant difference. Hence, for data 

sets with a realistic number of trials, p > .05 does not seem to be a sensible criterion to 

distinguish the models.

In fact, if we use 720 trials per subject as in Experiment 1 of paper 2, it is impossible to 

impose any criterion on the p value that cleanly separates the models: The distributions are 

broad and overlap, meaning that any p value could have come from either model (Fig. 4b). 

The value from the subject data of Experiment 1 in paper 2 (indicated with a blue arrow) is 

slightly more probable under the VPA model, but the difference is so small that this result is 

8The results in Fig. 3c are asymmetric: The evidence for the EPF model tested on EPF data is systematically lower than the evidence 
for the VPA model tested on VPA data. This indicates that the VPA model is better at "mimicking" EPF data (specifically, a uniform 
component in the estimate distribution) than the EPF model is at mimicking VPA data (specifically, a mixture of precisions in the 
estimate distribution). This asymmetry is a property of the models, not a shortcoming of the model comparison method. The validity 
of the model comparison method follows from the 100% model recovery rate.

van den Berg and Ma Page 9

Atten Percept Psychophys. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



inconclusive (we will quantify this in the Model Evidence in Empirical Data section below). 

The overlap of the predicted distributions of p values is seen not only at 720 trials per 

subject, but also at up to thousands of trials per subject, meaning that the models cannot be 

distinguished well (Fig. 4c). Hence, comparing summary statistic #1 with a criterion is a 

very poor method for comparing slot and slotless models.

To extract the most information from summary statistic #1, one can compute the log Bayes 

factor of the two competing models using the value of the summary statistic as “data” (see 

the Method section and the Appendix). The log Bayes factor takes into account the precise 

distributions of the p value predicted by the models. We found that log Bayes factors based 

on summary statistic #1 (Fig. 4d) produced much lower model recovery rates than did log 

Bayes factors based on the raw data (Fig. 3b). In addition, expected model evidence in 

summary statistic #1 (Fig. 4e) was very weak, as compared with expected model evidence in 

raw data (Fig. 3c). These results indicate that even when analyzed in the best possible way, 

summary statistic #1 cannot distinguish the EPF from the VPA model and, therefore, cannot 

distinguish between slot and slotless models in general.

Summary statistic #2: Goodness of fit of piecewise linear function—Paper 2 fits 

a two-piece piecewise linear function to SDUVM as a function of set size (processing step #2 

in Fig. 1). Summary statistic #2 is the goodness of the fit of this function, as measured by 

R2. Relatively high values of this R2 are taken as evidence for the slot model.

The critical problem with this reasoning is the implicit assumption that slotless models 

would predict a low R2. It is not clear what this assumption is based on, because the authors 

do not specify what relationship a slotless model would predict for SDUVM versus set size.9 

To examine the distributions of summary statistic #2 under both models, we derived model 

predictions from the synthetic data sets in the same way as we did for summary statistic #1. 

When the number of trials was very large, the piecewise linear fit was nearly perfect for the 

EPF model and less good for the VPA model (Fig. 5a, left). However, for data sets of a size 

that is more representative for subject data, estimates of SDUVM were noisy under both 

models, and the piecewise linear function did not provide a good fit to either (Fig. 5a, right).

Figure 5b shows the predictions obtained with 720 trials per subject, as in Experiment 1 of 

paper 2. Somewhat surprisingly, in this regime of relatively small data sets, the VPA model 

predicted, on average, a higher R2 than did the EPF model, contrary to the assumption made 

in paper 2. More important, the distributions strongly overlap, meaning that the R2 values 

are uninformative about the model that generated the data. The R2 value obtained from the 

subjects in Experiment 1 of paper 2 (indicated with a blue arrow in Fig. 5b) was, on 

average, .635 ± .040. Finding this value is slightly more probable under the VPA model than 

it is under the EPF model, but the difference is so small that the result is inconclusive (we 

will quantify this in the Model Evidence in Empirical Data section below).

9In a subsequent paper (Anderson & Awh, 2012), the same authors asserted that slotless models would predict a logarithmic function. 
However, this assertion is unfounded. Some slotless models in the literature postulate a power law function between precision and set 
size (Bays & Husain, 2008; Van den Berg et al., 2012), but this does not correspond to a logarithmic relationship between SDUVM 
and set size.
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Under both models, the predicted R2 increased as a function of the number of trials in a data 

set (Fig. 5c). The predictions overlapped strongly between the models, indicating that they 

are difficult to distinguish on the basis of this summary statistic. The predicted curves 

crossed around 6,000 trials per subject. As a result, model recovery rates did not 

monotonically increase with the number of trials per subject (Fig. 5d). The expected model 

evidence followed the same trend (Fig. 5e). This is an undesirable feature of a model 

comparison method, since it means that it could be detrimental to collect more data! Overall, 

the expected model evidence was low, as compared with the raw data.

Summary statistic #3: Correlation between singularity and wUVM—The third 

summary statistic that was used in paper 2 to argue in favor of slot models is the correlation 

between the singularity of the piecewise linear fit discussed in the previous section and 

wUVM at set size 8 (supposed to be proportional to memory capacity). The authors argued 

that the observed R2 of the correlation between these two variables supports the EPF model. 

When the number of trials is very large, the EPF model predicts a very high R2 between 

these two variables. It is unclear, however, what it predicts when the number of trials is 

similar to that in subject data, and neither is it clear what a slotless model would predict. The 

authors seem to have assumed that the correlation would be low in slotless models.

The results from our analysis of synthetic data show that the assumption that the correlation 

is strong in slot models but weak in slotless models is wrong (Fig. 6a). Both models predict 

a strong correlation when the number of trials per subject is large and a weak correlation 

when the number of trials is low. Using 720 trials per subject, the predicted distributions of 

summary statistic #3 strongly overlap between the models (Fig. 6b). Surprisingly, the value 

found in the empirical data (R2 = .59) is highly unlikely under both models. One possible 

explanation is that neither model is a good description of the data. However, given that the 

estimates of wUVM at set size 8 and of the singularity tend to be noisy in small data sets, it 

seems unlikely under any model to find a strong correlation between these two summary 

statistics. Therefore, a more plausible explanation may be that the empirical value is a 

statistical outlier.

Both models predict that the correlation will increase with the number of trials per subject, 

and their predictions strongly overlap, unless a very large number of trials is used (Fig. 6c). 

Model recovery rate (Fig 6d) and expected model evidence (Fig. 6e) are again low, in 

comparison with the raw data (Fig. 3). Hence, summary statistic #3 also is uninformative, as 

compared with raw data analysis.

Model evidence in synthetic data: Summary

We draw two important conclusions from the results thus far (Fig. 7). First, expected model 

evidence in summary statistics is negligible, as compared with the evidence in raw data (Fig. 

7a). At 720 trials per subject, the expected model evidence in synthetic EPF data was 0.59, 

3.04, and 0.13 for the three summary statistics and 1,504 for the raw data. The values 

obtained from the synthetic VPA data were −0.79, −3.04, and −0.11 for the three summary 

statistics and −3,112 for the raw data. Hence, summary statistic #2 was the most informative 
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of the three but still provided only 0.15% of the expected model evidence contained in the 

raw data.

Our second conclusion, so far, is that model recovery rate based on summary statistics is 

poor, as compared with model recovery rate based on raw data (Fig. 7b). Again, summary 

statistic #2 was the most informative summary statistic, reaching 99% model recovery at 

about 43,660 trials per subject, for a total of 1.96 million trials in the data set. The other two 

summary statistics did not reach 99% in the range that we tested. When performing model 

selection based on raw data, however, only 15 trials per subject (675 in total) were needed to 

reach the same level of accuracy (see Fig. 3b).

Model evidence in empirical data

The simulation results suggest that model evidence from summary statistics tends to be only 

a small fraction of the evidence contained in the raw data. We next examined whether the 

same is true for the subject data from Experiment 1 of paper 2. The expected model 

evidence in the summary statistics was 0.48, −1.02, and 0.39, respectively (Fig. 8a), which 

are all inconclusive (Jeffreys, 1961). By contrast, the expected model evidence in the raw 

data was −848.0, providing overwhelmingly strong evidence in favor of the VPA model (it 

means that the VPA model is e848 times more likely to have generated the subject data than 

the EPF model). Thus, on subject data, the most informative summary statistic (#2) provided 

only 0.12% of the expected model evidence in the raw data.

These results suggest that the models make very different predictions at the level of raw 

data, but not at the level of the summary statistics. This is confirmed in Fig. 8b, c, which 

show the maximum-likelihood fits of the models to both the raw data and the three summary 

statistics. A clear difference is observed in the goodness of fit to the raw error histograms, 

but the fitted values of the summary statistics are very similar between the models.10 As was 

suggested by Fig. 6b, neither of the models accounts well for the observed value of summary 

statistic #3, possibly because it is an outlier.

Making strong claims about slot versus slotless models would require a more extensive 

model comparison, which we do elsewhere (Van den Berg et al., 2014). The main message 

of the present article is methodological: Conclusions about working memory models based 

on plateau-related summary statistics are unwarranted, because these statistics are virtually 

devoid of evidence. However, we can state that between the EPF and VPA models, the VPA 

model is a much better description of the subject data in paper 2 than is the EPF model, 

which is consistent with findings in earlier work (Keshvari et al., 2013; Van den Berg et al., 

2012).

Model comparison based on Kolmogorov–Smirnov tests

Paper 2 performs one more analysis on its behavioral data—namely a Kolmogorov–Smirnov 

(KS) test to examine whether the empirical error distributions are compatible with the 

distributions predicted by the models. This analysis also has problems. First, the authors 

10The reason why the EPF fit to the raw data is worse than the fits shown in Fig. 2 of paper 2 is that the latter does not show the fit of 
the EPF model, but of the mixture model in Equation 1, which is fitted separately at each set size and thus has a total of 12 parameters.
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apply the KS test to pooled subject data. This is problematic because the mixture of many 

uniform-plus-Von-Mises distributions is not uniform-plus-Von-Mises. Hence, even if the 

EPF model were a perfect model for single-subject data, it would not be a good model for 

pooled data. Rather than expecting that the KS test rejects the VPA model but not the EPF 

model, by applying the test to pooled data, the authors should have expected it to reject both 

models. Second, while the KS test works best on raw data, the authors used histograms (15 

bins) of the data as input to the test (personal communication with the authors). We applied 

the KS test to the raw data from paper 2 and found results that are inconsistent with those 

reported in paper 2: The null hypothesis that the data follow the distribution predicted by the 

EPF model is rejected at four out of six set sizes.

Robustness under varying the parameter distribution

All simulation results presented thus far were based on synthetic data generated using 

parameter values drawn from a distribution with the same mean and covariance as the 

maximum-likelihood estimates obtained from the subject data of paper 2 (see the Method 

section). The motivation for using this prior distribution was that we wanted to make the 

synthetic data statistically similar to empirical data; after all, there would be little relevance 

in showing that the models can or cannot be distinguished on data sets that are statistically 

very different from subject data. Nevertheless, our conclusions would ideally not depend 

strongly on the choice of parameter distribution. To examine this, we performed two 

additional analyses.

First, we examined to what extent our results changed if we replaced the “empirical” prior 

distributions by uniform distributions. In this analysis, we independently drew the values of 

all four parameters (log J1, and K in EPF models; log J̄
1 and log τ in VPA models) from a 

uniform distribution on [1,5], both when generating the synthetic data and when 

marginalizing over parameters in the computation of log Bayes factors (Equation 4). We 

found that the model recovery rate (Fig. 9a) and log Bayes factors (Fig. 9b) obtained from 

raw data were hardly affected by this change of prior distribution (cf. Fig. 3b, c): Only very 

few trials were required to distinguish the models near-perfectly. Furthermore, we found that 

the predicted distributions of the summary statistics depended quite strongly on the choice of 

prior distribution over parameters (Fig. 9b; cf. Figs. 4b, 5b, 6b). However, there was no 

noticeable difference in the model evidence obtained from subject data (Fig. 9c). Hence, our 

findings did not noticeably change when replacing the empirical prior distribution by a 

uniform one.

Second, experimenters often have little knowledge of the true distribution over parameters. 

Therefore, we examined how strongly the success of model comparison using raw data 

depends on using the “correct” prior in the marginalization step. To this end, we replaced in 

that step the empirical prior distributions, p(θEPF,i|EPF) and p(θVPA,i|VPA) in Equation 4, by 

the uniform distributions that we also used in the previous analysis. However, we did not 

replace the prior in the generative part of the analyses (which is used when computing the 

expected value of the log Bayes factor), with the consequence that the marginalization prior 

does not match the generative prior. We found that the model recovery rate drops to chance 

when 8 or 16 trials are used per subject (Fig. 10a; cf. Fig. 3b) but is near-perfect when 32 or 
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more trials are used per subject. Similarly, while the magnitudes of the expected log Bayes 

factors under this uninformative marginalization prior are lower than under the informative 

one, 32 trials per subject are sufficient to reliably distinguish the models (Fig. 10b; cf. Fig. 

3c). Hence, even when using an “incorrect” prior in the marginalization step, model 

recovery based on raw data is still orders of magnitude better than model recovery based on 

summary statistics using the “correct” prior in the marginalization.

Discussion

The appearance of a plateau in estimates of mnemonic noise has been repeatedly cited as 

strong evidence in favor of slot models and against slotless models of working memory 

(Anderson & Awh, 2012; Anderson et al., 2011, 2013; Fukuda et al., 2010; Luck & Vogel, 

2013; Zhang & Luck, 2008). Here, we have shown that the reasoning in those papers is 

incorrect: At realistic numbers of trials, values of plateau-related summary statistics are very 

similar, at least, between one slot model and one slotless model and, thus, cannot be used to 

reliably distinguish the two classes of models. This means that model claims based on 

plateau-related summary statistics should, in general, not be trusted, and especially not if no 

validation of the methods is provided.

The mere definition of the plateau on which the summary statistics are based (or the 

complexity of Fig. 1) indicates how far removed it is from the raw data: It is a plateau in the 

dependence on set size of the circular standard deviation of the Von Mises component in a 

fit of a mixture of a Von Mises distribution and a uniform distribution to the estimation 

errors. To illustrate that valuable information is thrown out by processing the data, consider 

processing step #1, in which is the raw responses are summarized in the mixture model 

parameters, wUVM and SDUVM. The information that is discarded is captured by the 

residual, the difference between the raw data and the mixture model fit. In earlier work, we 

showed that the residual can be highly informative about the model that underlies the data: 

The EPF model predicts a flat residual, while the VPA predicts a residual that peaks at zero 

error and has negative side lobes (Van den Berg et al., 2012). Hence, summarizing a data set 

by wUVM and SDUVM amounts to throwing out informative aspects of the data.

Would other summary statistics fare better than the ones used by papers 1 and 2? For 

example, the EPF model predicts that when the number of trials is very high, the estimate of 

K obtained from wUVM is identical to that obtained from the singularity in the piecewise 

linear function. Thus, one could suggest the regression slope rather than the correlation of 

those two quantities as a summary statistic. As another example, the EPF model predicts that 

subjects will tend to have a singularity in SDUVM, whereas slotless models do not. 

Therefore, the number of subjects with a singularity smaller than the largest set size could be 

another summary statistic. A third example would be the presence of a significant difference 

in wUVM between the lowest and highest set size. A fourth example would be p values 

returned by the KS tests on the error distributions. The list can go on, but the ones we have 

tried suffer from the same flaw as the summary statistics examined above: On synthetic data, 

at realistic numbers of trials, they cannot convincingly distinguish between the EPF and 

VPA models.
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However, even if a summary statistic could be found that does not suffer from this flaw 

when analyzed in the best possible way (i.e., using likelihoods), there are strong general 

reasons to avoid summary statistics. First, no data processing can ever increase the expected 

model evidence, a theorem proven by Kullback (1997) and known as the data processing 

inequality. In practice, most data processing will decrease the amount of evidence. Thus, it 

is always best to use the raw data. Second, the choice of which summary statistics to use to 

compare models is, at best, arbitrary and, at worst, biased. Third, one may need to invent 

novel summary statistics each time when a model is added to the comparison. For example, 

even if a plateau-related summary statistic could distinguish between slot and slotless 

models, it might not be able to distinguish a slot model with equal precision from one with 

variable precision. Analyzing raw data avoids all these problems.

Given the drawbacks of comparing models based on summary statistics, why is the practice 

still common in the working memory field? Part of the reason might be that analyzing 

summary statistics seems generally easier, less time-consuming, and not as computationally 

demanding as using likelihood-based methods on the raw data. However, as we experienced 

in performing the analyses presented here, properly validating a summary statistic using 

synthetic data is, in fact, more work than computing model likelihoods from the raw data! 

Another reason may be “the curse of plots,” researchers’ tendency to summarize results in 

graphs (such as SDUVM vs. set size), which could encourage a search for qualitative, visible 

differences, instead of a formal analysis of individual-trial data. Plotted quantities are 

usually summary statistics and rarely a complete representation of the raw data. If a 

difference between models is not readily visible in a plot, that does not mean the models are 

indistinguishable; it simply means that we have not thought of the right projection of the 

data into a low-dimensional subspace. Although visualizing selected features of data is 

critical for the purpose of scientific communication, analyzing those features should always 

be secondary to analyzing individual-trial data for the purpose of model comparison.

Paper 2 goes beyond the behavioral analyses examined here and also reports neural data. 

They show that contralateral delay activity in ERP data (Vogel & Machizawa, 2004) is fitted 

well by a piecewise linear function and that its magnitude correlates with individual 

differences in estimated memory capacity (K in the EPF model). They argue that both 

findings are consistent with slot models, but not with slotless models. However, slotless 

models were not explicitly considered. Fair consideration of slotless models would include a 

search for markers in the neural signal that correlate with quantities in the slotless model, 

such as ones that rise or fall monotonically with set size. More generally, as compared with 

the behavioral models we discussed here, there is an extra unknown when analyzing ERP 

data—namely, how a behavioral quantity maps to a neural quantity. There are currently no 

first-principle (e.g., biophysical) models for this mapping, which necessitates arbitrary 

assumptions and complicates model comparison. For these reasons, we do not believe that, 

as of now, ERP data can contribute to formal comparison of slot and slotless models.

In the debate about the nature of working memory limitations, we sometimes hear the 

lament that models are becoming practically impossible to distinguish as they are refined. 

This concern can, in many cases, be addressed by using raw data instead of summary 

statistics for model comparison. Whereas model comparisons based on the three summary 
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statistics were inconclusive for the data of paper 2, Bayes factors based on the raw data 

pointed out a clear and unambiguous winning model. While ultimately, some models might 

be hard to distinguish even on the basis of raw data, the study of working memory 

limitations would benefit greatly from avoiding summary statistics for model comparison.
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Appendix

Relation between memory precision and noise

Before specifying the EPF and VPA models, we need to define memory precision. All 

models of working memory to date have assumed that memories of circular variables (such 

as color and orientation) are corrupted by Von Mises-distributed noise. In a delayed-

estimation task, the stimulus estimate is equal to the memory. This means that if the stimulus 

is s and the estimate is ŝ, then the distribution of ŝ given s for a given value of mnemonic 

precision J is

where I0 is the modified Bessel function of the first kind of order 0. The width of this 

memory distribution is quantified by the concentration parameter κ: the higher κ, the less 

noise. If p ŝ | s, J had been Gaussian, one would naturally define precision J as the inverse of 

the variance of this Gaussian (Palmer, 1990; Shaw, 1980). A general way to define precision 

is as Fisher information, which sets an upper limit on the performance of a stimulus 

estimator (Keshvari et al., 2012, 2013; Van den Berg et al., 2014; Van den Berg et al., 

2012). For a Gaussian distribution, Fisher information is indeed equal to inverse variance, 

while for a Von Mises distribution, J is related to the concentration parameter through 

van den Berg and Ma Page 17

Atten Percept Psychophys. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



 (Van den Berg et al., 2012), where I1 is the modified Bessel function of the first 

kind of order 1. This relationship is close to linear, with the biggest deviations occurring at 

small κ.

Response probabilities predicted by the models

In the EPF (slots-plus-resources) model (Zhang & Luck, 2008), the observer remembers all 

items when set size, N, is smaller than capacity, K, and K items otherwise. When N ≥ K, all 

items are remembered, each with precision . (A more general form, in which precision 

was J1Nα, was considered in Van den Berg et al. [2014] and Van den Berg [2012].) The 

concentration parameter κ is then defined by the relation . When N > K, on each 

trial, K randomly selected items are remembered with precision , whereas the other N − K 
items are not remembered at all. If a nonremembered item is probed, the observer guesses 

randomly. Then, the distribution of the observer’s estimate ŝ is

where κ is now defined by . The free parameters of the EPF model are K and J1; K 
can take on any positive integer value, and J1 any positive real value. In the VPA model 

(Van den Berg et al., 2012), the observer remembers all N items. Mnemonic precision J is 

drawn, independently for each item, from a gamma distribution with mean  and scale 

parameter τ:

(note that in many texts, the shape parameter instead of the mean is specified). A more 

general form, in which mean precision was J̄
1Nα, was considered in (Van den Berg et al., 

2014; Van den Berg et al., 2012). The distribution of the observer’s estimate is then
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We evaluated this integral numerically through Monte Carlo simulation by drawing 1,000 

samples of J. The free parameters of the VPA model are J̄
1 and τ; both parameters can take 

on any positive real value. In both models, at each value of N, we evaluated p ŝ | s for 180 

equally spaced values of ŝ −s.

Log Bayes factors

Raw data

Using conditional independence of the raw data across subjects, the log Bayes factor of the 

EPF and VPA models equals

(3)

where D denotes the complete set of all data and Di the data from the ith subject. The model 

likelihoods in the numerator and denominator are computed by averaging over all possible 

parameter values, an operation known as marginalization:

(4)

where θEPF,i and θVPA,i denote the (two-dimensional) EPF and VPA parameter vectors for 

the ith subject, respectively. We define the prior distributions over these parameters, 

p(θEPF,i|EPF) and p(θVPA,i|VPA), respectively, as bivariate normal distributions. To make 

the synthetic data statistically similar to subject data, we set the means and covariances of 

these distributions to the means and covariances of the maximum-likelihood estimates under 

the respective models obtained from the subject data of Experiment 1 in paper 1.

Since Di consists of the ith subject’s individual-trial responses, we can directly evaluate the 

likelihoods p(Di|EPF,θEPF,i) and p(Di|VPA,θVPA,i) using the equations in the Response 

Probabilities Predicted by the Models section. The integrals were evaluated numerically by 

drawing 500 parameter vectors from the prior distributions and averaging the corresponding 

likelihoods. To examine whether 500 was sufficient to obtain stable and unbiased estimates, 

we performed a separate analysis in which we computed the log expected Bayes factor as a 

function to the number of samples (Fig. 3a). We found that convergence starts at around 16 

samples, meaning that 500 is more than sufficient to obtain stable and unbiased estimates.

Summary statistics

When D is a summary statistic, we cannot use the second part of Equation 3, because each 

summary statistic is computed from the data of all subjects, not the data of an individual 

subject. Instead, we have
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where θ now denotes the vector parameters across all subjects. In our simulations, for both 

models, θ is a 90-dimensional vector, since we have 45 subjects per data set, with two free 

parameters each. The priors are factorizable, but the likelihoods are not, and therefore,

(5)

We approximated numerator and denominator by simulating, per model, 1,000 data sets of 

45 subjects each, whose parameters we drew from the prior distributions described above. 

For each set, we evaluated the summary statistic D. In this way, we built two empirical 

distributions over D, one for the EPF model and one for the VPA model, each with 50 

equally spaced bins on [0,1]. If a bin had no counts, we set the value of the distribution equal 

to 10−4 (one order of magnitude below 1 divided by the number of simulations). This 

produced the distributions shown in Figs. 4b, 5b, and 6b. These distributions were used to 

compute L at every value of D in Equation 5.

Model recovery rate and expected model evidence

The model recovery rate was the percentage of synthetic data sets for which the generating 

model was selected as the most likely model (i.e., the percentage of EPF data sets for which 

L was positive and the percentage of VPA data sets for which L was negative). The expected 

model evidence was the average of L over the synthetic data sets generated from each 

model. Incidentally, the two expected Bayes factors thus obtained (one for data generated 

from the EPF model and one for data generated from the VPA model) are mathematically 

identical to the Kullback–Leibler divergences between the data distributions under both 

models (Cover & Thomas, 1991). These information-theoretic quantities measure the 

separation between the data distributions. Large expected model evidence means that the 

data distributions are far separated.

Note that these quantities were computed in a way that was extremely favorable to the 

summary statistics. To compute the log Bayes factor for a given summary statistic, one 

requires an estimate of the “theoretical” distribution of that summary statistic under both 

models. We obtained these estimated distributions from the same synthetic data as those 

used to estimate the expected log Bayes factors. This constitutes overfitting, and, therefore, 

the model recovery rates and expected model evidence values we report are upper bounds on 

the true values. Our results show that even these upper bounds are inferior to using the raw 

data for D. This problem does not appear when estimating log Bayes factors based on raw 

data, because the “theoretical” distribution of the raw data is given by the models and, 

therefore, does not need to be estimated through simulation.

To compute the model evidence for the subject data, we looked up the value of L for the 

empirical value of the summary statistic D.
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Model fits to summary statistics (Fig. 8c)

To compute model fits to the summary statistics, we generated 100 synthetic data sets with 

45 subjects each, with parameter values set to the maximum-likelihood estimates of the 

subjects. For each synthetic data set, we computed the summary statistic. Figure 8c shows 

the means and confidence intervals from those 100 runs. Confidence intervals for the subject 

data were obtained by using a bootstrap method: We computed each summary statistic 100 

times by randomly drawing with replacement 45 subjects from the subject pool.
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Fig. 1. 
Trial procedure of a typical delayed-estimation experiment (Wilken & Ma, 2004). Subjects 

view a set of items and, after a delay, report the value of one item—for instance, by clicking 

on a color wheel
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Fig. 2. 
Model comparison methods used by Zhang and Luck (2008) and Anderson et al. (2012). 

Raw data consist of distributions of estimation errors, one for each set size (top row). Both 

papers fit a mixture of a uniform distribution and a Von Mises distribution to the raw data 

(red curves). The mixture model has two parameters: the weight of the Von Mises 

component (wUVM) and its circular standard deviation (SDUVM). Both papers observe a 

“plateau” in SDUVM at higher set sizes, and proceed to compare slot and slotless models on 

the basis of the p value of a t test on differences in SDUVM values between two set sizes. 
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Paper 2 applies further data-processing steps to obtain two more summary statistics that are 

used for model comparison
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Fig. 3. 
Model comparison using log Bayes factors based on the raw data. a In contrast to the 

process described in Fig. 2, comparing models using the log Bayes factors based on 

individual-trial responses is straightforward and does not involve any preprocessing of data. 

b Using synthetic EPF (black) and VPA (red) data sets consisting of 45 subjects each, the 

generating models are recovered perfectly even at 16 trials per subject. c The expected log 

Bayes factor increases monotonically in magnitude with the number of trials per subject. It 

is consistently positive when the synthetic data are generated from the EPF model (black) 

and negative when they are generated from the VPA model (red), indicating that the 

predictions of the models are sufficiently different to allow for an easy distinction. Error 

bars indicate standard deviations across synthetic data sets

van den Berg and Ma Page 25

Atten Percept Psychophys. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4. 
Is summary statistic #1 (p value of t test on SDUVM between set sizes 3 and 4) suitable for 

model comparison? a SDUVM as a function of set size for four example synthetic data sets 

(45 subjects each). When the number of trials per subject is large, the EPF model predicts 

that SDUVM increases for set sizes below memory capacity and is constant for set sizes 

above capacity (top left). By contrast, the VPA model predicts that SDUVM increases 

indefinitely (bottom left). A t test between the SDUVM values at set sizes 3 and 4 is 

significant on the VPA data, but not on the EPF data. However, when the number of trials is 
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of the same order of magnitude as in the empirical data sets (right), the SDUVM estimates 

become noisy under both models, and a t test does not produce a significant difference in 

either of these example cases. b Distributions of the p value at 720 trials per subject (the 

number of trials used in Experiment 1 of paper 2). The distributions largely overlap, 

indicating that the p value is of little value in distinguishing EPF from VPA data (the blue 

arrow indicates the p value from Experiment 1 in paper 2). c Mean and 95% confidence 

interval of the p value as a function of the number of trials. d Model recovery performance 

based on log Bayes factors computed from summary statistic #1 as a function of the number 

of trials. Compare with Fig. 3b. e The amount of evidence for the EPF model (log Bayes 

factor) as a function of the number of trials (mean and standard deviation across synthetic 

data sets). Compare with Fig. 3c
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Fig. 5. 
Is summary statistic #2 (R2 of piecewise linear fit to SDUVM versus set size) suitable for 

model comparison? a SDUVM as a function of set size for four example single-subject 

synthetic data sets. When the number of trials is large, a piecewise linear function perfectly 

captures the SDUVM trend in the EPF data (top left) and provides a slightly worse fit in the 

VPA data (bottom left). However, when the number of trials is of the same order of 

magnitude as in the empirical data sets (right), the SDUVM estimates become noisy under 

both models, and the R2 of the piecewise linear function does not seem to be informative 
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about the underlying model. b Distributions of the R2 value at 720 trials per subject (the 

number of trials used in Experiment 1 of paper 2). The distributions partly overlap, 

indicating that the R2 value cannot reliably distinguish EPF from VPA data (the blue arrow 

indicates the R2 value from Experiment 1 in paper 2). c Mean and 95% confidence interval 

of the R2 value as a function of the number of trials. d Model recovery performance based 

on log Bayes factors computed from summary statistic #2 as a function of the number of 

trials. Compare with Fig. 3b. e The amount of evidence for the EPF model (log Bayes 

factor) as a function of the number of trials (mean and standard deviation across synthetic 

data sets). Compare with Fig. 3c
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Fig. 6. 
Is summary statistic #3 (R2 of singularity versus wUVM) suitable for model comparison? a 
Correlation between wUVM at set size 8 and the singularity (IP) of the piecewise linear fit 

for four example synthetic data sets (45 subjects each). When the number of trials is large, 

wUVM and IP are near-perfectly correlated in the EPF data (top left). The correlation is 

slightly lower in the VPA data (bottom left). However, when the number of trials is of the 

same order of magnitude as in the empirical data sets (right), estimates of wUVM and IP are 

more noisy, and the correlations much weaker. b Distributions of the R2 value at 720 trials 
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per subject (the number of trials used in Experiment 1 of paper 2). The distributions highly 

overlap, indicating that the R2 value cannot reliably distinguish EPF from VPA data (the 

blue arrow indicates the R2 value from Experiment 1 in paper 2). c Mean and 95% 

confidence interval of the R2 value as a function of the number of trials. d Model recovery 

performance based on log Bayes factors computed from summary statistic #2 as a function 

of the number of trials. Compare with Fig. 3b. e The amount of evidence for the EPF model 

(log Bayes factor) as a function of the number of trials (mean and standard deviation across 

synthetic data sets). Compare with Fig. 3C
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Fig. 7. 
Comparison of model evidence and model recovery performance in the raw data and the 

three summary statistics (ss1, ss2, ss3). a The amount of EPF model evidence (log Bayes 

factor) in the summary statistics is negligible, as compared with the amount of evidence in 

the raw data. Detailed plots for each of the summary statistics can be found in Figs. 4c, 5c, 

and 6c. b Model recovery rate based on summary statistics is low, as compared with that 

based on raw data
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Fig. 8. 
Model evidence and fits to subject data from Experiment 1 of paper 2. a Model evidence 

computed from the subject data of Experiment 1 in paper 2. Model evidence derived from 

the summary statistic is negligible, as compared with the evidence provided by the raw data. 

b Left: Maximum-likelihood fits to error histograms (“raw data”). Model predictions were 

obtained by simulating 50,000 trials per set size per subject, with parameter values set to the 

subject’s maximum-likelihood estimates. Subject data and model predictions are collapsed 

across set sizes and subjects. Right: Model residuals (data minus fit) averaged across 

subjects and set sizes (180 bins, smoothed using a sliding window with a width of 4 bins). 

The EPF model shows a clear peak at the center, indicating that the empirical distribution of 

the estimation error is narrower than the fitted distribution. The residual of the VPA model 

is smaller, consistent with the finding shown in panel a that this model provides a better fit 

to the raw data than does the EPF model. c Maximum-likelihood fits to summary statistics. 
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The EPF and VPA models fit all three summary statistics approximately equally well. Error 

bars indicate 95% confidence intervals
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Fig. 9. 
Effect of the prior distribution over parameters on model comparison using raw data. When 

computing expected log Bayes factors, a prior distribution over parameter values is used at 

two places: when generating synthetic data and when marginalizing over parameters to 

compute the log Bayes factor for a single synthetic subject. a Same as Figs. 3b and 3c, 

except that both the generating and marginalization prior distribution were uniform 

distributions instead of a bivariate Gaussian derived from empirical values. b Predicted 

distributions of the summary statistics under the uniform prior distributions (cf. Figs. 4b, 5b, 
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6b). c Model evidence obtained from subject data under the uniform prior distributions (cf. 

Fig. 8a)
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Fig. 10. 
Effect of the using the “wrong” prior distribution in the marginalization step when 

computing log Bayes factors from raw data. a Same as Fig. 3b, except that the prior 

distribution used in the marginalization step was a uniform distribution instead of the 

bivariate Gaussian derived from empirical values. b Same as Fig. 3c, except that the prior 

distribution used in the marginalization step was a uniform distribution, instead of the 

bivariate Gaussian derived from empirical values
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Figure A1. Prior distributions on parameter values in the EPF (left) and VPA (right) models
Both distributions are bivariate normal distributions. To ensure that synthetic data had 

approximately the same statistics as subject data, we set the mean and covariance of these 

distributions equal to the mean and covariance of the maximum-likelihood estimates of the 

subject data of Experiment 1 in Paper 2. Samples of parameter K in the EPF model were 

rounded to the nearest integer value. These prior distributions were used in two places: (1) to 

draw parameter values when generating synthetic data and (2) to sample parameter values 

when approximating marginal model likelihoods.
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Figure A3. Effect of number of samples drawn from the prior distribution over parameters 
when computing expected log Bayes factors
Computation of expected log Bayes factors involves an integration over the parameter prior. 

In the main analyses, we performed this integration numerically by drawing 500 Monte 

Carlo samples from the prior distribution over parameters. To check whether 500 is 

sufficient to obtain stable and unbiased estimates, we computed the log Bayes factor as a 

function of the number of samples (averages and standard errors over 100 runs with 1 

synthetic subject with 720 trials distributed across set sizes 1,2,3,4,6, and 8). When the 

number of samples is small, the log Bayes factor is unstable (large error bars) and biased 

(systematically lower than the asymptote). However, it converges at around 16 samples, 

which indicates that 500 was sufficient to obtain stable and unbiased results.
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Table 1

Description of the raw data and the summary statistics used by Papers 1 and 2

Type of Data D Notation Definition

Raw Data Estimation Errors on Individual Trials

Summary statistic #1 p value of t test p value of t test on SDUVM between set sizes 3 and 4

Summary statistic #2 R2 of piecewise linear Coefficient of determination of the piecewise linear fit to SDUVM as a function of set size

Summary statistic #3 R2 of singularity Correlation between the singularity in the piecewise linear fit and wUVM at set size 8
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