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Abstract

Background—Design patterns, in the context of software development and ontologies, provide

generalized approaches and guidance to solving commonly occurring problems, or addressing

common situations typically informed by intuition, heuristics and experience. While the

biomedical literature contains broad coverage of specific phenotype algorithm implementations,

no work to date has attempted to generalize common approaches into design patterns, which may

then be distributed to the informatics community to efficiently develop more accurate phenotype

Methods—Using phenotyping algorithms stored in the Phenotype KnowledgeBase (PheKB), we

conducted an independent iterative review to identify recurrent elements within the algorithm

definitions. We extracted and generalized recurrent elements in these algorithms into candidate

patterns. The authors then assessed the candidate patterns for validity by group consensus, and

annotated them with attributes.

Results—A total of 24 electronic Medical Records and Genomics (eMERGE) phenotypes

available in PheKB as of 1/25/2013 were downloaded and reviewed. From these, a total of 21

phenotyping patterns were identified, which are available as an online data supplement.
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Conclusions—Repeatable patterns within phenotyping algorithms exist, and when codified and

cataloged may help to educate both experienced and novice algorithm developers. The

dissemination and application of these patterns has the potential to decrease the time to develop

algorithms, while improving portability and accuracy.
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Introduction

Electronic health records (EHRs) have been shown to be a valuable source of information

for biomedical research, including the definition and identification of clinical phenotypes.

[1-5] The increasing use of EHRs[6, 7] has resulted in large quantities of data available for

secondary purposes such as research. In order to better handle this growing source of data,

we need to improve methods and approaches to phenotype more efficiently.

The electronic Medical Records and Genomics (eMERGE) network has been a leader in the

development of phenotype algorithms based on EHR data. In addition to the work done

through eMERGE for genome-wide association studies (GWAS),[8-15] there are additional

examples of electronic algorithms to mine EHRs for identifying diseases for biomedical

research and clinical care[16-20] disease surveillance,[21] pharmacovigilance,[22] as well as

for decision support.[23] These studies have provided some guidance on dealing with the

challenges of using EHR and claims data.[2, 20, 24-26] This guidance has often been in the

context of a single algorithm, although more recent work has begun to address the broader

challenges of using EHR data for phenotyping.[1, 27] Additionally, research is being

conducted to identify how electronic phenotype algorithms may be represented and made

more portable across disparate EHRs,[28, 29] which has the potential to automate

approaches to handle the complexities and nuances of EHR data.

A major goal of the current phase of eMERGE is to improve the ease and speed of

developing new phenotype definitions. No known work to date, however, has attempted to

broadly classify challenges and solutions to using EHR data for the development of

electronic phenotype algorithms, or demonstrated an approach to widely disseminate the

findings. This knowledge could potentially reduce the time to develop phenotype

algorithms, improve portability to other sites and even accuracy by describing experiences

developing other algorithms. The primary goal of this paper is to apply lessons from prior

work in software design patterns to the problem of defining and disseminating EHR-based

phenotype algorithms.

In software engineering, the use of design patterns are frequently used to generate solutions

to common problems or scenarios.[30] These patterns are free from any technical

implementation details, such as programming language or database platform. Design

patterns are not applicable only in the domain of software development. They have roots in

architecture,[31] and have recently been applied to the development of ontologies.[32, 33]

and health information technology (HIT) solutions.[34, 35] Even though design patterns are

used in multiple domains, they share similar constructs that form a basis of overall pattern
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languages.[36] Generally, design patterns provide: (1) a description of a scenario or problem

that exists and that the pattern may address; (2) a template for a solution; and, (3)

considerations for when to apply the pattern, or what its implications may be.[30, 31, 36]

Design patterns are not intended to capture every possible pattern that may occur in the

target domain; rather, they represent best practices and common approaches to solving a

problem. In practice, they may be derived from intuition, heuristics and experience.

In order to more widely disseminate solutions to common problems and scenarios found in

the development of electronic phenotype algorithms, we propose the creation of “EHR-

driven phenotype extraction design patterns”—logical patterns recurring frequently in

phenotyping algorithms that are EHR and technology agnostic. This paper presents an initial

catalog of such patterns from experiences within the eMERGE network.

Methods

The steps used to define, develop and review phenotype design patterns are shown in Figure

1, and are explained in more detail below.

Setting

The eMERGE network[37] is a National Human Genome Research Institute (NHGRI)-

sponsored initiative that has demonstrated the feasibility of EHR-derived phenotypes in

order to conduct genome-wide association studies (GWAS). Within the network, sites

develop and locally validate an EHR-based phenotype algorithm, which are then

implemented and validated at one or more additional network sites. While phenotype

algorithms themselves are largely recorded as text documents[38] and have to be re-

implemented in a format that can be executed at each site, the transfer of phenotypes from

one site to other sites with different EHR systems demonstrates the broader application of

EHR-derived phenotyping.

Phenotype Selection

Phenotypes created by the eMERGE network are publicly available on the Phenotype

KnowledgeBase website (PheKB, http://www.phekb.org), and are classified by the group or

consortium under which the algorithm was created, as well as a status to indicate how

mature the algorithm is in its development process. For this study, all phenotype algorithms

associated with the eMERGE network that were marked with a “Final” or “Validated” status

were downloaded on January 25, 2013. The algorithm set consists of both case/control

studies (i.e. Cataracts, Resistant Hypertension) as well as quantitative measures (i.e. Red

Blood Cell Indices, White Blood Cell Indices). The algorithms were developed,

implemented, and validated by chart review by at least one other eMERGE site. Phenotypes

that were available in PheKB but had not been validated were considered too preliminary for

study, and were excluded. In addition, the selected algorithms within the eMERGE network

were not developed independently (sites collaborated on and built new algorithms after

having reviewed others), which allowed evaluation of shared experiences as algorithms were

developed over time.
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Phenotype Algorithm Review

One of the authors (LVR) reviewed each of the phenotype algorithms, and identified unique,

discrete fragments in the text definitions that represented the inputs, logic, and constraints

within the algorithms. As multiple artifacts can exist for each phenotype algorithm (i.e. chart

abstraction forms for validation, data dictionary definitions), only documentation containing

a textual description of the algorithm was reviewed.

Coding the algorithms followed a form of discourse analysis, where we identified short text

fragments that represent distinct constructs of the algorithm definition. There are various

forms of these constructs, such as the sources of data, temporal criteria and Boolean

combinations. We extracted these fragments and annotated them with a set of tags to denote

the context and use of that fragment in the algorithm. The list of tags was dynamically

created as new examples were encountered. In addition, given the repeated nature of types

of fragments within an algorithm, only distinct fragments were extracted, and subsequent

repeats or similar fragments were ignored. The intent was to study distinct examples per

algorithm, and the selection and use of fragments and their tags were used by reviewers

independently to aid in identifying candidate patterns. Figure 2 shows as an example the

fragments identified in a single phenotype algorithm and the contextual tags applied.

Identifying Phenotyping Patterns

Once we coded all of the algorithms, one of the authors (LVR) iteratively reviewed the list

of fragments for repeating categories, which represent candidate patterns. If a potential

candidate pattern was identified, we sought additional supporting examples in the list of

fragments. We accepted a candidate pattern only if it was present in two or more algorithms,

to better represent that the approach was repeated and generalizable. The fragment review

process was iterative, using the initial contextual tags as high-level categories. Sub-

categories were created ad-hoc by subjective assessment of the reviewer, given specific

details of the fragments, and new sub-category tags added where identified, with sub-

categories representing candidate patterns. This process was performed on the full list of

fragments until no new candidate patterns were identified. We then created a template for

phenotyping patterns, based on typical representations for software and other design

patterns. Table 1 shows the fields in this template.

The candidate patterns were subsequently reviewed by WKT, JAP, ANK, DSC, JP, PLP and

GT. Reviewers independently voted to approve, tentatively accept, or reject each candidate

pattern, provide justification for tentative acceptance or rejection, and to also provide

recommendations to improve or clarify the patterns. Level of agreement between the seven

reviewers on the initial vote was measured by Gwet's AC1[39]. Reviewers, given their

collective experience with developing phenotype algorithms, were also asked to recommend

any candidate patterns (following the template fields shown in Table 1) that they felt should

exist and were not included. This expert-based heuristic assessment was used to complement

the single-reviewer, example-based approach used to create the initial candidate pattern list.

Recommended patterns from the reviewers were assessed against the list of fragments to see

if there were supporting examples. Comments and votes from the reviewers were
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consolidated, and majority-rejected patterns removed. The remaining patterns were

considered the list of approved patterns, and their content iteratively refined by all authors.

To further correct for potential bias of a single reviewer, the methods were repeated by

another author (WKT). Given the reviewer's involvement in the group review process, the

intent of this supplemental review was primarily to account for missed patterns and further

refine patterns given new evidence. The second reviewer iteration also started with the

identification of fragments from the phenotype algorithm documents, followed by an

iterative review to create candidate patterns, and included a joint reconciliation process with

the first reviewer to determine if candidate patterns were represented in the first set, or

constituted a new pattern.

Following this supplemental review process, all authors performed a final review and

refinement step to arrive at the final list of approved patterns.

Result

In total, 24 eMERGE algorithms from PheKB marked as “Final” or “Validated” were

reviewed. The list of algorithms reviewed is shown in Table A1 of the online data

supplement. For these algorithms, the initial reviewer identified 340 fragments. Of the 340

fragments, 35.6% (n=121) of the fragments were selected, having met the selection criteria.

These selected fragments were used as evidence to construct an initial set of 19 candidate

patterns. The initial level of agreement between the 7 reviewers on acceptance of the

candidate patterns was 69.7%. No candidate patterns were rejected at the end of the review

process. In the course of the group review, one new pattern was recommended by reviewers,

with supporting examples found amongst the 24 phenotype algorithms. The secondary

reviewer produced 402 fragments, from which 14 candidate patterns were identified. From

this set, 13 were deemed supportive of the initial reviewer's 19 candidate patterns, and

included a new pattern not previously identified. The second reviewer did not explicitly

identify all used fragments, and so no usage statistics from the second review are reported.

In total, 21 phenotype patterns were identified, and were placed into one of five categories.

The list of pattern names, with abbreviated descriptions and associated benefits, is shown in

Table 2. The full listing of patterns is available as an online data supplement.

All of the reviewed phenotype algorithms implemented at least one pattern, with the High-

Density Lipoproteins (HDL) algorithm having the most patterns (n=10). Across all of the 24

reviewed algorithms, there was an average of 5 patterns per algorithm (standard deviation

2.7). For the 21 identified phenotype design patterns, there was an average of 5.7 algorithms

that implemented each pattern (standard deviation 2.8), with the “Rule of N” pattern

identified in 13 of the 24 algorithms, and the “Composition of Algorithms” and “Ad Hoc

Categories” patterns being identified in the minimum two algorithms. A listing of all

phenotype design patterns and the phenotype algorithms they are found in is available in

Table A2 of the online data supplement.
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Discussion

Our major finding is that identifiable design patterns occur frequently in phenotype

algorithms. We have identified and validated 21 unique phenotype design patterns, which

we have defined to be: a) present in two or more separate phenotype algorithms (recurring),

b) free of any EHR, institution or technology specific details (generalizable), and c)

applicable in certain situations, with guidance on when to use (contextual). This affirms

experimentally what has been believed anecdotally in the phenotyping community—that,

while each phenotype may be unique, effective phenotype algorithms frequently contain

similar patterns of clinical variables. Furthermore, this is consistent with the concept of

design patterns in general—identifying solutions where a feeling of “deja-vu” exists around

a problem.[30]

The need for phenotype design patterns stems from the challenges of using EHR data. The

EHR is not always an explicit representation of the patient's health at a point in time, due in

part to limited data collected or lack of context surrounding its interpretation.[27, 40] One

lesson from eMERGE is that the process of developing a phenotype algorithm is best done

as an iterative process, involving a diverse team that understands how the information is

captured clinically, how it is represented by the EHR, and how that data should be extracted

and interpreted. In the course of developing these phenotype algorithms, eMERGE sites

typically describe the pros and cons of different approaches they took in order to prevent

other sites from making similar mistakes, or to save them time in arriving at an optimal

approach.

As an example, the Height phenotype algorithm was noted as implementing the Multi-Mode

Sources, Account for Data Outliers and Temporal Dependencies patterns. Briefly, the

Height algorithm is looking for adult height measurements for patients that would be

unaffected by factors such as disease or medication. The Multi-Mode Sources pattern was

employed to use both structured data and NLP. The use of NLP was recommended to more

accurately identify vertebral compression fractures, for which ICD-9 codes did not

adequately cover. The Account for Data Outliers pattern was applied to correct for data

errors in the EHR, such as inches being recorded in a field designated for centimeters (50

inches recorded as 50 cm). Finally, the Temporal Dependencies pattern was applied to

exclude height measurements that followed an event that would affect height (i.e. lower limb

amputations) and confound analysis if included.

As with design patterns in other domains, the phenotype design patterns presented here

represent a level of subjective assessment, although rooted in the review of actual phenotype

algorithms. Invariably, there will be some disagreement on what constitutes a phenotype

pattern, and what constitutes “common sense” or a basic approach to phenotype algorithm

development (similar disagreements exist in the software development community[41]).

This was demonstrated by the lower rate of agreement for acceptance of certain patterns

amongst the reviewers, with several comments raised if a pattern was too simple. For

example, at face value “Composition of Algorithms” may appear to recommend the creation

of reusable functions— novice common practice in software development. However, upon

closer inspection, the intent of that pattern prescribes consideration for reuse in the
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development process (much less commonly done), and closer inspection to identify

previously hidden “sub-algorithms” that may be extracted, refined and curated for reuse.

The descriptions associated with the proposed phenotype design patterns attempt to justify

why the pattern exists, but may require refinement or expansion over time.

Many of the proposed design patterns represent different levels of abstraction with how they

may be applied. For example, the “Composition of Algorithms” pattern describes strategies

for how an algorithm would be structured. The “Rule of N” pattern is applied directly within

the algorithm logic. While no formal classification scheme is proposed to address this within

our study, general categories (which are used in the online supplement) can provide a logical

grouping.

In addition, as with other design patterns, some of the patterns are closely related, possibly

representing a specific instantiation of a pattern for a type of clinical information, or

multiple patterns often being used in conjunction. For example, during the review process,

the “Confirm Variable Was Checked” pattern—which establishes reasonable evidence that a

clinical measure would be recorded—was initially seen as simply checking if something

exists (a very basic operation). The justification given for this pattern is that while the output

is a Boolean indicator, it provides specific guidance on how to assess multiple sources of

information (encounters, appointments, physician details, departments, etc.) to arrive at that

decision.

The phenotype algorithms selected for review were specific to the eMERGE network, and

were intended to identify phenotypes for GWAS. Algorithms developed for different use

cases might have a slightly different focus, and hence different patterns of varying

complexity. However, these represent phenotypes spanning a variety of disease types and

implemented across multiple institutions against a variety of vendor and home-grown EHRs.

While it is possible that phenotype algorithms developed by other institutions, or algorithms

developed for other purposes may differ, the algorithms represented a reasonable sample of

data types extracted from diverse EHRs. Also, the assignment of design patterns always

involves an inherent level of subjectivity. The requirement that examples (represented by the

document fragments) exist in at least two algorithms for candidate patterns was one

approach to account for this, and the resulting patterns were reviewed by a panel of domain

experts who were intimately familiar with the phenotype algorithms, having developed

and/or implemented these algorithms at their respective sites. As a result, every algorithm

and pattern mapping was vetted by two or more experts familiar with the algorithm.

However, the initial use of a single reviewer is a limitation. Although another reviewer did

replicate the methods and identified a new phenotype pattern, it was done after the group

review process, which would bias the overall collection of patterns found by the second

reviewer. This represents one approach to identifying phenotype algorithm patterns and

other techniques warrant exploration, such as the Delphi method to avoid potential bias.

The optimal use of design patterns in phenotyping deserves some discussion. While we

observed variability in the number of design patterns used in each phenotype algorithm

reviewed, and that each algorithm in our sample contained at least one pattern, there is no

prescriptive number of phenotype design patterns that should be applied when developing an
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algorithm. In any domain, patterns may be used at inappropriate times due to inexperience

or by cognitive biases.[42, 43] It is important to understand the context in which a pattern

should be applied, and be able to justify why a pattern was applied. It is recommended that

the pattern definition be read in its entirety, and consideration given if the scenarios

described by the pattern seem applicable to the situation at hand. Also, the creation of

phenotype algorithms is an iterative process, and in some cases patterns should only be

applied after initial versions of the algorithm deem it necessary (e.g., adopt a Rule of N only

if single observations introduce excessive false positive error). Finally, conducting

validations during the development of phenotype algorithms is strongly encouraged as a best

practice,[44] and will help to further validate how a phenotype design pattern may improve

results, quantify the amount of improvement it offers, or reveal when marshaling a particular

pattern may be appropriate.

Conclusion

Existing EHR-based phenotype algorithms reflect a wealth of experience and knowledge

about the secondary use of EHR data. The development of a list of phenotype design

patterns based on existing phenotype algorithm definitions from the eMERGE network

should help both novice and experienced data analysts navigate the nuances and

complexities of working with EHR data for algorithm development. Their use also has the

potential to conserve algorithm development time while improving accuracy and portability.

The set of patterns presented here is intended as a starting point for articulating and

documenting generalizable patterns useful in phenotype development, and we expect

members of the broader biomedical informatics community to augment and refine it.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Defined the concept of a “phenotype design pattern” to aid in developing

phenotype algorithms

• Evaluated 24 phenotype algorithms created by the electronic Medical Record

and Genomics (eMERGE) network

• Identified 21 phenotype design patterns from the corpus of eMERGE algorithms
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Figure 1.
Methods for developing and reviewing phenotype design patterns.
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Figure 2.
Example annotation and tagging of fragments within the eMERGE Hypothyroidism

phenotype algorithm (available from http://www.phekb.org).
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Table 1
Fields used to define phenotyping patterns

Field Description

Name An abbreviated name to identify the pattern

Description A description of the approach to take to address a scenario encountered in electronic phenotyping.

Reasoning An explanation of why the pattern's approach is used. This helps to provide additional context on the
complexities of EHR data.

Examples Example text fragments that represent solutions to address the problem, or particular scenario.

Considerations when to use Specific scenario(s) under which the pattern should be considered for use.

Considerations when not to
use

Specific scenario(s) under which the pattern may not be needed, or may not be appropriate to use.

Related to Other patterns that this pattern is related to, as well as a brief description of the relationship.
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Table 2
List of phenotyping patterns derived from a review of 24 eMERGE phenotype algorithms

Pattern Name Description Benefits

Anchor Date Define a static date around which all queries and
validations are anchored.

Makes results reproducible, such that
ongoing changes in a person's disease state
do not invalidate existing validations.

Composition of Algorithms Using an algorithm that was created and validated as a
component of another algorithm.

Promotes creation and reuse of validated
phenotypes to be used in other phenotypes,
without re-creating, or using sub-optimal,
definitions.

Consolidate Multiple Values For quantities represented by repeated or multiple
measures, provide a single computed value to represent the
multiple values.

Simplifies analysis and the amount of data
that needs to be managed.

Account for Data Outliers Filter out noisy or incorrect values to help ensure
calculations (including average) are not skewed.

Improves accuracy of the phenotype
definition.

Ad Hoc Categories Group codes, medications, etc. into ad hoc categories that
are not part of a standard terminology or protocol.

Simplifies the definition of a phenotype
algorithm.

Multi-Mode Sources Account for information collected in multiple formats or
sources across an EHR over time.

Can improve accuracy of the phenotype
definition by including all sources of data
where information may solely be recorded.

Established Patient Make sure the patient is seen within the healthcare system
at a regular enough basis so that the information pertinent
to the algorithm would be on record.

Improves accuracy by making sure enough
data is present to make an accurate
determination about disease state.

Confirm Variable Was Checked Make sure the patient has been seen by a healthcare
professional, and that the encounter would be sufficient
enough to measure the absence or presence of a disease or
other observation.

As patients who are not checked for a
disease may in fact have that disease, which
could confound analyses, ensures that
patients have been checked.

Qualifiers for Evidence Require additional qualifiers, such as severity, to exist
before accepting a clinical observation.

May improve accuracy, and also allows for
stratification of disease based on its
progression, state, and/or severity.

Rule of N Require at least N independent pieces of evidence
substantiating a condition or event to reduce the chance
that extraneous or incidental data is over interpreted as
indicating the condition or event is present.

Improves accuracy by correcting for data
that could have been recorded without
sufficient context.

Use Distinct Time Intervals When requiring a count of items, make sure they happen
on different dates and/or times, optionally with some time
interval between them.

Allows for a more specific phenotype
definition by setting a time window in which
a disease should have progressed, or ensures
that observations are spaced apart to indicate
an ongoing condition.

Credentials of the Actor Require that a person with appropriate authority (e.g., a
physician with specific credentials or practicing in a
particular specialty department) recorded the clinical data.

Increases confidence or precision in a
diagnosis if a specialist has recorded it.

Establish Assertion Status Determine if assertion qualifiers affect the meaning of
medical observations (e.g., the meaning of assertions about
“cough” vary depending on whether they are qualified by
negation, uncertainty, hypothetical, historical references).

Improves accuracy by establishing context
around observations.

Medications Likely Taken Require more assurance that a patient was actually taking
the medication, such as through claims data or having
multiple prescriptions over time.

Improves accuracy of phenotypes that rely
on medication usage to confirm absence
and/or presence of the phenotype.

Medication Details When checking for medications, it may be necessary to
look at dose, frequency and/or route.

Allows more precise definition of phenotype
where medication attributes are important.

Evolving Reference Standards Use ranges of dates in which vocabulary codes or lab
ranges are valid, if the underlying standards are known to
have changed.

Increases accuracy of the phenotype by
ensuring the right code is used.

Transient Condition Caveats For patients having transient conditions (e.g., pregnancy),
take into account how those transient conditions may alter
the interpretation of proximal clinical observations.

Improves accuracy of analysis by removing
variables that may be confounded by some
condition.
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Pattern Name Description Benefits

Medical Setting of Action Explicitly require that data be collected (or not be
collected) in a particular setting of interest (i.e. inpatient,
outpatient).

Improves accuracy of the phenotype by
using the encounter setting to add context to
the interpretation of an observation.

Context of Evidence Consider the context or setting in which a clinical
observation is made. For example, when interpreting
clinical text mentions of particular conditions, take into
account how its interpretation may vary depending on the
section of a report in which it appears (e.g., Past Medical
History, Problem List, or Family History).

Improve accuracy by looking at the context
of how something is recorded.

Temporal Dependencies Consider the relationship over time between different
events and/or ages at which events occurred.

Provides more complete phenotype
definitions where progression and temporal
dependencies are important.

Inception of Condition Explicitly define the date to use when determining the
onset of a condition using multiple sources of information
(medications, labs, diagnosis codes).

Provides consistency in the results of a
phenotype algorithm.
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